Future Generation Computer Systems 51 (2015) 61-71

“

Contents lists available at ScienceDirect
FGICIS!

Future Generation Computer Systems

0
I]!

journal homepage: www.elsevier.com/locate/fgcs —

Resource-aware hybrid scheduling algorithm in heterogeneous
distributed computing

g

@ CrossMark

Mihaela-Andreea Vasile?, Florin Pop **, Radu-loan Tutueanu?, Valentin Cristea?,

Joanna Kotodziej®

2 Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Romania
b Institute of Computer Science, Cracow University of Technology, Poland

HIGHLIGHTS

We proposed a hybrid approach for tasks scheduling in Heterogeneous Distributed Computing.

The proposed algorithm considers hierarchical clustering of the available resources into groups.

We considered different scheduling strategies for independent tasks and scheduling for DAG scheduling.

We analyze the performance of our proposed algorithm through simulation by using and extending CloudSim.

ARTICLE INFO

ABSTRACT

Article history:

Received 4 August 2014

Received in revised form

29 October 2014

Accepted 27 November 2014
Available online 9 December 2014

Keywords:

Resource provisioning

Task scheduling

Clustering

Heterogeneous distributed computing
Multimedia content-driven applications

Today, almost everyone is connected to the Internet and uses different Cloud solutions to store, deliver
and process data. Cloud computing assembles large networks of virtualized services such as hardware and
software resources. The new era in which ICT penetrated almost all domains (healthcare, aged-care, social
assistance, surveillance, education, etc.) creates the need of new multimedia content-driven applications.
These applications generate huge amount of data, require gathering, processing and then aggregation
in a fault-tolerant, reliable and secure heterogeneous distributed system created by a mixture of Cloud
systems (public/private), mobile devices networks, desktop-based clusters, etc. In this context dynamic
resource provisioning for Big Data application scheduling became a challenge in modern systems. We
proposed a resource-aware hybrid scheduling algorithm for different types of application: batch jobs
and workflows. The proposed algorithm considers hierarchical clustering of the available resources into
groups in the allocation phase. Task execution is performed in two phases: in the first, tasks are assigned
to groups of resources and in the second phase, a classical scheduling algorithm is used for each group
of resources. The proposed algorithm is suitable for Heterogeneous Distributed Computing, especially for
modern High-Performance Computing (HPC) systems in which applications are modeled with various
requirements (both I0 and computational intensive), with accent on data from multimedia applications.
We evaluate their performance in a realistic setting of CloudSim tool with respect to load-balancing,
cost savings, dependency assurance for workflows and computational efficiency, and investigate the
computing methods of these performance metrics at runtime.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

multimedia information (computers, tablets, smart-phones, TVs),
and also by new multimedia content-driven applications, needed

We are surrounded by multimedia devices, whether they are in various domains (scientific research, education, healthcare, etc.).
sources (smart-phones, cameras, drones) or devices that display A massive amount of heterogeneous data (video, audio, photos),

* Corresponding author.

E-mail addresses: mihaela.vasile@cti.pub.ro (M.-A. Vasile), florin.pop@cs.pub.ro
(F. Pop), radu.tutueanu@cti.pub.ro (R.-I. Tutueanu), valentin.cristea@cs.pub.ro

organized in different formats, is created and requires gathering,
processing and then aggregation in a fault-tolerant, reliable and
secure heterogeneous distributed system. Different Cloud solu-
tions are used to store, deliver and process this data. Hetero-
geneous distributed systems (HDC) may be created as a mixture

(V. Cristea), jokolodziej@pk.edu.pl (J. Kotodziej).

http://dx.doi.org/10.1016/j.future.2014.11.019
0167-739X/© 2014 Elsevier B.V. All rights reserved.

of Cloud systems (public or private), mobile devices networks,

http://dx.doi.org/10.1016/j.future.2014.11.019
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2014.11.019&domain=pdf
mailto:mihaela.vasile@cti.pub.ro
mailto:florin.pop@cs.pub.ro
mailto:radu.tutueanu@cti.pub.ro
mailto:valentin.cristea@cs.pub.ro
mailto:jokolodziej@pk.edu.pl
http://dx.doi.org/10.1016/j.future.2014.11.019

62 M.-A. Vasile et al. / Future Generation Computer Systems 51 (2015) 61-71

desktop-based clusters, etc., and are able to handle the current
challenges in managing large heterogeneous data sets in a limited
amount of time [1]. In this context, dynamic resource provisioning
for Big Data application scheduling became a challenge in modern
High-Performance Computing (HPC) systems [2,3]. Unfortunately,
most existing scheduling algorithms for tasks with dependencies
in HDC systems do not consider reliability requirements of inter-
dependent tasks and many times the execution fails because the
tasks are allocated to unsuitable resources [4].

Modern HPC systems should be able to face variable demand
loads in an efficient way when referring to the resources utiliza-
tion [5] (use the minimum number of resources) or SLA achieve-
ment. A resource provisioning mechanism is an important element
that should be used to manage utilization of available resources
and to detect if there has been reached peak demand at a cer-
tain moment and the system should be extended by requesting
additional resources (from a private Cloud for example), or if the
system could be shrunk because there are just few requests and
check if the QoS requirements of current applications will be still
met [6].

Scheduling is a key problem in the context of Cloud comput-
ing, virtualization and Big Data because scheduling techniques
also have to evolve along with HPC systems. Classic schedulers
have been built for batch, homogeneous environments, having a
static internal behavior with no or very few changes in the re-
sources structure. The emergent modern systems are defined by
highly heterogeneous environments with variable structure—new
resources may be added if needed and removed when the work
load decreases (on demand provisioning). The distributed compu-
tations as a divisible load scheduling problem for MapReduce is an-
other new approach [7]. In this approach, a divisible load model
of the computation, and two load partitioning algorithms are pro-
posed. Novel scheduling approaches have to monitor the system
structure and adjust the planning according to the real-time sit-
uation. This will also provide increased fault-tolerance because
changes are always expected (either planned or not).

A workflow [8,9] describes the automation of a process, be
it a business, scientific or general process and the set of rules
(dependencies). In other words, workflows represent sets of ele-
mentary tasks and their dependencies, required for more complex
purposes. So, the workflows are described by a DAG having nodes
for each task and edges for each dependency. According with [10]
the workflow execution should respond dynamically to interfer-
ence of real-time monitoring and real-time execution, to support
the experimentation process in HPC and in Big Data platforms. So,
efficient scheduling of concurrent workflows becomes an impor-
tant issue in HDC environments [11].

In this paper we present an extension of HySARC? scheduling al-
gorithm for dependent tasks scheduling. The algorithm was intro-
duced in[12] as a scheduling algorithm that improves workload on
the resources available into the Cloud and satisfies tasks require-
ments. The HySARC? algorithm has three parts: (i) Analyze the
available resources and group them into clusters (resource aware
algorithm); (ii) Provision different groups of similar tasks to differ-
ent clusters of resources; and (iii) Schedule the tasks in each cluster
of resources. The initial version of HySARC? was applied for Bag-of-
Tasks applications such as data mining algorithms or Monte Carlo
simulations, having both IO and computational intensive phases.
We extend the HySARC? applicability to applications modeled with
workflows. We considered Modified Critical Path or Earliest Time
First algorithms in our hybrid approach. The proposed scheduling
algorithm allows a more efficient and exact structure of resources,
because the tasks are classified before the scheduling phase and
assigned to suitable groups of resources.

Our contributions in this paper can be summarized as follows:

e First, we proposed a hybrid approach for tasks scheduling
in HDC considering both tasks and resources clustering. We
acknowledge that there is no solution that could fit all kinds
of tasks models. Therefore, our scheduling strategy is based on
using different scheduling strategies, selected by taking into
consideration both the heterogeneity of computing resources,
and application tasks and/or flows. The effectiveness of the
utilization of the computing resources is determined by the
efficiency of the allocation strategy of the resources.

e We provided a model for adaptive and dynamic clustering
considering the abstract modeling of HDC resources. The
“distance” computed in this model highlights the similarity
between resources, so we can group the resources in clusters
and then use the formed clusters in HySARC? algorithm.

e We extended CloudSim [13] to consider this approach and we
integrate four scheduling strategies: two for independent tasks
(Earliest Deadline First and Shortest Job First) and two for DAG
scheduling (Modified Critical Path and Earliest Time First).

The structure of the paper is the following. In Section 2 we
analyze some existing scheduling solutions in the related work.
Section 3 describes in detail the proposed approach: architecture,
clustering and scheduling algorithms and the extensions for
workflows. We analyze the total execution time and scalability
in Section 4 as experimental methodology. Section 5 presents the
integration in real Cloud platforms of our solution and in the last
part, Section 6, are presented the conclusions and future research
work.

2. Related work

The goal of HySARC? is to improve scheduling in a given Cloud
environment, using adequate resources to satisfy both user re-
quirements and service provider’s interests, achieved by clustering
and resource labeling. Therefore, topics of interest for this paper
are clustering, resource provisioning, hybrid scheduling and algo-
rithms for scheduling different types of tasks.

Cloud service providers are interested in optimizing available
resources, in order to being able to satisfy as many user require-
ments as possible and as a result improving the profit. Efficient
energy management is a challenging research issue in resource
management in Cloud [14,15]. The HySARC? algorithm aims at ef-
ficient resource utilization: tasks assigned to suitable resources,
having as effect energy saving because inadequate resources could
be put in a hibernate state, in the limits of the Service Level Agree-
ment (SLA) [16,17]. We will describe several solutions that take
into consideration the resource allocation.

A Resource Aware Scheduling Algorithm which leverages two
existing task scheduling algorithms, Min-min and Max-min, is de-
scribed in [18]. Both algorithms use an estimation of tasks comple-
tion time and resource execution time. The presented algorithm
alternates the two algorithms depending on input tasks.

An important feature for scheduling algorithms is to have a
dynamic behavior according to real environment evolution. Such
an algorithm is described in [19]. The algorithm is suitable for
arbitrary constraints tasks, their dependencies may be organized
as a graph, having as nodes the tasks and as edges the constraints.
It consists in two parts: an initial scheduling phase and a re-
scheduling phase, in which tasks are separated in entry tasks and
inner tasks, based on dependency of failing tasks. Depending on the
type the node that fails, there may be used different scheduling
algorithms: Highest Level First with Estimated Times, Modified
Critical Path or Earliest Time First.

In [20] an algorithm having good results on the compromise
cost-execution time is presented. The tests showed that the cost

M.-A. Vasile et al. / Future Generation Computer Systems 51 (2015) 61-71 63

may descend with over 15% while the execution time satisfies
users’ requirements or the execution time may be shorter with
average 20% and the costs would remain almost the same. The
main steps of the algorithm are: (i) Reschedule tasks from previous
rounds with highest priority; (ii) Compute tasks sub-deadlines:
the latest completion time that cannot be exceeded; (iii) Compute
execution time and cost for each task on each resource; (iv) Each
task is distributed to the resource with lowest execution time and
lowest cost; (v) Allow the user to view a graph with the relation
time-cost and to choose desired compromise; (vi) Repeat for next
scheduling round.

A heuristic genetic approach is described in [21,22], with a
slight improvement of execution time. The proposed algorithm
generates an initial schedule for tasks using a heuristic algorithm
such as Min-min (described above in [18]); computes parameters
such as make span for the generated allocation; select nodes
(scheduled resources) and uses traditional genetic techniques to
get the best population. Another strategy used as optimization
method is co-allocation. Co-allocation provides a schedule for tasks
with dependencies, having as main purpose the efficiency of the
schedule, in terms of load balancing and minimum time for the
execution of the tasks [23].[24] describes Aneka’s deadline based
algorithm for provisioning resources. Aneka is a cloud application
platform that uses various resources, ranging from public cloud
to desktops grids. The presented algorithm supports QoS-aware
execution in hybrid clouds [25], with an emphasis on scientific
applications. Its authors also present results from running the
algorithm in a real hybrid cloud, with applications that only require
a small amount of data. The algorithm reduces the application
execution times and reveals the need for historical information
regarding previous executions of the application to be scheduled.

The authors of paper [26] present an algorithm for handling
DAG type of tasks named ICPDP (Improved Critical Path using
Descendant Prediction). The paper first presents and analyzes
heuristics for scheduling tasks with dependencies in the form of
a DAG, for several applications with different requirements in
terms of computing time and resources. The proposed algorithm
is integrated in the DIOGENES project and experimental results
have been derived from that, showing the improvement that ICPDP
brings to DAG scheduling. Furthermore, based on directed acyclic
graph (DAG) in [4] is proposed a reliability-aware scheduling
algorithm for precedence constrained tasks, which can achieve
high quality of reliability for applications.

In [27] is presented an energy-aware scheduling system based
on heuristics, aiming to compute optimal solutions in terms of bal-
ance between make span and energy efficiency. The problem is for-
mulated as a multi-objective optimization, for both performance
and energy. The authors target heterogeneous parallel systems and
use real consumption to develop their heuristics. Changing several
parameters in their configuration, the proposed solution managed
a notable reduction of energy consumption, while slightly increas-
ing the make span as well.

As opposed to the previous paper, who analyzed scheduling on
the workflow type of application, [28] analyzes scheduling of batch
jobs. Batch machines are specialized on jobs belonging to a certain
family and can process a number of those jobs simultaneously. The
authors use a mathematical model and use repositioning of whole
batches as opposed to singular jobs. This technique gave better
results than the best overall heuristic algorithm.

SLA based scheduling has been a challenge for Cloud platforms.
In [29] is described a SLA-aware PaaS Cloud platform called
Cloudcompaas, aimed at providing high-level metrics and closer
to end-user perception. The platform also provides a framework
that enables corrections of QoS violations, using elasticity. It
manages the complete resource lifecycle, being able to sustain
heterogeneous utilization patterns. The simulations show that

Cloudcompass can achieve minimum cost and maximum efficiency
for several workload profiles tested.

There are several scheduling algorithms and strategies adopted
in private Clouds. The scheduling in OpenStack [30] framework is
accomplished by the nova-scheduler. The main scheduling phases
in the process are: 1. filtering available resources according to
users requirements; and 2. weighting phase—the filtered hosts
are applied a cost function depending on the input tasks and
then sorted from the best to the worst. When using OpenNebula
framework [31], the default available scheduling is related to the
allocation of VMs on hosts. It uses a Rank Policy for that purpose:
the hosts not fulfilling VMs requirements (memory or CPU) are
excluded; the remaining hosts are evaluated using a configurable
rank function; VMs are allocated to hosts with higher rank [32].

The most used Cloud simulator is CloudSim [13,33]. In CloudSim
there are available default scheduling policies both for VMs
allocation on hosts and for tasks allocation on processing elements.
The simulator offers space-shared and time-shared policies for
VMs and tasks provision and those two available policies may
be used in every combination having different effects in tasks
execution. A similar tool is iCanCloud—a flexible and scalable Cloud
infrastructure simulator [34].

3. Proposed model for HySARC? algorithm

This section formally states the model we are going to use:
we define two entities, Tasks and Resources, and describe their
properties. We describe the steps of HySARC? algorithm and the
scheduling heuristics used. The clustering model used by HySARC?
represents the concept for our hybrid approach.

3.1. Theoretical model

Task represents a sequence of operations and is described
by four parameters and the task set has the following formal
description:

7 ={TIT = (P{,P;,P],Pp)} (1)
where

. P1T is the CPU processing time needed by the job to complete on
any resource;

. PZT is the IO time representing the time needed to read the input
data from disk before it can start processing;

° P3T is the preemption flag (preemptive or non-preemptive);

e P! is the deadline.

The Tasks from a set can be independent, with no restrictions
imposed by other tasks for scheduling and execution phases, or
can be modeled as DAGs (Directed Acyclic Graphs), where nodes
represent computation and edges represent communication, data
flow, between nodes.

In our model the task graph is represented by a DAG (Directed
Acyclic Graph) as:

9’ = g(V’vaﬂewﬂ) (2)
where:

e V is a set of nodes. We will refer to the nodes using the ny,
ny, ... notation; A node n; encodes a task T; and the graph §
encodes a task set 7°;

e [is a set of directed edges (dependencies), noted as e(n;, n);

e w :V — R, isafunction that associates a weight w(n;) to each
node n; € V; w(n;) represents the execution time of the task T;,
which is represented by the node n; in V;

64 M.-A. Vasile et al. / Future Generation Computer Systems 51 (2015) 61-71

e ew, is a function ew, : E — R, that associates a weight to a
directed edge; if n; and n; are two nodes in V, then ew, (n;, n;)
denotes the inter-tasks communication time between T; and T;
(the time needed for data transmission between processors that
execute tasks T; and Tj).

When two nodes are scheduled on the same resource R, the cost
of the connecting edge becomes zero. In this model a scheduling
heuristic is considered efficient if the makespan (maximum exe-
cution time for any resource) is short and respects resource con-
strains, such as a limited number of processors, memory capacity,
available disk space, etc. Many types of scheduling algorithms for
DAGs are based on the list scheduling technique.

Each task has an assigned priority, and scheduling is done
according to a list priority policy: select the node with the highest
priority and assign it to a suitable machine. According to this policy,
two attributes are used to assign priorities:

o t-level (top-level) for n; is the weight of the longest path from
the source node (the node that start the execution) to n;:

t-level(n) = max {t-level(n;) + w(nj) + ewn(n, n)} (3)
njepred(n;)
e b-level (bottom-level) for n; is the weight of the longest path
from n; to the exit node (the node that finish the execution):

b-level(n;) = w(n)) + max {b-level(n)) + ew,(n;, n))} . (4)

njesucc(n;)

The time-complexity for computing t-level and b-level is O(|V |+
|E|), so there are no penalties for the scheduling algorithms.

We can define the ALAP (As Late As Possible) attribute for a node
n; to measure how far the node’s start-time can be delayed without
increasing the makespan. This attribute will have an important role
for load balancing constrains because it shows if we can delay the
execution start of a task T;:

ALAP(ny) = min {ALAP(n)) — ew,(ni, n)) } — w(ny). (5)
njesucc(n;)

For a graph g, the critical path (CP) is the weight of the longest
path and it offers an upper limit for the scheduling cost. Algorithms
based on CP heuristics produce on average the best results. They
take into consideration the critical path of the scheduled nodes at
each step. However, these heuristics can result in a local optimum,
failing to reach the optimal global solution [35]. The t-level and the
b-level are bounded from above by the length of the critical path.

The Resource set has the following formal description:

R = {RIR = (P{, P} (6)
where

° Pf is the precessing speed representing the time needed to
execute an atomic operation;

° P§ is the IO speed representing the time needed by a machine
to read/write a unit of data from the disk. In this model we
consider both times to be equal. In practice the read time is less
than write time.

Note that it is possible to develop a more complex model that
still fits our needs. For example, other properties that can be con-
sidered as extension for resources are: parallel (single, uniform or
unrelated processors) or dedicated processors, network topology.
We are using throughout the paper the term “cluster” of resources
to denote a set of heterogeneous machines (VMs) that are con-
nected in a network and can be viewed as a single system (an in-
stance in public or private Cloud). This is the model of a datacenter,
which is specific to Big Data or HPC processing.

Scheduler

Q0 ©
User |——— — O 0 OO
Tasks ®) o o

T
: Scheduling Algorithm

T
I Request Resource
Information

Analyzer ‘

\
7
Tasks submission

Resource Cluster

Resource Cluster

Resource Cluster

Fig. 1. Proposed Architecture used by HySARC?.
3.2. HySARC? architecture

HySARC? design considers a framework with the following
modules: Monitoring Service, Analyzer and Scheduler (Fig. 1). The
general flow of HySARC? is as follows. We consider as input a
set of tasks (7 or 4). The resources from Cloud environment
are monitored and grouped into clusters of resources. The tasks
are allocated on the available resources according to different
scheduling strategies used for each cluster of resources.

Monitoring Service module is designed as a background pro-
cess. It finds the available resources and it is aware when a resource
is added/removed to/from the system. The service monitors the re-
source characteristics and create the set (list) & of active resources.
This set is used by the Analyzer module and Scheduler module
without having to request information from the system each time
an HySARC? algorithm instance is ran.

Analyzer module is used for clustering the resources and tasks
according to user configuration or default predefined settings. We
proposed the following behavior:

(a) the Analyzer supports user configuration. The user provides
information about how many groups of tasks and resources
should be created after the clustering phase. The default values
are three clusters of resources (large, medium or small) and
three clusters of tasks (CPU intensive, I/O intensive or mixed—
both CPU and I/O intensive);

next, the Analyzer gets the list of resources and properties
from the Monitoring Service module, applies the clustering
algorithm on the set of resources and labels each resource with
the associated cluster (classification phase);

(c) the Analyzer receives the list of tasks and their properties from
the user and applies the clustering algorithm. The tasks with-
out dependencies are clustered as they are. For dependent task,
we create clusters of DAGs by comparing them according with
a “distance”, which will be described in the next subsection;
it provides to the Scheduler module the list of resource clusters
and task clusters.

(b

=

(d

—

M.-A. Vasile et al. / Future Generation Computer Systems 51 (2015) 61-71 65

The Scheduler has the role of receiving input tasks and assign
them to available resources. The Scheduler module workflow is:

1. The Scheduler receives the input tasks.
2. Next, the Scheduler sends the tasks to the Analyzer for
clustering.
3. Further, the Scheduler receives from the Analyzer the clusters
of tasks and available cluster of resources.
4, Finally, the Scheduler applies a hierarchical scheduling algo-
rithm and send each task to the identified resource:
A. the first step for scheduling a tasks cluster (a set of tasks) is
assigning it to a cluster of resources.
B. after that, the set of tasks is scheduled using a classical
algorithm specific to selected cluster of resources.

The novelty of HySARC? algorithm is that different groups of
resources are able to have different algorithms, more suitable for
the resources and associated tasks properties, rather than to have
a scheduling algorithm for all resources and tasks. This aspect
deals with heterogeneous distributed computing environments, by
finding the most suitable scheduling solution for a given context.

3.3. Clustering Proposal for HySARC?

A clustering approach is going to be used for HySARC?, the algo-
rithm used being K-Means [36]. It is applied twice by the Analyzer
module, once for the resources and once for the tasks. The abstract
data input for K-Means algorithm is once, the available resources
and second, the input tasks having different characteristics.

In order to apply K-Means algorithm, we must define the prop-
erties for tasks and resources taken into account by the clustering
and also the “distance” between two elements in the set, as fol-
lows:

Tasks: estimated CPU processing time (P1T) and I/O operations
time (PJ).

Resources: CPU processing power (Pf) and I/O operations speed
(PX).

The “distance” between two independent tasks or between
two resources is necessary for identifying the “closest” cluster
center. The “distance” highlights the similarity between entities.
We define the same distance for independent tasks and resources
as follows:

1. normalize the values of parameters along the entire set of enti-
ties (E denotes a task or a resource). We define the normalized
value for property Pf, wherei = 1,2 as:

Pf =5 7)

2. the normalized parameters are considered as coordinates, so
the distance between entity E, and entity E, having the prop-
erties P; and P, is the Euclidean distance:

~ ~ 2 ~ ~ 2
distance(Eq, Ey) = \/ (Bl —B) + (P - P 8)

For a DAG we identify the graph structure to compute the “dis-
tance” used by K-Means, and take into consideration granularity
and CCR (Communication to Computation Ratio) to compare two
different DAGs.

Granularity g of a DAG § is defined as:

9) = gGW, E,w,ew)) =min | —2X L ()
*V | max {ewn(x, D)}

R OW O

Tasks with no
dependencies

DAG

[

1
1
|

/]
]
I Scheduling

Scheduling } i
; Algorithm

Algorithm ||

HySARC?

L
1 I
1

Resource Cluster

Resource Cluster

Resource Cluster

Fig. 2. Clustering phase for HySARC?.

Depending on granularity, § can be coarse grained (the compu-
tation dominates the communication) or fine grained (the com-
munication dominates the computation), so /O bound term is
equivalent with fine-grained and CPU-bound term is equivalent
with coarse-grained.

CCR (Communication to Computation Ratio) can be defined as
the average edge weight divided by the average node weight. We
can consider also the max function for CCR computation, so we
proposed the following two definitions:

V% > ewy(x, 1)
L . (x,i)eE
COR,(§) 1= COR(G (V. E. w, ewn) = — STTORR (10)
xeV
max {ewp(x, 1)}
CCRm(§) == CCRm(§(V, E, w, ewy)) = (11)

max {w(x)}
xeV

CCR can help to judge the importance of communication in a task
graph, which strongly determines the scheduling behavior. Based
on CCR we classify task graphs in: CCR < 1—fine grained graph,
CCR ~ 1—mixed, and CCR > 1—coarse grained graph.

Now, we can define the “distance” between two DAGs, 4, and
Gp as:

distance(§a, ») = |CCR(§q) — CCR(Gy). (12)

After the clustering phase is completed, we follow the actual
scheduling of the resources for the input tasks, now grouped into
clusters (see Fig. 2).

3.4. HySARC? Scheduling algorithm

The scheduling algorithm is applied by the Scheduler module in
two steps:

STEP 1: associate groups of tasks with groups of resources,
according to average parameters in tasks and resources
groups. In other words, the clusters of tasks having a
high average processing time required (“large” tasks) are
assigned to resources with high computational capacity.
The same reasoning applies to “small” tasks. For DAGs,
coarse grained graphs are assigned to resources with high
computational capacity and fine grained graph can be

66 M.-A. Vasile et al. / Future Generation Computer Systems 51 (2015) 61-71

assigned to any type of clusters, considering that we have
a homogeneous network infrastructure.

STEP 2: inside each group of resources run a specific scheduling
algorithm in order to allocate the tasks/DAGs.

3.5. Scheduling algorithms used by HySARC?

Independent Tasks approach. Given the fact that the tasks
being processed by the scheduler are a set of independent tasks, we
apply specific scheduling algorithms. The scheduler implements
two scheduling algorithms for independent tasks, and alternates
them in each cluster of resources, for analysis and comparison
purposes:

1. Shortest Job First (SJF): associates with a task, its estimated CPU
processing time (“small” job means having a low processing
time), and as soon a resource is available, it assigns on it the
shortest task in the waiting list. In order to achieve this more
efficiently, the list of tasks is sorted ascending after the CPU
processing time (see Algorithm 1).

2. Earliest Deadline First (EDF): associates with a task its deadline,
and as soon a resource is available, it assigns on it the task
with the nearest deadline in the waiting list. The tasks are kept
into a priority list, the priorities are the inverse of the deadline,
and the tasks with higher priority are scheduled sooner (see
Algorithm 1).

Algorithm 1 Earliest Deadline First (EDF) / Shortest Job First (SJF)

1: procedure CLASSICAL_SCHEDULING(T , R)
2: sort tasks in 7:
- descending after deadline (P}) for EDF OR
- ascending after CPU processing (PlT) time for SJF;
while 7 # o do
if anyResourceAvailable(R) == true then
R < getRandomResourceAvailable(R);
T < popTask(7);
execute T onR;
end if
9: end while
10: end procedure

0 N W

We may observe that the difference between the two algo-
rithms is how the tasks are being sorted in the waiting list. The
list is being used as a stack.

Tasks with dependencies—DAG. There are several scheduling
approaches based on list scheduling model:

1. HLFET (Highest Level First with Estimated Times) uses a hybrid
approach of the list-based and level-based strategies. The
algorithm schedules a task to a resource that allows the earliest
start time [37].

2. CCF (Cluster ready Children First) is a dynamic scheduling algo-
rithm based on lists. The graph is visited in topological order,
and tasks are submitted as soon as scheduling decisions are
taken. The algorithm assumes that when a task is submitted for
execution it is inserted into the RUNNING-QUEUE. If a task is
extracted from the RUNNING-QUEUE, all its successors are in-
serted into the CHILDREN-QUEUE. The running ends when the
two queues are empty.

3. Hybrid Re-mapper PS (Minimum Partial Completion Time Static
Priority) is a dynamic list scheduling algorithm specifically de-
signed for heterogeneous environments. The set of tasks is par-
titioned into blocks so that tasks in a block do not have any data
dependencies among them. Subsequently the blocks are exe-
cuted one by one [38].

4. MCP (Modified Critical Path)—algorithm based on lists has two
phases: the prioritization and selection of resources. Parameter
used to prioritize nodes is ALAP (As Late As Possible) [39].

5. ETF (Earliest Time First)—algorithm based on keeping the proces-
sors as busy as possible. It computes, at each step, the earliest
start times of all ready nodes and selects the one with the short-
est start time.

We focus on Modified Critical Path (MCP) and Earliest Time First
(ETF) because we are oriented towards high performance in the
scheduling phase (see Algorithms 2 and 3).

Algorithm 2 Modified Critical Path (MCP) algorithm

1: procedure MCP(4, R)
2: for each n; € § do

3: Compute the ALAP (n;);
4: end for
5: Create a node list L = &;
6: for each node n; do
7: CreatealistL; = ;
8: L = L U{(n, ALAP(ny)) };
9: Sort succs(n;) in a descending order with respect to
ALAP;
10: for all n; € succs(n;) do
11: L= L,U{(HJ,A[AP(HJ))},
12: end for
13: L=LJL;
14: end for
15: Sort these lists (L) in an ascending lexicographical order;
16: repeat
17: Extract L, the first node in the node list L;
18: Schedule L to a resource from R that allows the earliest
execution;
19: > using the insertion approach;
20: L=L—-Ly; > Remove the node from the node list.

21: until L = o;
22: end procedure

Algorithm 3 Earliest Time First (ETF) algorithm

1: procedure ETE(G, R)
2: for eachn; € § do

3: Calculate the static b — level(n;);
4: end for
5: RN = entry nodes from §; > the pool of ready nodes;
6: repeat
7: for each node n; € RN do
8: Calculate the earliest-start-time(;) on each resource
in R;
9: end for
10: Pick the (n;, R) that gives the earliest time;
11: > using the non-insertion approach;
12: Ties are broken by selecting the node n; with a higher
static b — level(n;);
13: Schedule the node to the corresponding resource;
14: Add the newly ready nodes to the RN;
15: until all nodes are scheduled

16: end procedure

4. Experimental methodology and results

One of the research challenges generally concerns the way in
which multimedia information is gathered, analyzed, processed,
represented and stored. We choose multimedia applications for

M.-A. Vasile et al. / Future Generation Computer Systems 51 (2015) 61-71 67

Table 1

Resources configurations used in test scenarios.
Test scenario No. of VMs No. of PEs
0 1 10
1 2 10
2 2 15
3 3 20
4 4 50
5 5 100
6 6 200
7 7 500
8 8 750

test case scenarios because they consist in both independent tasks
and tasks with dependencies (workflows). More, the multimedia
applications are both CPU intensive (they process a large amount
of data) and I/O intensive (they access remote data). Several
examples for these type of applications are: the case of large-scale
video streams, like the one coming from a border surveillance
outpost, a critical natural disaster or a nuclear accident like the
one at Fukushima in 2011, a very large wide-distributed company
who would like to deal with various multimedia content like
documents, charts, contracts, video recordings of meetings, plans,
etc., a modern museum that offers high quality multimedia mobile
devices to all the visitors as audio/video guides, etc.

For the test cases, we considered tasks and resources with var-
ious requirements, as support for heterogeneous distributed com-
puting modeling. The characteristics of the processing elements
are:

e MIPS: 200, 400, 500, 800, 1000, 2000, 4000, 5000, 8000, 10000;

e RAM dimension: 512, 1024, 2048, 4096, 8192, 16384;

e we vary also the total storage value, but the values are not
relevant, because we consider that when a task executes, all
data are available on local storage.

Using CloudSim [13], we generate a maximum number of 1000
tasks, 1000 Processing Elements (PE) and 10 Virtual Machines
(VM) with different number of cores. In each simulation we vary
the number of virtual machines from 1 to 10 and the number of
processing elements from 10 to 1000. The resources configurations
used in our experimental simulations are presented in Table 1.

4.1. Tasks and resources clustering phase

We analyzed the Clustering Phase duration, along the above set
of scenarios and for different grades of variability of the generated
parameters (the parameters are in certain different grades similar
or very different). In Fig. 3 we have the task clustering phase
duration. In Fig. 4 we have the resource clustering phase duration.
A large number of tasks produce an overhead and we can split
the set of submitted tasks into multiple requests. For resource
clustering we have similar times, so we can run periodically this
procedure without any inconvenient. The overhead observed is
justified because it slightly reduces the execution time.

4.2. Execution time

We analyze the average execution time of tasks along a com-
bination of scenarios using a certain configuration (5 virtual ma-
chines and 100 processing elements): (i) we test by using or not
the clustering algorithm; (ii) we also test with or without the de-
fault scheduling algorithm inside clusters; (iii) the tests are taken
for three clusters of resources and three clusters of tasks or four
clusters of resources and four clusters of tasks. In Fig. 5 we present
the results for initial CloudSim Scheduling, only clustering, cluster-
ing and SJF algorithm. The conclusion is that the clustering phase

*
3] . /
3 7 - ¢
* /
9| /
@ (e
(9}
£
= *
g 3 1 . —
]
1%}
3
o
o _|
o
o |
o
L d
w_| /
T T T T T
800 1000 1200 1400 1600
Number of Tasks
Fig. 3. Task clustering duration.
< -
*
o
*
)
(5
E
=
2w
g
1%}
=]
&)
*
_ /. . /
*
Y
*
T T T T T T
0 200 400 600 800 1000
Number of Resources
Fig. 4. Resource clustering duration.
Table 2
Workflows characteristics used in test scenarios.
DAG No No CCRyy CCRs Granularity Type
Id nodes edges
1 616 18635 0.250 0.139 3.957 Coarse grained
2 628 19491 0.245 0.140 4.000 Coarse grained
3 681 22505 0250 0.142 3.958 Coarse grained
4 686 22817 0.998 0.998 0.991 Mixed
5 688 22954 0.998 0.998 0.998 Mixed
6 707 24118 1.007 1.007 0.988 Mixed
7 667 21637 3.654 6.602 0.029 Fine grained
8 631 19539 3640 6615 0.031 Fine grained
9 627 19202 3769 6.780 0.029 Fine grained

adds an overhead, but using a specialized scheduling algorithm we
obtain a good improvement.

We built a DAG generator for testing the extension of the
HySARC? for workflows. The DAG generator uses multiple param-
eters: minimum/maximum size for a node, minimum/maximum
cost for an edge, the probability to have an edge between two ran-
dom nodes. These parameters may be easily configured, so we can

68 M.-A. Vasile et al. / Future Generation Computer Systems 51 (2015) 61-71

o
o
S
& | —— Default (Round Robin) M
e~ SJF ,/
e SJF and Clustering /-‘
S
8 bt
= "o
/"
Rt
2§ o
= Pid
° s
(= Te”
S o 0,/
= 9 [
3 @ /
53 e
w
o
S N
<
o . ¢ ° ° .
S
o
3\
o
T T T T T T T T T
800 900 1000 1100 1200 1300 1400 1500 1600

Number of Tasks

Fig. 5. Execution time comparison (simulation time/steps) for independent tasks.

o
o _]
© .-
- e o —— ETF
.
S o \ *- MCP
< . \
= . °)
*
4 e \
\
84 /‘/ \’\ /.\
N * '
- *
@ o
o S
£ -
= -
c
2 g
3 ®
(]
>
ks i
o
S
©
o
S
<
(=}
S
o
T T T T T
1 2 3 4 5

DAG Id

Fig. 6. DAG execution results on high performance IO resources.

generate highly heterogeneous workflows, with different granu-
larity and CCR values.

We analyzed a set of nine graphs: 10 intensive (fine grained,
CCR > 1), CPU intensive (coarse grained, CCR < 1) and also bal-
anced (mixed, CCR ~ 1). All workflows are presented in Table 2.
We used both ETF and MCP algorithms for scheduling, on resources
with different 10 and CPU characteristics and compared the results
for each DAG.

All generated workflows consider many processing tasks (sim-
ilar to multimedia filtering applications)—around 675 tasks with
different dependence constraints, depending on the data locality
(see Table 2). The use of workflows allows us to consider the mod-
ularization of the task space, scalability, advance decisions regard-
ing data movement, incorporation of periodic tasks execution, so
the comparison between different workflows and classifying them
into clusters offer a huge benefit for an enterprise system consid-
ering resource usage and costs.

We used different types of resources for DAG scheduling and
execution, both high performance CPU and 10 resources. The DAGs
considered in our experiments are the ones described above, in

400

Execution Time (s)

100
1

T T T T T T T T
1 2 3 4 5 6 7 8

DAG Id

°
— .
T

9

Fig. 7. DAG execution results on high performance CPU resources.

Table 2. As shown in the results of our experiments (see Figs. 6
and 7), the execution time has the same profile for both types of
resources (High Performance 10 resources or High Performance
CPU resources). The difference is that the execution time decreases
4 times on high performance CPU resources. Also, the test scenarios
7,8 and 9 are for fine grained task graphs and have better results
than scenarios 1-7, this being justified by the uniform modeling of
communication networks at a higher speed.

4.3. Scalability

We analyze the scalability of HySARC? compared to the default
CloudSim scheduling and a classical scheduling algorithm (SJF or
EDF). We observe the average execution time for scheduling and
execution of 800 tasks, along the entire above set of scenarios
for resources configuration (we consider a variable number of
virtual machines and processing elements). Also, the resources
have variable values for the generated parameters — computational
and 10 characteristics — therefore the simulated environment is
a heterogeneous one. In Fig. 8 we have the average execution
time for initial CloudSim scheduling, for clustering and one of the
two scheduling algorithms (SJF or EDF). We can conclude that by
adding HySARC? in a specific Cloud environment the scalability is
preserved.

5. HySARC? integration in real Cloud platforms

HySARC? was developed as a distinct entity inside the CloudSim
environment, therefore the proposed architecture is modular and
could be integrated in a real Cloud platform. The main components
of our architecture are highlighted as follows:

e The Monitoring Service maintains the information regarding
the existing resources;

e The Analyzer performs the clustering phase previous to the
actual scheduling;

e The Scheduler applies different scheduling algorithms specific
to each cluster of tasks.

The integration of HySARC? in OpenStack consists in two main
steps:

e integrate the Monitoring Service and
e integrate the Analyzer and the Scheduler.

M.-A. Vasile et al. / Future Generation Computer Systems 51 (2015) 61-71 69

—— Default (Round Robin)
-e- SUF
e SJF and Clustering

180000

140000

Execution Time (ms)
100000

o N
ISY N
£ N
© RN
4 ‘ T3
. \ /_._—_—_—l
o . . Sc
IS}
o — L] [.
o
I o
o J o
T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9

Test Scenarios (800 Tasks)

Fig. 8. Scalability. The analysis considers resources characteristics presented in
Table 1 and a fixed number of independent tasks.

The Monitoring Service may be deployed as a daemon on the
provider system, gathering information about existing resources at
system start up, and receive notifications each time a modification
occurs in the resource configuration (a resource is added, removed
or updated).

In order to integrate the new scheduling logic, we can start from
the implementation of the Nova Filter Scheduler. We should ex-
tend the Scheduler class in nova. * package and override sched-
ule run instance and select destinations methods, by implementing
our approach.

6. Conclusion

An extension to the HySARC? scheduling algorithm is proposed
in this paper. Our approach considers clustering of the available
resources and received tasks, before the phase of resource
allocation. For tasks with no dependencies we proposed a metric to
compare them in the clustering phase. For workflows, we compute
CCR (Communication for Computation Ratio) and granularity. The
proposed algorithm is based on traditional scheduling algorithms.
We used Shortest Job First and Earliest Deadline First algorithms
for independent tasks, and Earliest Time First and Modified Critical
Path algorithms for DAGs. Clustering of resources and tasks along
with computing DAG specific parameters bring efficiency to the
scheduling, even these pre-processing steps of tasks and resources
introduce a certain overhead. As shown in the experimental
results, the overhead justifies itself because it slightly reduces the
processing time.

Overall, this paper has the following contributions: it proposes
a hybrid approach for tasks scheduling in HDC considering both
tasks and resources clustering; our hybrid scheduling model is
based on using different scheduling strategies, selected by taking
into consideration both the heterogeneity of computing resources,
and application tasks and/or flows; it provides a model for adaptive
and dynamic clustering considering the abstract modeling of HDC
resources; it extends CloudSim to consider these approaches and
integrates four scheduling strategies.

For future work we will consider the scheduling algorithms
that inspect the dynamic behavior of the resources and algorithms
that allow tasks to be preempted according to a given priority and
dynamically adapt the scheduling algorithm [40].

Acknowledgments

The research presented in this paper is supported by projects:
“SideSTEP—Scheduling Methods for Dynamic Distributed Systems:
a self-* approach”, ID: PN-II-CT-RO-FR-2012-1-0084; CyberWater
grant of the Romanian National Authority for Scientific Research
(PN-II-PT-PCCA-2011-3.1-0602), CNDI-UEFISCDI, project number
47/2012; MobiWay: Mobility Beyond Individualism: an Integrated
Platform for Intelligent Transportation Systems of Tomorrow—
PN-II-PT-PCCA-2013-4-0321; clueFarm: Information system based
on cloud services accessible through mobile devices, to increase
product quality and business development farms—PN-II-PT-PCCA-
2013-4-0870.

References

[1] D.C. Marinescu, Cloud Computing: Theory and Practice, first ed., Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, ISBN: 0124046274, 2013,

9780124046276. o .)
[2] A. Castiglione, M. Gribaudo, M. Iacono, F. Palmieri, Exploiting mean field anal-

ysis to model performances of Big Data architectures, Future Gener. Comput.

Syst. (ISSN: 0167-739X) 37 (0) (2014) 203-211.

http://dx.doi.org/10.1016/j.future.2013.07.016. URL:

http://www.sciencedirect.com/science/article/pii/S0167739X13001611, spe-
cial Section: Innovative Methods and Algorithms for Advanced Data-Intensive

Computing Special Section: Semantics, Intelligent processing and services for

Big Data Special Section: Advances in Data-Intensive Modelling and Simula-

tion Special Section: Hybrid Intelligence for Growing Internet and its Applica-

tions.

E. Barbierato, M. Gribaudo, M. lacono, Modeling Apache Hive based applica-

tions in Big Data architectures, in: Proceedings of the 7th International Con-

ference on Performance Evaluation Methodologies and Tools, ValueTools’13,

ICST (Institute for Computer Sciences, Social-Informatics and Telecommuni-

cations Engineering), ICST, Brussels, Belgium, ISBN: 978-1-936968-48-0, 2013,

pp. 30-38. http://dx.doi.org/10.4108/icst.valuetools.2013.254398.

X. Tang, K. Li, R. Li, B. Veeravalli, Reliability-aware scheduling strategy for

heterogeneous distributed computing systems, J. Parallel Distrib. Comput.

(ISSN: 0743-7315) 70 (9) (2010) 941-952.

http://dx.doi.org/10.1016/j.jpdc.2010.05.002.

[5] V.Bharadwaj, D. Ghose, T.G. Robertazzi, Divisible load theory: a new paradigm
for load scheduling in distributed systems, Cluster Comput. (ISSN: 1386-7857)
6(1)(2003) 7-17. http://dx.doi.org/10.1023/A:1020958815308.

[6] A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, L. Stoica, Above the clouds: a Berkeley view of cloud computing,
Dept. Electrical Eng. and Comput. Sciences, University of California.

[7] J. Berliniska, M. Drozdowski, Scheduling divisible MapReduce computations,
J. Parallel Distrib. Comput. (ISSN: 0743-7315) 71 (3) (2011) 450-459.
http://dx.doi.org/10.1016/j.jpdc.2010.12.004.

[8] M.M. Sharma, A. Bala, Survey paper on workflow scheduling algorithms used
in cloud computing, Int. J. Inf. Comput. Technol. 4 (10) (2014) 997-1002.

[9] J. Yu, R. Buyya, A taxonomy of workflow management systems for grid
computing, J. Grid Comput. 3 (3-4) (2005) 171-200.

[10] M. Mattoso, K. Ocafiia, F. Horta, J. Dias, E. Ogasawara, V. Silva, D. de Oliveira, F.
Costa, I. Aratjo, User-steering of HPC workflows: state-of-the-art and future
directions, in: Proceedings of the 2Nd ACM SIGMOD Workshop on Scalable
Workflow Execution Engines and Technologies, SWEET'13, ACM, New York,
NY, USA, ISBN: 978-1-4503-2349-9, 2013, pp. 4:1-4:6.
http://dx.doi.org/10.1145/2499896.2499900. URL:
http://doi.acm.org/10.1145/2499896.2499900.

[11] H.J. Jiang, K-C. Huang, H.-Y. Chang, D.-S. Gu, P.-]J. Shih, Scheduling
concurrent workflows in HPC cloud through exploiting schedule gaps,
in: Proceedings of the 11th International Conference on Algorithms and
Architectures for Parallel Processing—Volume Part I, ICA3PP'11, Springer-
Verlag, Berlin, Heidelberg, ISBN: 978-3-642-24649-4, 2011, pp. 282-293. URL:
http://dl.acm.org/citation.cfm?id=2075416.2075442.

[12] M.-A. Vasile, F. Pop, R.-I. Tutueanu, V. Cristea, HySARC2: hybrid scheduling
algorithm based on resource clustering in cloud environments, in: J. Kotodziej,
B. Di Martino, D. Talia, K. Xiong (Eds.), Algorithms and Architectures for
Parallel Processing, in: Lecture Notes in Computer Science, vol. 8285, Springer
International Publishing, ISBN: 978-3-319-03858-2, 2013, pp. 416-425.
http://dx.doi.org/10.1007/978-3-319-03859-9_36.

[13] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F. De Rose, R. Buyya, CloudSim:
a toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms, Softw. Pract. Exp. (ISSN: 0038-
0644) 41 (1) (2011) 23-50. http://dx.doi.org/10.1002/spe.995.

[14] S.-Y. Jing, S. Ali, K. She, Y. Zhong, State-of-the-art research study for green
cloud computing, J. Supercomput. (ISSN: 0920-8542) 65 (1) (2013) 445-468.
http://dx.doi.org/10.1007/s11227-011-0722-1.

[15] J. Kotodziej, F. Xhafa, Modern approaches to modeling user requirements
on resource and task allocation in hierarchical computational grids, Int.
J. Appl. Math. Comput. Sci. (ISSN: 1641-876X) 21 (2) (2011) 243-257.
http://dx.doi.org/10.2478/v10006-011-0018-x.

[E]

[4

http://refhub.elsevier.com/S0167-739X(14)00253-2/sbref1
http://dx.doi.org/10.1016/j.future.2013.07.016
http://www.sciencedirect.com/science/article/pii/S0167739X13001611
http://dx.doi.org/10.4108/icst.valuetools.2013.254398
http://dx.doi.org/10.1016/j.jpdc.2010.05.002
http://dx.doi.org/10.1023/A:1020958815308
http://dx.doi.org/10.1016/j.jpdc.2010.12.004
http://refhub.elsevier.com/S0167-739X(14)00253-2/sbref8
http://refhub.elsevier.com/S0167-739X(14)00253-2/sbref9
http://dx.doi.org/10.1145/2499896.2499900
http://doi.acm.org/10.1145/2499896.2499900
http://dl.acm.org/citation.cfm?id%3D2075416.2075442
http://dx.doi.org/10.1007/978-3-319-03859-9_36
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1007/s11227-011-0722-1
http://dx.doi.org/10.2478/v10006-011-0018-x

70 M.-A. Vasile et al. / Future Generation Computer Systems 51 (2015) 61-71

[16] P. Leitner, W. Hummer, B. Satzger, C. Inzinger, S. Dustdar, Cost-efficient and
application SLA-aware client side request scheduling in an infrastructure-
as-a-service cloud, in: Proceedings of the 2012 IEEE Fifth International
Conference on Cloud Computing, CLOUD’12, IEEE Computer Society,
Washington, DC, USA, ISBN: 978-0-7695-4755-8, 2012, pp. 213-220.
http://dx.doi.org/10.1109/CLOUD.2012.21.

[17] L. Wu, S.K. Garg, R. Buyya, SLA-based resource allocation for software as a
service provider (SaaS) in cloud computing environments, in: Proceedings
of the 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, CCGRID’11, IEEE Computer Society, Washington, DC, USA,
ISBN: 978-0-7695-4395-6, 2011, pp. 195-204.
http://dx.doi.org/10.1109/CCGrid.2011.51.

[18] S. Parsa, R. Entezari-Maleki, RASA: A New Grid Task Scheduling Algorithm,
JDCTA (2009) 91-99.

[19] A. Olteanu, F. Pop, C. Dobre, V. Cristea, A dynamic rescheduling algorithm for
resource management in large scale dependable distributed systems, Comput.
Math. Appl. 69 (9) (2012) 1409-1423.

[20] K. Liu, H. Jin, J. Chen, X. Liu, D. Yuan, Y. Yang, A compromised-time-cost
scheduling algorithm in SwinDeW-C for instance-intensive cost-constrained
workflows on a cloud computing platform, Int. J. High Perform. Comput. Appl.
24 (4) (2010) 445-456.

[21] K.Kaur, A.Chhabra, G. Singh, Heuristics based genetic algorithm for scheduling
static tasks in homogeneous parallel system, Int. J. Comput. Sci. Secur. 4 (2)
(2010) 183-198.

[22]]. Kotodziej, F. Xhafa, Enhancing the genetic-based scheduling in computa-
tional grids by a structured hierarchical population, Future Gener. Comput.
Syst. (ISSN: 0167-739X) 27 (8) (2011) 1035-1046.
http://dx.doi.org/10.1016/j.future.2011.04.011.

[23] D.Moise, E. Moise, F. Pop, V. Cristea, Resource coallocation for scheduling tasks
with dependencies, in grid, in: HiPerGRID Workshops Proceeding, Bucharest,
Romania, ISSN: 2065-0701.

[24] C. Vecchiola, R.N. Calheiros, D. Karunamoorthy, R. Buyya, Deadline-driven
provisioning of resources for scientific applications in hybrid clouds with
Aneka, Future Gener. Comput. Syst. (ISSN: 0167-739X) 28 (1) (2012) 58-65.
http://dx.doi.org/10.1016/j.future.2011.05.008.

[25] B. Sotomayor, R.S. Montero, LM. Llorente, I. Foster, Virtual infrastructure
management in private and hybrid clouds, IEEE Internet Comput. 13 (5)(2009)
14-22.

[26] B. Simion, C. Leordeanu, F. Pop, V. Cristea, A hybrid algorithm for scheduling
workflow applications in grid environments (ICPDP), in: Proc. of the 2007
OTM Confederated Int. Conf. on On the Move to Meaningful Internet Systems:
CooplS, DOA, ODBASE, GADA, and IS—Volume Part II, OTM’07, Springer-Verlag,
Berlin, Heidelberg, ISBN: 3-540-76835-1, 2007, pp. 1331-1348. 978-3-540-
76835-7. URL: http://dl.acm.org/citation.cfm?id=1784707.1784728.

[27] JJ. Durillo, V. Nae, R. Prodan, Multi-objective energy-efficient work-

flow scheduling using list-based heuristics, Future Gener. Comput. Syst.
(ISSN: 0167-739X) 36 (0) (2014) 221-236.
http://dx.doi.org/10.1016/j.future.2013.07.005.
URL: http://www.sciencedirect.com/science/article/pii/S0167739X13001507
special Section: Intelligent Big Data Processing Special Section: Behavior
Data Security Issues in Network Information Propagation Special Section:
Energy-efficiency in Large Distributed Computing Architectures Special
Section: eScience Infrastructure and Applications.

[28] E. Cakici, S.J. Mason, J.W. Fowler, H.N. Geismar, Batch scheduling on parallel
machines with dynamic job arrivals and incompatible job families, Int.]. Prod.
Res. 51 (8) (2013) 2462-2477.
http://dx.doi.org/10.1080/00207543.2012.748227.

[29] A. Garcia Garcia, 1. Blanquer Espert, V. Herndndez Garcia, SLA-driven dynamic
cloud resource management, Future Gener. Comput. Syst. (ISSN: 0167-739X)
31(2014) 1-11.
http://dx.doi.org/10.1016/j.future.2013.10.005.

[30] K. Jackson, OpenStack Cloud Computing Cookbook, Packt Publishing,
ISBN: 1849517320, 2012, 9781849517324.

[31] D. Milojicic, LM. Llorente, R.S. Montero, OpenNebula: a cloud management
tool, IEEE Internet Comput.

[32] P.Sempolinski, D. Thain, A comparison and critique of Eucalyptus, OpenNebula
and Nimbus, in: Proceedings of the 2010 IEEE Second International Conference
on Cloud Computing Technology and Science, CLOUDCOM'10, IEEE Computer
Society, Washington, DC, USA, ISBN: 978-0-7695-4302-4, 2010, pp. 417-426.
http://dx.doi.org/10.1109/CloudCom.2010.42.

[33] R. Buyya, R. Ranjan, R.N. Calheiros, Modeling and simulation of scalable
Cloud computing environments and the CloudSim toolkit: challenges and
opportunities, in: Int. Conf. on High Performance Computing & Simulation,
2009, HPCS'09, [EEE, 20009.

[34] A. Nuifiez,].L. Vazquez-Poletti, A.C. Caminero, G.G. Castaié,]. Carretero, .M.
Llorente, iCanCloud: a flexible and scalable cloud infrastructure simulator,
J. Grid Comput. (ISSN: 1570-7873) 10 (1) (2012) 185-209.
http://dx.doi.org/10.1007/s10723-012-9208-5.

[35] Y.-K. Kwok, I. Ahmad, Static scheduling algorithms for allocating directed task
graphs to multiprocessors, ACM Comput. Surv. (ISSN: 0360-0300) 31 (1999)
406-471.

[36]]. MacQueen, Some methods for classification and analysis of multivariate ob-
servations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics, University of California Press,
Berkeley, Calif., 1967, pp. 281-297.

URL: http://projecteuclid.org/euclid.bsmsp/1200512992.

[37] S. Jin, G. Schiavone, D. Turgut, A performance study of multiprocessor task
scheduling algorithms, J. Supercomput. (ISSN: 0920-8542) 43 (1) (2008)
77-97. http://dx.doi.org/10.1007/s11227-007-0139-z.

[38] A. Gandhi, H. Akkary, R. Rajwar, S.T. Srinivasan, K. Lai, Scalable load and store
processing in latency tolerant processors, in: ISCA’05: Proceedings of the 32nd
Annual International Symposium on Computer Architecture, IEEE Computer
Society, Washington, DC, USA, ISBN: 0-7695-2270-X, 2005, pp. 446-457.

[39] S. Bansal, P. Kumar, K. Singh, An improved two-step algorithm for task and
data parallel scheduling in distributed memory machines, Parallel Comput.
(ISSN: 0167-8191) 32 (10) (2006) 759-774.

[40] N. Bessis, S. Sotiriadis, V. Cristea, F. Pop, Modelling requirements for
enabling meta-scheduling in inter-clouds and inter-enterprises, in: Intelligent
Networking and Collaborative Systems, INCoS, 2011, pp. 149-156.

Mihaela-Andreea Vasile, Computer Science diplomat en-
gineer, is a master student on Parallel and Distributed
Computing Systems program at University Politehnica of
Bucharest, Faculty of Automatic Control and Computers,
Computer Science Department. She is an active mem-
ber of Distributed Systems Laboratory. Her research in-
terests are in Cloud System and Big Data, especially in
resource-aware scheduling, multi-criteria optimization,
Cloud middleware tools, in-memory processing, Big Data
applications design and implementation.

Florin Pop received his Ph.D. in Computer Science at
the University Politehnica of Bucharest in 2008. He
received his M.Sc. in Computer Science in 2004 and the
Engineering degree in Computer Science in 2003, at the
same University. He is Associate Professor within the
Computer Science Department and also an active member
of Distributed System Laboratory. His research interests
are in scheduling and resource management, multi-
criteria optimization methods, Grid middleware tools
and applications development, prediction methods, self-
organizing systems, contextualized services in distributed
systems. He is the author or co-author of more than 150 publications (books,
chapters, papers in internationals journals and well-established and ranked
conferences). He served as guest-editor for International Journal of Web and Grid
Services and he is Managing Editor for International Journal of Grid and Utility
Computing. He was awarded with “Magna cum laude” distinction for his results
during his Ph.D., one IBM Faculty Award in 2012 or the project “CloudWay—
Improving resource utilization for a smart Cloud infrastructure”, two Prizes for
Excellence from IBM and Oracle (2008 and 2009), Best young researcher in software
services Award, FP7 SPRERS Project, Strengthening the Participation of Romania at
European R&D in Software Services in 2011 and two Best Paper Awards. He worked
in several international (EGEE III, SEE-GRID-SCI, ERRIC) and national research
projects in the distributed systems field as coordinator and member as well. He is a
senior member of the IEEE, ACM and euroCRIS.

Radu-loan Tutueanu, Computer Science diplomat en-
gineer, is a master student on Parallel and Distributed
Computing Systems program at University Politehnica of
Bucharest, Faculty of Automatic Control and Computers,
Computer Science Department. He is an active member
of Distributed Systems Laboratory. His research interests
and orientation are in Cloud System and Real-Time Sys-
tem, especially in communications and agreements proto-
cols, multi-criteria optimization, Cloud middleware tools,
multimedia processing, Cloud applications design and im-
plementation.

Valentin Cristea is a professor (since 1993) of the
Computer Science and Engineering Department of the
University Politehnica of Bucharest, and Ph.D. supervisor
in the domain of Distributed Systems. His main fields
of expertise are large scale distributed systems, cloud
computing and e-services. He is co-Founder and Director
of the National Center for Information Technology of UPB,
and has a long history of experience in the development,
management and/or coordination of international and
national research projects. He led the UPB team in COOPER
(FP6), datagrid@work (INRIA “Associate Teams” project),
CoLaborator project for building a Center and collaborative environment for
high-performance computing in Romania, distributed dependable systems project
DEPSYS, and others. He co-supervised the UPB Team in European projects SEE-
GRID-SCI (FP7) and EGEE (FP7). The research results have been published in more
than 230 specialist papers in international journals or peer-reviewed proceedings,
and more than 30 books and book chapters. He organized several scientific
Workshops and Conferences. In 2003 and 2011 he received the IBM faculty award
for research contributions in e-Service and Smart City domains. He is a member of
the Romanian Academy of Technical Sciences.

http://dx.doi.org/10.1109/CLOUD.2012.21
http://dx.doi.org/10.1109/CCGrid.2011.51
http://refhub.elsevier.com/S0167-739X(14)00253-2/sbref18
http://refhub.elsevier.com/S0167-739X(14)00253-2/sbref19
http://refhub.elsevier.com/S0167-739X(14)00253-2/sbref20
http://refhub.elsevier.com/S0167-739X(14)00253-2/sbref21
http://dx.doi.org/10.1016/j.future.2011.04.011
http://dx.doi.org/10.1016/j.future.2011.05.008
http://refhub.elsevier.com/S0167-739X(14)00253-2/sbref25
http://dl.acm.org/citation.cfm?id%3D1784707.1784728
http://dx.doi.org/10.1016/j.future.2013.07.005
http://www.sciencedirect.com/science/article/pii/S0167739X13001507
http://dx.doi.org/10.1080/00207543.2012.748227
http://dx.doi.org/10.1016/j.future.2013.10.005
http://refhub.elsevier.com/S0167-739X(14)00253-2/sbref30
http://dx.doi.org/10.1109/CloudCom.2010.42
http://refhub.elsevier.com/S0167-739X(14)00253-2/sbref33
http://dx.doi.org/10.1007/s10723-012-9208-5
http://refhub.elsevier.com/S0167-739X(14)00253-2/sbref35
http://projecteuclid.org/euclid.bsmsp/1200512992
http://dx.doi.org/10.1007/s11227-007-0139-z
http://refhub.elsevier.com/S0167-739X(14)00253-2/sbref38
http://refhub.elsevier.com/S0167-739X(14)00253-2/sbref39

M.-A. Vasile et al. / Future Generation Computer Systems 51 (2015) 61-71 71

Joanna Kotodziej (Ph.D. in Computer Science) graduated
in Theoretical Mathematics from the Jagiellonian Univer-
sity in Cracow (Poland) in 1992, where she also obtained
the Ph.D. in Theoretical Computer Science in 2004. In the
period of 1992-1997 she worked as a project manager
and senior CAD/CAM project manager in Petroleum Engi-
neering (Bipronaft Cracow and INES Project Studio). She
joined the University of Bielsko-Biala (Poland) in 1997 as
an assistant professor and now works as an adjunct pro-
fessor in computer science at the Department of Math-
" ematics and Computer Science. She currently serves as
a Director of Studles in Computer Science at the University of Bielsko-Biala and
has served as an International Affairs Coordinator at the Faculty of the Mechan-
ical Engineering and Computer Science, University of Bielsko-Biala in the pe-
riod of 2008-2010. She is a full professional member of ACM and SIGEVO group.
She is also a research fellow in Intelligent Information Systems Group at AHG
University of Science and Technology, Cracow (Poland). The main topics of her
research are evolutionary computation, mathematical modeling of stochastic pro-
cesses, grid and cloud computing, intelligent networking, scalable computation,

multi-agent systems, global optimization metaheuristics. She has published in in-
ternational journals, books and conference proceedings of the research area. She
is a guest editor of the ‘Intelligent Decision Systems in Large-Scale Distributed Envi-
ronments’ (Springer) book and 6 special issues of highly indexed journals in the
domain, including ‘Knowledge Engineering Review’ (Cambridge Un. Press). She is
serving as the editorial board member of several journals in her research area and
as Managing Editor of International Journal of Space-Based and Situated Comput-
ing (Inderscience). She serves as a reviewer for the major journals in her research
domain. She has served and is currently serving as General Co-Chair and General
Program Co-Chair of several international conferences and workshops including
PPSN 2010, ECMS 2011, CISIS 2011, 3PGCIC 2011, ICLS 2011, SCALSOL 2011, SCOPIN
2011. She also serves as a track chair and IPC member of many top conferences on
evolutionary computing, Al, agent-based systems, high-performance and scalable
computing, intelligent networking, grid and cloud computing including CEC 2008,
GECCO 2010-2011, IEEE AINA 2011, IACS 2008-2009, ICAART 2009-2010, HPCC
2010, WICT 2011. She has been awarded for the best MSD Thesis in Theoretical
Mathematics by Polish Mathematical Society in 1992 and for the best Ph.D. Thesis in
Computer Science, Physics and Mathematics by The Foundation for Polish Science in
2004.

	Resource-aware hybrid scheduling algorithm in heterogeneous distributed computing
	Introduction
	Related work
	Proposed model for HySARC2 algorithm
	Theoretical model
	 HySARC2 architecture
	Clustering Proposal for HySARC2
	 HySARC2 Scheduling algorithm
	Scheduling algorithms used by HySARC2

	Experimental methodology and results
	Tasks and resources clustering phase
	Execution time
	Scalability

	 HySARC2 integration in real Cloud platforms
	Conclusion
	Acknowledgments
	References

