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a b s t r a c t

Although sort has been extensively studied in many research works, it still remains a chal-
lenge in particular if we consider the implications of novel processor technologies such as
manycores (i.e. GPUs, Cell/BE, multicore, etc.). In this paper, we compare different algo-
rithms for sorting integers on stream multiprocessors and we discuss their viability on
large datasets (such as those managed by search engines). In order to fully exploit the
potentiality of the underlying architecture, we designed an optimized version of sorting
network in the K-model, a novel computational model designed to consider all the impor-
tant features of many-core architectures. According to K-model, our bitonic sorting net-
work mapping improves the three main aspects of many-core architectures, i.e. the
processors exploitation, and the on-chip/off-chip memory bandwidth utilization. Further-
more we are able to attain a space complexity of H(1). We experimentally compare our
solution with state-of-the-art ones (namely, Quicksort and Radixsort) on GPUs. We also
compute the complexity in the K-model for such algorithms. The conducted evaluation
highlight that our bitonic sorting network is faster than Quicksort and slightly slower than
radix, yet being an in-place solution it consumes less memory than both algorithms.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Given the demand of massive computing power in modern video game applications, GPUs (as well as the Cell/BE) are de-
signed to be extremely fast at rendering large graphics data sets (e.g. polygons and pixels). Indeed, inspired by the attractive
performance/cost ratio, several studies adopt such type of processors also for carrying out data-intensive and general-pur-
pose tasks. For some problems, such as Web information retrieval, the results obtained, in term of computational latency,
outperform those obtained using classical processors. Recently, there have been some efforts aimed at developing basic pro-
gramming models like Map-Reduce. For example Bingsheng, Wenbin, Qiong, Naga, and Tuyong (2008) designed Mars, a
Map-Reduce framework, on graphics processors, and Kruijf and Sankaralingam (2007) presented an implementation of
Map-Reduce for the Cell architecture.

The main idea in modern processors like GPUs, Sony’s Cell/BE, and multi-core CPUs, is stuffing several computing cores
(from a few to a few hundreds) on a single chip. In current CPUs a common design practice is to devote a huge percentage of
the chip-area to cache mechanism and memory management, in general. Differently from standard CPUs, the majority of the
chip-area in modern manycores is devoted to implement computational units. For this reason, they are able to perform spe-
cialized computations over massive streams of data in a fraction of the time needed by traditional CPUs. The counterpart,
though, is that it is difficult for the programmer to write applications able to reach the maximum level of performance they
support.

In this paper we digress from the motivation of sorting efficiently a large amount of data on modern GPUs to propose a
novel sorting solution that is able to sort in-place an array of integers. In fact, sorting is a core problem in computer science

0306-4573/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ipm.2010.11.010

⇑ Corresponding author.
E-mail address: r.baraglia@isti.cnr.it (R. Baraglia).

Information Processing and Management 48 (2012) 903–917

Contents lists available at ScienceDirect

Information Processing and Management

journal homepage: www.elsevier .com/ locate/ infoproman

http://dx.doi.org/10.1016/j.ipm.2010.11.010
mailto:r.baraglia@isti.cnr.it
http://dx.doi.org/10.1016/j.ipm.2010.11.010
http://www.sciencedirect.com/science/journal/03064573
http://www.elsevier.com/locate/infoproman


that has been extensively researched over the last five decades, yet it still remains a bottleneck in many applications involv-
ing large volumes of data. Furthermore. sorting constitutes a basic building block for large-scale distributed systems for IR.
First of all, as we show in Section 3, sorting is the basic operation for indexing. Large scale indexing, thus, required scalable
sorting. Second, the technique we are introducing here is viable for distributed systems for IR since it is designed to run on
GPUs that are considered as a basic building block for future generation data-centers (Barroso & Hölzle, 2009). Our bitonic
sorting network can be seen as a viable alternative for sorting large amounts of data on GPUs.

During our research we studied a new function to map bitonic sorting network (BSN) on GPU exploiting its high band-
width memory interface. We also present this novel data partitioning schema that improves GPU exploitation and maxi-
mizes the bandwidth with which the data is transferred between on-chip and off-chip memories. It is worth noticing that
being an in-place sorting based on bitonic networks our solution uses less memory than non in-place ones (e.g. (Cederman
& Tsigas, 2008; Sengupta, Harris, Zhang, & Owens, 2007)), and allows larger datasets to be processed. Space complexity is an
important aspect when sorting large volume of data, as it is required by large-scale distributed system for information re-
trieval (LSDS-IR).

To design our sorting algorithm in the stream programming model, we started from the popular BSN, and we extend it to
adapt to our target architecture. Bitonic sort is one of the fastest sorting networks (Batcher, 1968). Due to its large exploi-
tation bitonic sorting is one of the earliest parallel sorting algorithms proposed in literature (Batcher, 1968). It has been used
in many applications. Examples are the divide-and-conquer strategy used in the computation of the Fast Fourier Transform
(Govindaraju & Manocha, 2007), Web information retrieval (Capannini, Silvestri, Baraglia, & Nardini, 2009), and some new
multicasting network (Al-Hajery & Batcher, 1993).

The main contributions of this paper are the following:

� We perform a detailed experimental evaluation of state-of-the-art techniques on GPU sorting and we compare them on
different datasets of different size and we show the benefits of adopting in-place sorting solutions on large datasets.
� By using the performance constraints of a novel computational model we introduce in Capannini, Silvestri, and Baraglia
(2010), we design a method to improve the performance (both theoretical and empirical) of sorting using butterfly net-
works (like bitonic sorting). Our theoretical evaluation, and the experiments conducted, show that following the guide-
lines of the method proposed improve the performance of bitonic sorting also outperforming other algorithms.

This paper is organized as follows. Section 2 discusses related works. Section 3 introduces some relevant characteristics
about the applicability of GPU-based sorting in Web Search Engines. Section 4 presents some issues arising from the stream
programming model and the single-instruction multiple-data (SIMD) architecture. Section 5 describes the new function to
map BSN on GPU we propose. Sections 6 and 7 presents the results obtained in testing the different solutions on synthetic
and real dataset. Section 8 presents the conclusions and discusses how to evolve in this research activity.

2. Related work

In the past, many authors presented bitonic sorting networks on GPUs (e.g., Govindaraju, Gray, Kumar, & Manocha, 2006),
but the hardware they use belongs to previous generations of GPUs, which does not offer the same level of programmability
of the current ones.

Since most sorting algorithms are memory-bound, it is still a challenge to design efficient sorting methods on GPUs.
Purcell, Donner, Cammarano, Jensen, and Hanrahan (2003) present an implementation of bitonic merge sort on GPUs

based on an original idea presented by Kapasi et al. (2000). Authors apply their approach to sort photons into a spatial data
structure providing an efficient search mechanism for GPU-based photon mapping. Comparator stages are entirely realized
in the fragment units,1 including arithmetic, logical and texture operations. Authors report their implementation to be com-
pute-bound rather than bandwidth-bound, and they achieve a throughput far below the theoretical optimum of the target
architecture.

In (Kipfer, Segal, & Westermann, 2004, 2005) it is shown an improved version of the bitonic sort as well as an odd-even
merge sort. They present an improved bitonic sort routine that achieves a performance gain by minimizing both the number
of instructions executed in the fragment program and the number of texture operations.

Greß and Zachmann (2006) present an approach to parallel sort on stream processing architectures based on an adaptive
bitonic sorting (Bilardi & Nicolau, 1986). They present an implementation based on modern programmable graphics hard-
ware showing that they approach is competitive with common sequential sorting algorithms not only from a theoretical
viewpoint, but also from a practical one. Good results are achieved by using efficient linear stream memory accesses, and
by combining the optimal time approach with algorithms.

Govindaraju, Raghuvanshi, and Manocha (2005) implement sorting as the main computational component for histogram
approximation. This solution is based on the periodic balanced sorting network method by Dowd, Perl, Rudolph, and Saks
(1989). In order to achieve high computational performance on the GPUs, they used a sorting network based algorithm,

1 In addition to computational functionality, fragment units also provide an efficient memory interface to server-side data, i.e. texture maps and frame buffer
objects.
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and each stage is computed using rasterization. Later, they presented a hybrid bitonic–radix sort that is able to sort vast
quantities of data, called GPUTeraSort (Govindaraju et al., 2006). This algorithm was proposed to sort record contained in
databases using a GPU. This approach uses the data and task parallelism to perform memory-intensive and compute-inten-
sive tasks on GPU, while the CPU is used to perform I/O and resource management.

Cederman and Tsigas (2008) show that GPU–Quicksort is a viable sorting alternative. The algorithm recursively partition
the sequence to be sorted with respect to a pivot. This is done in parallel by each GPU-thread until the entire sequence has
been sorted. In each partition iteration, a new pivot value is picked up and as a result two new subsequences are created that
can be sorted independently by each thread block. The conducted experimental evaluation point out the superiority of GPU–
Quicksort over other GPU-based sorting algorithms.

Recently, Sengupta et al. (2007) present a Radixsort and a Quicksort implementation based on segmented scan primitives.
Authors presented new approaches to implement several classic applications using this primitives, and show that this prim-
itives are an excellent match for a broad set of problems on parallel hardware.

3. Application to data indexing

Large-scale and distributed applications in information retrieval such as crawling, indexing, and query processing have to
exploit the computational power of novel computing architectures to keep up with the exponential growth in Web content.
In this paper, we focus our attention on a core phase of one of the main components of a large-scale search engine: the in-
dexer. In the indexing phase, each crawled document is converted into a set of word occurrences called hits. For each word
the hits record: frequency, position in document, and some other information. Indexing, then, can be considered as a ‘‘sort’’
operation on a set of records representing term occurrences (Baeza-Yates, Castillo, Junqueira, Plachouras, & Silvestri, 2007).
Records represent distinct occurrences of each term in each distinct document. Sorting efficiently these records using a good
balance of memory and disk exploitation, is very challenging. In the last years it has been shown that sort-based approaches
(Witten, Moffat, & Bell, 1999), or single-pass algorithms (Lester, 2005), are efficient in several scenarios, and in particular
where indexing of a large amount of data has to be performed with limited resources. A sort-based approach first makes
a pass through the collection assembling all termID–docID pairs. Then, it sorts the pairs with termID as primary key and doc-
ID as the secondary key. Finally, it organizes the docIDs for each termID into a postings list (it also computes statistics like
term and document frequency). For small collections, all this can be done in memory. When memory is not sufficient, we
resort to use an external sorting algorithm (Manning, Raghavan, & Schütze, 2008). The main requirement of such algorithm
is the minimization of the number of random disk seeks during sorting. A possible approach is Blocked Sort-Based Indexing
(BSBI). BSBI works by segmenting a collection into parts of equal size, then it sorts the termID–docID pairs of each part in
memory, finally stores intermediate sorted results on disk. When all the segments are sorted, it merges all intermediate re-
sults into the final index. A more scalable alternative is Single-Pass In-Memory Indexing (SPIMI). SPIMI uses terms instead of
termIDs, writes each blocks dictionary to disk, and then starts a new dictionary for the next block. SPIMI can index collec-
tions of any size as long as there is enough disk space available. The algorithm parses documents and turns them into a
stream of term–docID pairs, called tokens. Tokens are then processed one by one. For each token, SPIMI adds a posting di-
rectly to its postings list. Differently from BSBI where all termID–docID pairs are collected and then sorted, in SPIMI each
postings list grows dynamically. This means that its size is adjusted as it grows. This has two advantages: it is faster because
there is no sorting required, and it saves memory because it keeps track of the term a postings list belongs to, so the termIDs
of postings need not be stored. When memory finished, SPIMI writes the index of the block (which consists of the dictionary
and the postings lists) to disk. Before doing this, SPIMI sorts the terms to facilitate the final merging step: if each blocks post-
ings lists were written in unsorted order, merging blocks could not be accomplished by a simple linear scan through each
block. The last step of SPIMI is then to merge the blocks into the final inverted index. SPIMI, which time complexity is lower
because no sorting of tokens is required, is usually preferred with respect to BSBI. All in all, in both indexing methods we
mention, sorting is a core step: BSBI sorts the termID–docID pairs of all parts in memory, SPIMI sorts the terms to facilitate
the final merging step (Manning et al., 2008).

4. Key aspects of manycore program design

GPUs have been originally designed to execute geometric transformations that generate a data stream of pixels to be
displayed.

In general, a program is processed by a GPU by taking as input a stream of data to be distributed among different threads
running on multiple SIMD processors. Each thread processes its own portion of data stream, generates the results and writes
them back to the main memory.

4.1. The SIMD architecture

SIMDmachines, also knows as processor-array machines, basically consists of an array of execution units (EUs) connected
together by a network (Kumar, 2002). This processor array is connected to a control processor, which is responsible for fetch-
ing and interpreting instructions. The control processor issues arithmetic and data processing instructions to the processor
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array and handles any control flow or serial computation that cannot be parallelized. Execution units, thus, can be individ-
ually disabled to allow conditional branches to be executed. Although SIMD machines are very effective for certain classes of
problems, the architecture is specifically tailored for compute-intensive jobs. For this reason it is usually quite ‘‘inflexible’’ on
some classes of problems.

4.2. The stream programming model

A stream program (Khailany, Dally, Kapasi, & Mattson, 2001) organizes data as streams and expresses all computation as
kernels. A stream is a sequence of homogeneous data elements, that are defined by a regular access pattern. A kernel typ-
ically loops through all the input stream elements, performing a sequence of operations on each element, and appending
results to an output stream.

These operations should usually be arranged in a way to increase the amount of parallel instructions executed by the
operation itself. Moreover, they should not access arbitrary memory locations. To avoid expensive concurrent memory ac-
cess operations they should work on each stream element independently. If all the above constraints are satisfied, each ele-
ment of the input stream can be processed simultaneously allowing kernels to exhibit a large amount of data parallelism.
Task parallelism, instead, can be obtained by allowing kernels to simultaneously access elements from the stream, this
can only be accomplished if elements are opportunely arranged in main memory to disallow concurrent accesses to overlap-
ping memory areas. Furthermore, other important features shared by all efficient stream-based applications are: elements
are read and computed once from memory, and applications perform a high number of arithmetic operations per memory
reference, i.e. applications are compute-intensive.

4.3. K-model: a many-core stream-based computational model

K-model has been designed to model all the main peculiarities of the novel generation of stream multiprocessors (Capan-
nini et al., 2010). It is not the main goal of this paper to present in details K-model. Instead, we report, briefly, the main pecu-
liarities we need in order to understand, discuss, and compare our approaches.

K-model consists of a computer with an array of k scalar execution units linked to a single instruction unit. The memory
hierarchy consists of an external memory and a local memory made of a set of private registers, and a shared memory of r
locations equally divided into k parallel modules.

According to K-model, each kernel of the algorithm is evaluated by measuring the time complexity, the computational com-
plexity, and the number of memory transactions, related to the computation of its stream elements. In order to compute the
overall algorithm’s complexity the three complexities are managed separately and, the complexity of a kernel is obtained by
multiplying the complexity of a stream element by the total number of elements in a stream.

The time complexity is defined as the sum of the latencies of each instruction an algorithm performs. It can be thought of
as the parallel complexity of the algorithm assuming a collection of k scalar processors. K-model evaluates the latency of a
data-access instruction proportionally to the level of contention it generates. Whenever an instruction addresses a shared
memory location with no bank conflict or a register, the latency of the instruction is 1. Otherwise, the latency of a data-access
instruction corresponds to the highest number of requests involving one of the k memory banks. Regarding arithmetic
instructions, their latency has unitary cost.

The computational complexity is defined as the classical sequential complexity assuming we are simulating the execution
of the algorithm on a serial RAM. If the result obtained by dividing the computational complexity by the time complexity, is
close to k, it means that the majority of the k computational elements are simultaneously working, and the designed algo-
rithm is efficient.

To evaluate the number of memory transactions, we need to take into account the data-transfers from/to the off-chip mem-
ory. To minimize this quantity, off-chip memory accesses are to be ‘‘coalesced’’ into a unique memory transaction. In other
words accesses have to be constrained to refer to locations lying in the same size-k segment for each memory transaction.

5. K-Model-based bitonic sorting network

A sorting network is a mathematical model of a sorting algorithm that is made up of a network of wires and comparator
modules. The sequence of comparisons thus does not depend on the order with which the data is presented. The regularity of
the schema used to compare the elements to sort makes this kind of sorting network particularly suitable for partitioning the
elements in the stream programming fashion, as K-model requires.

In particular, BSN is based on repeatedly merging two bitonic sequences2 to form a larger bitonic sequence (Knuth, 1973).
On each bitonic sequence the bitonic split operation is applied. After the split operation, the input sequence is divided into two
bitonic sequences such that all the elements of one sequence are smaller than all the elements of the second one. Each item on
the first half of the sequence, and the item in the same relative position in the second half are compared and exchanged if
needed. Shorter bitonic sequences are obtained by recursively applying a binary merge operation to the given bitonic sequence

2 A bitonic sequence is composed of two sub-sequences, one monotonically non-decreasing and the other monotonically non-increasing.
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(Batcher, 1968). The recursion ends and the sequence is sorted when the input of the merge operation is reduced to singleton
sequences. Fig. 1 shows graphically the various stages described above.

The pseudo-code of a sequential BSN algorithm is shown in Algorithm 1. Fig. 2, instead, shows an instantiation of a fan-in
16 BSN.

Algorithm 1. BitonicSort (A)

1: n jAj
2: for s = 1 to logn do

3: for c = s � 1 to 0 step �1 do

4: for r = 0 to n � 1 do

5: If r
2c � r

2s ðmod2Þ ^ A½r� > A½r � 2c� then SWAP ðA½r�;A½r � 2c �Þ

To design our sorting algorithm in the stream programming model, we start from the original parallel BSN formulation
(Batcher, 1968) and we extend it to follow the K-model guidelines. In particular, the main aspect to consider is to define an
efficient schema for mapping items into stream elements. Such mapping should be done in order to perform all the compar-
isons involved in the BSN within a kernel. The structure of the network, and the constraint of the programming model, in-
deed, disallow the entire computation to be performed within one stream. Firstly, the number of elements to process by the
merging step increases constantly (as it is shown in Fig. 1). On the other hand, due to the unpredictability of their execution
order, the stream programming model requires the stream elements to be ‘‘independently computable’’. In other words, each
item has to be included into at most one stream element, see Fig. 3. Following these constraints, the set of items would then
be partitioned (and successively mapped) into fewer but bigger parts (Fig. 4). For example, referring to the last merging step
of a BSN all the items would be mapped into a unique part. This is clearly non admissible since the architectural constraints
limit the number of items that can be stored locally (i.e. the size of a stream element). In particular in the K-model, such limit
is fixed by the r parameter, i.e. the amount of memory available for each stream element.

In our solution we define different partition depending on which step of the BSN we are. Each partitioning induces a dif-
ferent stream. Each stream, in turn, needs to be computed by a specific kernel that efficiently exploits the characteristic of
the stream processor.

Fig. 1. (a) Structure of a BSN of size n = 8. With bm(x) we denote bitonic merging networks of size x. The arrows indicate the monotonic ordered sequence.
(b) Butterfly structure of a bitonic merge network of size n = 4.

step

Fig. 2. Example of BSN for 16 elements. Each comparison is represented with a vertical line that link two elements, which are represented with horizontal
lines. Each step of the sort process is completed when all comparisons involved are computed.
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Since each kernel invocation implies a communication phase, such mapping should be done in order to reduce the com-
munication overhead. Specifically, this overhead is generated whenever a processor begins or ends the execution of a new
stream element. In those cases, the processor needs to flush the results of the previous computation stored in the local mem-
ory, and then to fetch the new data from the off-chip memory. Taking into account the K-model rule, depending on the pat-
tern used to access the off-chip memory, the ‘‘latency’’ of such transfer can increase up to k times translating in an increase of
up to one order of magnitude when measured on the real architecture.

Resuming, in order to maintain the communication overhead as small as possible, our goals are: (i) to minimize the num-
ber of communications between the on-chip memory and the off-chip one, (ii) to maximize the bandwidth with which such
communications are done. Interestingly, the sequential version of the bitonic network algorithm exposes a pattern made up
of repeated comparisons. It turns out that this core set of operations can be then optimally reorganized in order to meet the
two goals above described.

Let us describe how a generic bitonic network sorting designed for an array A of n = 2i items, with i 2 Nþ, can be realized
in K-model.

In order to avoid any synchronization, we segment the n items in such a way each part contains all the items to perform
some steps without accessing the items in other parts. Since the items associated with each stream element have to be tem-
porarily stored in the on-chip memory, the number of items per part is bounded by the size of such memory. In the follow,

kernel stream

element

step

Fig. 3. Example of a kernel stream comprising more steps of a BSN. The subset of items composing each element must perform comparison only inside
itself.

A

step

B C

Fig. 4. Increasing the number of steps covered by a partition, the number of items included doubles. A, B and C are partitions respectively for local memory
of 2, 4 and 8 locations.
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we show the relation between the number of items per part, and the number of steps each kernel can perform. This relation
emerges from the analysis of Algorithm 1.

Briefly, to know howmany steps can be included in the run of a partition, we have to count how many distinct values the
variable c can assume. First of all, by the term stepwe refer to the comparisons performed in the loop at line 4 of Algorithm 1.
Furthermore, let c and s be the variables specified in Algorithm 1, the notation step�s; �c represents the step performed when
c ¼ �c and s ¼ �s. At each step, the indexes of the two items involved in the comparison operation are expressed as a function of
the variable c.

Claim 1. Within a steps,c two elements are compared, if and only if, the binary representation of their relative indexes differ only by
the cth bit.

Proof. By definition of bitwise � the operation r � 2c, invoked at line 5, corresponds to flipping the cth bit of r, in its binary
representation. h

The claim above gives a condition on the elements of the array A involved in each comparison of a step. Given an element
A[r] at position r this is compared with the one whose position is obtained by fixing all the bits in the binary representation
of r but the cth one which is, instead, negated. The previous claim can be extended to define what are the bits flipped to per-
form the comparisons done within a generic number of consecutive steps, namely k, called k-superstep.3 This definition
straightforwardly follows from Algorithm 1, and it is divided in two cases, specifically for k 6 s and k > s.

Definition 1. (C-sequence) Within the k-superstep starting at steps,c, with 1 6 k 6 s, the sequence C of bit positions that
Algorithm 1 flips when it performs the comparisons is defined as follows:

C ¼
CP ¼ ½c; ðc � kÞ if c > k

C< ¼ ½s; ðs� kþ c þ 1Þ [ ½c; 0� otherwise

�

The sequence basically consists of the enumeration of the different values taken by c in the k-superstep considered. It is
worth being noted that the values assigned to c in the k steps are distinct because of the initial condition k 6 s. Now, let
us consider the behavior of Algorithm 1 when s < k. In particular, let us restrict to the definition of C in steps from step1,0
to stepk,0. Since c is bounded from above by s < k, for each considered step c can only assume values in the range (k,0]. Note
that, in this case, the number of steps covered by flipping the bit positions contained in the sequence is 1

2 kðkþ 1Þ, instead of k.

Definition 2. (C0-sequence) The sequence C0 = (k,0] corresponds to bit positions that Algorithm 1 flips when it performs
the comparisons within the 1

2 kðkþ 1Þ steps starting from step1,0.
To resume, given a generic element A[r], with 0 6 r < n, and considering a superstep of the bitonic network, the only bits of

r flipped by Algorithm 1 to identify the corresponding elements to compare with are those identified by the sequenceC of bit
positions. Then, bit positions that do not occur in C are identical for the elements compared with A[r] in such superstep. By
definition of the C-sequence, we can retrieve the following claim.

Claim 2. Let A[r] and A[q] be two elements of A. Given a superstep and its C-sequence, A[r] and A[q] belong to the same partition if
and only if "i R C � r[i] = q[i], where the notation r[i] denotes the ith bit of the binary representation of r.

From the previous claims, we can also retrieve the size of each partition as function of C.

Lemma 1. Each part is composed by 2jCj items.

Proof. By induction on the length of C. When jCj = 1, an item is compared with only another one, by Claim 1. So each part is
made up of two items. For the inductive step, let us consider the next step in the superstep. Each of the previous items is
compared with an element not yet occurred, due to the new value of c that implies to flip a new bit position. Since each item
forms a new pair to compare, the number of items to include in the part doubles, namely it is 2 � 2jCj = 2jCj+1. h

From the above lemma, and because each partition covers all the elements of A, it follows directly that

Corollary 1. The number of parts for covering all the comparisons in the superstep is 2logn�jCj.
The previous claim can be extended to define the C-partition procedure.

Definition 3 (C-partition). Given a k-superstep, the relativeC-partition is the set of partsP ¼ fpig, for 0 6 i < 2logn�jCjwhere
each part is constructed by means of Algorithm 2.

3 In the rest of the paper we denote a sequence of integers by putting the greater value on the left of the range. For example, the sequence formed by the
elements in {ijm 6 i <M} is denoted by (M,m].
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Algorithm 2. BuildPartition (A,n,k,C)

1: /	create a bit-mask corresponding to the fixed logn � k bits whose positions are not in C 	/
2: j = 0, m = 0;
3: for b = 0 to logn � 1 do

4: if b R C then m[b] = i[j], j = j + 1;
5: /	populate the partition using the bit-mask m defined in the previous step 	/
6: for e = 0 to 2k � 1 do

7: j = 0, r =m;
8: for b = 0 to dlogne � 1 do

9: if b 2C then r[b] = e[i], i = i + 1;
10: pi=pi [ A[r];

Now, let us make some consideration about the communication overhead discussed above. Each time we perform a
stream, the computation is charged of the time spent to fetch all n elements divided among the different parts, then to write
them back. In order to minimize this overhead, we need to minimize the number of streams needed to cover all the network,
i.e. to maximize the number of steps performed within each partition. Because each C-sequence is made up of 2jCj items, see
Lemma 1, and in the K-model the data of each part has to fit in the local memory of r locations, the optimal size forC is logr.
Then, each C-partition forms a stream that feeds an appropriate kernel. Due to the mapping we design, each part is modeled
as a bitonic network (see Algorithm 3). It is possible to show that such a modeling allows to always keep the k executors
active. At the same time, the contention to access the k on-chip memory banks is balanced. Note that, in the K-model rule,
by balancing the contention the latency of the accesses is reduced because the maximum contention is lower.

The pseudo-code in Algorithm 3 discards some side aspects, to focus the main technique. In particular it takes a part (Ap)
and the related C-sequence (C), then performs all due comparisons in-place. The procedure InsAt (N,x,p) inserts the bit x at
the position c of the binary representation of N, for example InsAt (7,0,1) = 1101 = 13. The procedure Compare & Swap per-
forms the comparisons between the argument elements and, if needed, swaps them. Note that, each RUNSTREAMELEMENT execu-
tion is free from conditional branch instructions. This is a very important feature for a SIMD algorithm, avoiding, in fact,
divergent execution paths that are serialized by the (single) instruction unit of the processor.

Algorithm 3. RunStreamElement (Ap,C)

1: for each id 2 [0,k � 1] parallel do

2: n = log2(r)
3: for i = 0 to n � 1 do

4: c = C[i]
5: for j = id to n/2 � 1 step k do

6: p= InsAt (j,0,c)
7: q= InsAt (j,1,c)
8: Compare & Swap (Ap[p],Ap[q])

In a previous work we argued that minimizing the number of data-transfers is not enough (Capannini et al., 2009). In par-
ticular, in the cache-based model, proposed by Frigo, Leiserson, Prokop, & Ramachandran (1999), the bandwidth needed to
replace a cache-line, in the case of cache-miss, is constant. Following the K-model rules (Capannini et al., 2010), the memory
bandwidth is fully exploited when simultaneous memory accesses can be coalesced into a single memory transaction. This
means that it is possible to reduce the latency of data transfer by reorganizing in the proper manner the accesses to the off-
chip memory.

In the rest of the section we will refer a sequence of k consecutive addresses with the term k-coalesced set, and we will say
that a part, or the associated C-sequence, satisfies the k-coalesced conditionwhen its values are related only to sets that are k-
coalesced. Specifically, for Definition 3, such aC-sequence satisfies the k-coalesced conditionwhen it contains all the values in
the range from 0 to logk � 1.

Let us analyze the k-coalesced condition in the K-model. By definition of C-sequence, when we fall into a C< case and
c > logk, the k-coalesced condition is verified because the C-partition accesses to 2c+1-coalesced subsets of positions. When
c 6 logk, and we are still in the C< case, we need to access to longer consecutive sequences of addresses to satisfy the k-coa-
lesced condition. On the other hand when we fall into a CP-sequence, no consecutive addresses are included in the relative
partitions, because the value 0 cannot be included in such type of sequence, for Definition 1. Eventually, the C0 sequence is
composed of a unique sequence of contiguous addresses.

To satisfy the k-coalesced condition for all the generated C-partitions, we move some pairs of items from a part of the
current partition to another part. The aim is to group in the same memory transaction items having consecutive addresses,
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whenever we need longer sequences of consecutive memory addresses. To do that, each C-sequence is initialized with the
values in the range ]logk,0]. Then, the values of c related to the next steps to perform are pushed in the C-sequence as far as
it contains logr distinct values.

This operation augments the coalescing-degree of the data transfer, still it forces to remove fromC some elements related
to the next values of c. The best possible communication bandwidth is attained at the cost of decreasing the length of some
supersteps. This means to perform more supersteps to cover the whole bitonic network.

6. K-Model-based sorting network evaluation

The solution we propose is evaluated theoretically and experimentally by comparing its complexity and performance
with those obtained by Cederman & Tsigas (2008) with their version of Quicksort (hereinafter referred to as Quicksort),
and the Radixsort based solution proposed by Sengupta et al. (2007) (hereinafter referred to as Radixsort). Quicksort exploits
the popularly known divided-and-conquer principle, whereas Radixsort exploits the processing of key digits.

6.1. Theoretical evaluation

BSN The number of steps to perform is (log2n + logn)/2. To estimate the number ofmemory transaction needed to compute
a sorting network for an array of size n, we have to count the number of C-partitions needed to cover all the network. That
means to know how many stream elements are computed, then the number of fetch/flush phases, and the number of mem-
ory transactions.

From Definition 2, it follows that the first partition covers the first (log2r + logr)/2 steps.
Let us call stages the loop at line 2 of Algorithm 1. In the remaining steps s > r, logn � logr stages remain, and each of

them has the last C-partition covering logr steps. On the other hand the s � logr steps are performed with partitions cov-
ering log(r/k) steps. Resuming, the number of partitions needed to cover all the network is

1þ
Xlog n

s¼logrþ1
ds� logr
logðr=kÞe þ 1

� �
¼ O

log2n
log k

 !

Since, each element fetches and flushes only coalesced subset of elements, the number of transactions is

O
n
k
� log

2n
log k

 !

The time complexity is

O
nlog2n

k

 !

as it is obtained by Algorithm 3 which equally spreads the contentions among the k memory banks and maintains active all
elements.

Regarding the computational complexity it is known and it is

Oðnlog2nÞ

Quicksort It splits the computation in logn steps. For each step it performs three kernels. In the first one, it equally splits the
input and counts the number of elements greater than the pivot, and the number of the elements smaller than the pivot. In
the second, it performs twice a parallel prefix sum of the two set of counters in order to know the position where to write the
elements previously scanned. In the final kernel, it accesses to the data in the same manner that in the first kernel, but it
writes the elements to the two opposite heads of an auxiliary array beginning at the positions calculated in the previous
kernel.

The first kernel coalesces the access to the elements and, since the blocks are equally sized, also the computation is bal-
anced. Then the counters are flushed, and the second kernel starts. Supposing that n/k < r, each prefix sum can be computed
within a unique stream element. Consequently, for each prefix sum we need n/k2 memory transactions to read n/k counters.
The time complexity is logarithmic in the number of elements, on the contrary the computational complexity is linear. Last
kernel is similar to the first one, except for flushing the data into the auxiliary array. In particular, because each thread acces-
ses to consecutive memory locations, the main part of the requests is not coalesced, requesting one memory transaction per
element.

The following table contains the evaluation of the three type of kernel in the K-model. In order to compute the complexity
of the whole algorithm, the sum of such formulas have to be multiplied by logn:
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Memory transactions Time complexity Computational complexity

kernel #1 n/k + 2 n/k n
kernel #2 4n/k2 4 � log n

k 2n/k
kernel #3 n/k + n n/k n

OVERALL O(n logn) Oðnk log nÞ O(n logn)

Radixsort. It divides the sequence of n items to sort into h-sized subsets that are assigned to p = dn/he blocks. Radixsort
reduces the data transfer overhead exploiting the on-chip memory to locally sort data by the current radix-2b digit. Since
global synchronization is required between two consecutive phases, each phase consists of several separate parallel kernel
invocations. Firstly, each block loads and sorts its subset in on-chip memory using b iterations of binary-split. Then, the
blocks write their 2b-entry digit histogram to global memory, and perform a prefix sum over the p � 2b histogram table
to compute the correct output position of the sorted data. However, consecutive elements in the subset may be stored into
very distant locations, so coalescing might not occur. This sacrifices the bandwidth improvement available, which in practice
can be as high as a factor of 10.

In their experiments, the authors obtained the best performance by empirically fixing b = 4 and h = 1024. That means each
stream is made up of dn/1024e elements. Once the computation of a stream element ends, the copies of the sorted items may
access up to O(2b) non-consecutive positions. Finally, considering 32-bit words, we have 32/b kernels to perform. This leads
to formalize the total number of memory transactions performed as follows:

O
32
b
� n
h
� 2b

� �

Regarding computational and time complexity, Radixsort does not use expensive patterns and it does not increase the conten-
tion in accessing shared memory banks. Therefore, the time complexity is given, by b � n/k, and the computational complexity is
linear with the number of input-elements, i.e. b � n.

6.2. Experimental evaluation

The experimental evaluation is conducted by considering the execution time and amount of memory required by running
BSN, Quicksort and Radixsort on different problem size. The different solutions have been implemented and tested on an
Ubuntu Linux Desktop with an Nvidia 8800GT, that is a device equipped with 14 SIMD processors, and 511 MB of external
memory. The compiler used is the one provided with the Compute Unified Device Architecture (CUDA) SDK 2.1 (NVIDIA,
2008). Even if the CUDA SDK is ‘‘restricted’’ to Nvidia products, it is conform to the K-model. To obtain stable result, for each
distribution, 20 different arrays were generated.

According to Helman, Bader, & JáJá (1995), a finer evaluation of sorting algorithms should be done on arrays generated by
using different distributions. We generate the input array according to uniform, gaussian and Zipfian distributions. We also
consider the special case of sorting an all-zero array.4 These tests highlight the advantages and the disadvantages of the dif-
ferent approach tested. The computation of Radixsort and BSN is based on a fixed schema that uses the same number of steps for
all type of input dataset; on the contrary, Quicksort follows a divide-and-conquer strategy, so as to perform a varying number of
steps depending on the sequence of recursive procedures invoked. The benefits of the last approach are highlighted in the all-
zero results.

The experiments confirm our theoretical ones. Fig. 5 shows the means, the standard deviation, and the maximum and the
minimum of the execution time obtained in the conducted tests by our solution, the Cederman & Tsigas (2008) Quicksort,
and Sengupta et al. (2007) Radixsort, respectively. Radixsort results to be the fastest and this is mainly due to its complexity
in terms of the number of memory transactions that it needs, see Table 1.

This confirms our assumption that the number of memory transactions is dominant w.r.t the other two complexity mea-
sures, i.e. computational and time. This is particularly true whenever the cost of each operation is small if compared to the
number of memory access operations (like in the case of data-intensive algorithms).

Radixsort, in fact, has a O(n) number of memory transactions, that is smaller than O(n log2n/k logk) of the BSN and than
O(n logn/k) of the Quicksort.

Considering the specifications of real architectures, which related to the parameter k of the K-model, and considering the
capacity of the external memory available on real devices (order of Gigabytes), Quicksort results to be the least performing
method analyzed, see Fig. 6.

On the other hand, our BSN approach is comparable to Radixsort and it is always faster than Quicksort, mainly because
the mapping function proposed allows the full exploitation of the available memory bandwidth.

4 All elements are initialized equal to 0.
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A last word has to be spent regarding the memory consumption of the methods. Quicksort and Radixsort are not able to
sort large arrays, as it is pointed out, see Table 1. Being an in-place solution, in fact, BSN can thus devote all the available
memory to store the dataset. This has to be carefully considered since sorting large datasets will require less passes than
the other solutions. They need, in fact, to split the sorting process in more steps, then to merge the partial results. Moreover,
merge operation may require further transfers for copying the partial results to the device memory if this operation is per-
formed on manycores. Otherwise, CPU can perform the merging step, but exploiting a bandwidth lower than the GPU’s one.

Table 1 measures the memory contention, and the number of divergent paths. The first value measures the overhead due
to the contention on the on-chip memory banks as K-model expects. The second value measures how many times threads of
the multiprocessors can not work simultaneously. These two last metrics together show the efficiency of the algorithms
tested. Keeping low both values corresponds to a better exploitation of the inner parallelism of the SIMD processor. All
the memory banks and all the computational, in fact, are allowed to work simultaneously.

Moreover, since direct manipulation of the sorting keys as in Radixsort is not always allowed, it is important to provide a
better analysis of the comparison-based sorting algorithms tested. Due to the in-place feature and due to the best
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Fig. 5. Elapsed sorting time for varying input size. We represent variance, maximum, and minimum of elapsed times by using candlesticks.

Table 1
Performance of BSN, Radixsort and Quicksort in terms of number of memory transactions, memory contention, and number of
divergent paths. Results are related to uniform distribution. ‘‘n.a.’’ means that computation is not runnable for lack of device
memory space.

Problem size Memory transactions Memory contention Divergent paths

220 Bitonicsort 796,800 34,350 0
Quicksort 4,446,802 123,437 272,904
Radixsort 965,791 132,652 29,399

222 Bitonicsort 4,119,680 151,592 0
Quicksort 18,438,423 379,967 1,126,038
Radixsort 3,862,644 520,656 122,667

224 Bitonicsort 20,223,360 666,044 0
Quicksort 85,843,422 1,379,155 1,126,038
Radixsort 15,447,561 2,081,467 492,016

226 Bitonicsort 101,866,786 2,912,926 0
Quicksort n.a. n.a. n.a.
Radixsort n.a. n.a. n.a.
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performance resulting from the test conducted, BSN seems more preferable than Quicksort. Furthermore, BSN exposes lower
variance in the resulting times, it is equal to zero in practice. On the contrary, depending on the distribution of the input data,
Quicksort’s times are affected by great variance. Probably, this is due to how the divide-et-impera tree grows depending on
the pivot chosen, and on the rest of the input. For example, on system based on multi-devices (i.e. more than one GPU), this
result increases the overhead of synchronization among the set of available devices.

7. Indexing a real dataset

We present experiments showing the performance of a Blocked Sort-Based Indexer (Manning et al., 2008) (BSBI), modified
with a GPU-based sort step, to index six different collections of Web documents. Each collection has been obtained by crawl-
ing a portion of the web. The biggest collection contains 26 million documents and each document has an average size of
200 KB. The first column of Table 2 reports the different sizes of each collection tested.

Our goal is to show that using a GPU-based solution we can speed-up the indexing process due to, mainly, two reasons: (i)
GPU-based sort is faster than CPUs-based one, (ii) CPUs and GPUs can be pipelined to obtain synergistic effort to efficiently
exploit all the available resources. We have already shown, in previous section, that GPU-based sorting is more efficient than
CPU-based sorting. On the other hand, to show that we can synergistically exploit a pipelined CPU/GPU indexer, we design in
this section a novel blocked indexing schema where each block of pages is firstly parsed by the CPU to generate a run of ter-
mID–docID pairs and then, the generated run is sorted by the GPU while the CPU carries out a new parsing step.

Fig. 7 shows the three different indexing algorithms we have tested. Indexcpu is the classical CPU-based BSBI algorithm
that takes as input a dataset D and generate the index fout. Indexgpu is the GPU-based counterpart, obtained by replacing
the CPU-based sorting algorithm with our BSN. Indexgpuþ , instead, is our pipelined version of a BSBI indexer. We shall explain
in more details this last algorithm in the remaining part of the section.

We have already pointed out in the introduction of this paper that GPUs are considerably more powerful from a compu-
tational point of view. The major drawback of GPU architectures, though, is represented by a limited memory size (511 MB in
our experimental setting) and, in our case, this limits the maximum number of pairs we can generate in each run (blocks are
referred as B in Fig. 7). This aspect could affect the overall indexing time. In particular the smaller the block size the greater
the number of intermediate indexes to merge. This number affects the merge algorithm complexity of a logarithmic factor
(see below). However, the complexity of merging is dominated by the latency of data transferring from/to disk. Since the
amount of data to transfer (namely the termId–docId pairs) is the same in both the CPU-based and the GPU-based solution,
we expect the time needed by the merging phase to be similar as well.

Table 2 shows how indexing time varies with the size of the collection processed. We consider the two main components
of the computational time, namely ‘‘Parse+[Gpu]Sort’’ and ‘‘Merge’’. ‘‘Parse+[Gpu]Sort’’ is the time needed to create the n
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Fig. 6. Theoretical number of memory transactions for BSN and Quicksort considering the specifications of real architectures, i.e. k ’ 16, and the capacity of
the external memory available as order of Gigabytes.

Table 2
Comparison of the computational times referring the different approach for the indexer architecture. Times are in seconds.

jDjð�106Þ Indexcpu Indexgpu Indexgpuþ Indexgpu; gpuþ

Parse+Sort Merge Parse+GpuSort Parse+GpuSort Merge

0.81 42.96 16.87 12.61 9.02 19.87
1.63 94.51 35.50 24.99 20.27 42.07
3.27 185.24 88.75 52.04 38.09 100.90
6.55 394.57 193.47 107.98 73.96 244.68
13.10 783.56 482.38 221.36 151.59 599.84
26.21 1676.82 1089.26 456.49 346.88 1291.78
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sorted files. Instead, ‘‘Merge’’ represents the time spent in merging sorted files. Concerning the two GPU-based methods,
‘‘Merge’’ column of Table 2 is shown only once since the solutions perform the same merge procedure on exactly the same
input.

Fig. 8A shows the overall computational time in the case of the three algorithms we have tested. First of all, we point out
the clear benefit, in terms of efficiency, of using a GPU-based sorting step in a BSBI indexer. Indeed, the sorting phase does
not represent a bottleneck anymore of the indexing process. In contrast, in GPU-based indexing, the computational time is
dominated by the latency of the merging phase.

Let us consider the pair building, and the merging steps of algorithms in Fig. 7. The complexity of the former is linear in
the size of B, i.e. O(njBj). On the other hand, the complexity of the merging phase is equal to O(njBjlogn), because the n-way
merger is implemented by using a heap of size n, i.e. the number of runs to merge. At each step, Merge extracts the smallest
termID–docID pair 5 (t,d) from the heap and a new element, taken from the same run from (t,d) was extracted, is inserted.
Extraction takes constant time. Insertion is logarithmic in the size of the heap. Therefore, the complexity of the merging phase

Fig. 7. Description of the different versions of the indexer architecture.
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5 With respect to a precedence relation defined as follows: (t1,d1) < (t2,d2) iff (t1 < t2) _ ((t1 = t2) ^ (d1 < d2)).
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is equal to the number of pairs collected multiplied by logn, i.e. O(njBjlogn). In other words, the complexity of merging is higher
than the complexity of the parsing step.

Fig. 8B shows the execution times obtained by different versions of Indexgpuþ by varying the GPU-based sorting algorithm6.
As said in the previous section, Radixsort is faster than BSN. However, due to its space requirements we are forced to use a num-
ber of blocks which is twice as big as the number of blocks required by the BSN solution. Therefore, the merging phase is more
expensive since the number of runs to merge doubles. This result confirms the consideration in Section 6. Namely, space effi-
ciency has to be carefully considered for sorting large datasets. Inefficient solutions need, in fact, to split the sorting process in
more steps, then to merge the partial results.

8. Conclusion and future work

This paper focuses on using GPUs as co-processors for sorting. We propose a new mapping of bitonic sorting network on
GPUs. We started from its traditional algorithm, and we extend it to adapt to our target architecture. Bitonic sorting network
is one of the fastest sorting networks to run on parallel architectures. The proposed solution was evaluated both theoretically
and experimentally, by comparing its complexity and performance with those obtained by two others state-of-the-art solu-
tions (Quicksort and Radixsort).

The theoretical algorithms complexity was evaluated by using K-model a novel computational model to specifically de-
signed to capture important aspects in stream processing architectures.

The experimentally evaluation was conducted using input streams generated according to different distributions. This
kind of experiments highlighted the behavior of the analyzed algorithms particularly regarding the variance of the perfor-
mance obtained for different data distributions. Regarding the execution time, our solution is outperformed by Radixsort
for input arrays made up of up to 8 Million of integers. On the other hand, our solution requires one half the memory used
by the other ones and it is able to efficiently exploit the high bandwidth memory interface available on GPUs making it viable
for sorting large amounts of data.

Accordingly the results of the experiments, we have chosen bitonic sorting network and Radixsort to develop an indexer
prototype to evaluate the possibility of using an hybrid CPU–GPU indexer in the real world. The time results obtained by
indexing tests are promising and suggest to move also others computational intensive procedure on the GPUs.
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