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Abstract

We present a general method for explaining individual potgalis of classification models. The
method is based on fundamental concepts from coalitionalegéneory and predictions are ex-
plained with contributions of individual feature valuese \&ercome the method’s initial exponen-
tial time complexity with a sampling-based approximatibmnthe experimental part of the paper we
use the developed method on models generated by severddmveslih machine learning algorithms
on both synthetic and real-world data sets. The results dstraie that the method is efficient and
that the explanations are intuitive and useful.
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1. Introduction

Acquisition of knowledge from data is the quintessential task of machineihgariThe data are
often noisy, inconsistent, and incomplete, so various preprocessing asedh® used before the
appropriate machine learning algorithm is applied. The knowledge we e#tiaavay might not
be suitable for immediate use and one or madaga postprocessingethods could be applied as
well. Data postprocessing includes the integration, filtering, evaluatiorexgidnatiorof acquired
knowledge. The latter is the topic of this paper.

To introduce the reader with some of the concepts used in this paper, wevishaa simple
illustrative example of an explanation for a model’'s prediction (see Fig. B.u¥¢ Naive Bayes
because its prediction can, due to the assumption of conditional indepenéeasily be transformed
into contributions of individual feature valuesa vector of numbers, one for each feature value,
which indicates how much each feature value contributed to the Naive Bagésl's prediction.
This can be done by simply applying the logarithm to the model's equation (seexample,
Kononenko and Kukar, 2007; Becker et al., 1997).

In our example, the contributions of the three feature values can be istiedas follows. The
prior probability of a Titanic passenger’s survival is 32% and the mordipts a 67% chance of
survival. The fact that this passenger was female is the sole and lacggsbutor to the increased
chance of survival. Being a passenger from the third class and #rbatluspeak against survival,
the latter only slightly. The actual class label for this instance is "yes”, saldmsification is
correct. This is a trivial example, but providing the end-user with suckxatanation on top of a
prediction, makes the prediction easier to understand and to trust. The |aitecied in situations
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where important and sensitive decisions are made. One such example isnmeditere medical

practitioners are known to be reluctant to use machine learning model#edbsir often superior

performance (Kononenko, 2001). The inherent ability of explaining détsisions is one of the
main reasons for the frequent use of the Naive Bayes classifier in rhd@igaosis and prognosis
(Kononenko, 2001). The approach used to explain the decision in Fgpkcific to Naive Bayes,
but can we design an explanation method which works for any type of clagdifi¢his paper we

address this question and propose a method for explaining the predictidassification models,

which can be applied to any classifier imaiform way

Data: titanic l naive Bayes Explanation
Model: NB

Prediction: p(survived = yes|x) = 0.671

Actual class label for this instance: yes

Feature Contribution Value
Class = 3rd

adult

female

Figure 1: An instance from the well-known Titanic data set with the NaiveeBagodel's predic-
tion and an explanation in the form of contributions of individual featureegl\ copy
of the Titanic data set can be found at http://www.ailab.si/orange/datasets.psp.

1.1 Related Work

Before addressingeneralexplanation methods, we list a fanodel-specifiecnethods to emphasize
two things. First, most models have model-specific explanation methods. Aoddsgoroviding an
explanation in the form of contributions of feature values is a common apiprdéote that many
more model-specific explanation methods exist and this is far from being aletempference.
Similar to Naive Bayes, other machine learning models also have an inhegdanation. For
example, a decision tree’s prediction is made by following a decision ruletiernoot to the leaf,
which contains the instance. Decision rules and Bayesian networks aexalsples of transparent
classifiers. Nomograms are a way of visualizing contributions of featlwesand were applied to
Naive Bayes (Maina et al., 2004) and, in a limited way (linear kernel functions), to SVMuliak
et al.,, 2005). Other related work focusses on explaining the SVM model, mosntly in the
form of visualization (Poulet, 2004; Hamel, 2006) and rule-extractionr{@ta et al., 2007). The
ExplainD framework (Szafron et al., 2006) provides explanationsdditi&e classifiers in the form
of contributions. Breiman provided additional tools for showing how indigideatures contribute
to the predictions of his Random Forests (Breiman, 2001). The explarabimterpretation of
artificial neural networks, which are arguably one of the least trapspanodels, has also received
a lot of attention, especially in the form of rule extraction (Towell and ShatB©3; Andrews et al.,
1995; Nayak, 2009).

So,why do we even need a general explanation meththd® not difficult to think of a rea-
sonable scenario where a general explanation method would be usefubx&mple, imagine a
user using a classifier and a corresponding explanation method. At smintelpe model might
be replaced with a better performing model of a different type, whichllysoeeans that the ex-
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planation method also has to be modified or replaced. The user then hassiotimesand effort
into adapting to the new explanation method. This can be avoided by usingeaferplanation
method. Overall, a good general explanation method reduces the dapergween the user-end
and the underlying machine learning methods, which makes work with machiméniganodels
more user-friendly. This is especially desirable in commercial applicaticthsyaplications of ma-
chine learning in fields outside of machine learning, such as medicine, mayketiin An effective
and efficient general explanation method would also be a useful tocbfoparing how a model
predicts different instances and how different models predict the sataanoe.

As far as the authors are aware, there exist two other general etipfammeethods for explaining
a model’s prediction: the work by Robniikonja and Kononenko (2008) and the work by Lemaire
et al. (2008). While there are several differences between the two deetihath explain a prediction
with contributions of feature values and both use the same basic approtedture value’s contri-
bution is defined as the difference between the model’s initial prediction aaddtage prediction
across perturbations of the corresponding feature. In other wanal$pok at how the prediction
would change if we "ignore” the feature value. This myopic approachleat to serious errors
if the feature values are conditionally dependent, which is especially éwdsn a disjunctive
concept (or any other form of redundancy) is present. We can gsgae example to illustrate
how these methods work. Imagine we ask someone who is knowledgeablel@abdogicWhat
will the result of ¢ OR 1) be? It will be one, of course. Now we mask the first value and ask
againWhat will the result of (something OR be? It will still be one. So, it does not matter if
the person knows or does not know the first value - the result doehaoge. Hence, we conclude
that the first value is irrelevant for that persons decision regardiregheh the result will be 1 or
0. Symmetrically, we can conclude that the second value is also irrelevahefpersons decision
making process. Therefore, both values are irrelevant. This is, o§epan incorrect explanation
of how these two values contribute to the persons decision.

Further details and examples of where existing methods would fail can bd fowur previous
work (étrumbelj et al., 2009), where we suggest observing the changesadtpossible subsets
of features values. While this effectively deals with the shortcomings efque methods, it suffers
from an exponential time complexity.

To summarize, we have existing general explanation methods, which saerifiart of their
effectiveness for efficiency, and we know that generating effectbntributions requires observing
the power set of all features, which is far from efficient. The contrilbugbthis paper and its im-
provement over our previous work is twofold. First, we provide a rigsitheoretical analysis of our
explanation method and link it with known concepts from game theory, thosala@ing some of its
desirable properties. And second, we propose an efficient samp@segtapproximation method,
which overcomes the exponential time complexity and does not require rety#ie classifier.

The remainder of this paper is organized as follows. Section 2 introdooes Isasic concepts
from classification and coalitional game theory. In Section 3 we provide duekical foundations,
the approximation method, and a simple illustrative example. Section 4 covesptrgneental part
of our work. With Section 5 we conclude the paper and provide ideasiford work.

2. Preliminaries

First, we introduce some basic concepts from classification and coalitiarred theory, which are
used in the formal description of our explanation method.
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2.1 Classification

In machine learning classification is a form of supervised learning whereljective is to predict
theclass labefor unlabelled input instances, each described by feature valuesfiesmture space
Predictions are based on background knowledge and knowledgetexit(that is, learned) from a
sample of labelled instances (usually in the form of a training set).

Definition 1 The feature spacé is the cartesian product of n features (represented with the set
N=1{1,2,...n}): 4=~A; x Az x ... x Ay, where each feature;As a finite set of feature values.

Remark 1 With this definition of a feature space we limit ourselves to finite (that is, didese
tures. However, we later show that this restriction does not apply to theoaippation method,
which can handle both discrete and continuous features.

To formally describe situations where feature values are ignored, weedefsubspacéds =
AL x A, x . x A, whereAl = A if | € SandA! = {&} otherwise. Therefore, given a S8t N, As
is a feature subspace, where features n@ame "ignored” (@y = A4). Instances from a subspace
have one or more components unknown as indicated biow we define a classifier.

Definition 2 A classifier, f, is a mapping from a feature space to a normaligdiimensional
space f: 4 — [0,1]/°l, where C is a finite set of labels.

Remark 2 We use a more general definition of a classifier to include classifiers vetsisign a
rank or score to each class label. However, in practice, we mostly dialtwo special cases:
classifiers in the traditional sense (for each vector, one of the compoief and the rest are 0)
and probabilistic classifiers (for each vector, the vector componentsyahadd up to 1 and are
therefore a probability distribution over the class label state space).

2.2 Coalitional Game Theory

The following concepts from coalitional game theory are used in the forntializaf our method,
starting with the definition of a coalitional game.

Definition 3 A coalitional form game is a tupléN,v), where N= {1,2,...,n} is a finite set of n
players, and v 2N — [ is a characteristic function such that®) = 0.

Subsets oN arecoalitionsandN is referred to as thgrand coalitionof all players. Functiow
describes thevorth of each coalition. We usually assume that the grand coalition forms and the goa
is to split its worthv(N) among the players in a "fair” way. Therefore, th@ue(that is, solution)
is an operatop which assigns t@N, v) a vector of payoffsp(v) = (@1, ...,¢,) € O". For each game
with at least one player there are infinitely many solutions, some of which are ffar” than
others. The following four statements are attempts at axiomatizing the notiomiai€$s” of a
solutiong and are key for the axiomatic characterization of the Shapley value.

Axiom 1 chg(v) = Vv(N). (efficiency axiom)
i€

Axiom 2 If for two players i and j YSU{i}) = v(SU{j}) holds for every S, where SN and
i,j ¢S, theng(v) = @;(v)). (Symmetry axiom)
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Axiom 3 If v(SU{i}) = v(S) holds for every S, where SN and i¢ S, theng(v) = 0. (dummy
axiom)

Axiom 4 For any pair of games,w: @(v+w) = @(Vv) + @(w), where(v+w)(S) = v(S) +w(S) for
all S. (additivity axiom)

Theorem 1 For the game(N, V) there exists a unique solutiap which satisfies axioms 1 to 4 and
it is the Shapley value:

—s—1)ldl
Sh(v) = (nsill)'s'(v(SU{i}) “v(9), i=1,..n
sniss T
Proof For a detailed proof of this theorem refer to Shapley’s paper (1953). |

The Shapley value has a wide range of applicability as illustrated in a resemtyspaper by
Moretti and Patrone (2008), which is dedicated entirely to this unique solationept and its
applications. From the few applications of the Shapley value in machine lgamm@gwould like
to bring to the readers attention the work of Keinan et al. (2004), who dpplghapley value to
function localization in biological and artificial networks. Their MSA framekvis later used and
adapted into a method for feature selection (Cohen et al., 2007).

3. Explaining Individual Predictions

In this section we provide the theoretical background. We start with aigéen of the intuition
behind the method and then link it with coalitional game theory.

3.1 Definition of the Explanation Method

Let N = {1,2,...,n} be a set representingfeatures,f a classifier, and = (x3,x2,...,Xn) € 4 an
instance from the feature space. First, we choose a class label. Wy gboae the predicted class
label, but we may choose any other class label that is of interest to usxplainethe prediction
from that perspective (for example, in the introductory example in Fig. Touwdd have chosen
"survival = no” instead). Let be the chosen class label and fgfx) be the prediction component
which corresponds ta. Our goal is to explain how the given feature values contribute to the
prediction differencdetween the classifiers prediction for this instance and the expectedtjzedic

if no feature values are given (that is, if all feature values are "igiipré& he prediction difference
can be generalized to an arbitrary subset of featBredN.

Definition 4 The prediction differencé(S) when only values of features represented in S are
known, is defined as follows:

1 1

AS) = fe(t®Y.9) =7 ) Ty, '
S vl (t1(x,Y,9)) |/‘4N|yezzN (¥) 1)
(XY,S =(z,2,....2z0), z= { ; ii;s
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Remark 3 In our previous work $trumbelj et al., 2009) we used a different definitiax(S) =
f&(S) — f¢(@), where f(W) is obtained by retraining the classifier only on features in W and
re-classifying the instance (similar to the wrappers approach in featuretateKohavi and John
1997). With this retraining approach we avoid the combinatorial explosiogoing through all
possible perturbations of “ignored” feature’s values, but introduceestissues. However, the ex-
ponential complexity of going through all subsets of N still remains.

The expressioA(S) is the difference between the expected prediction when we know only those
values ofx, whose features are B and the expected prediction when no feature values are known.
Note that we assume uniform distribution of feature values. Therefaegenake no assumption
about the prior relevance of individual feature values. In other sjonet are equally interested in
each feature value’s contribution. The main shortcoming of existing gesguianation methods
is that they do not take into account all the potential dependencies anakiimes between feature
values. To avoid this issue, we implicitly define interactions by defining thdt peediction dif-
ferenceA(S) is composed of ® contributions of interactions (that is, each subset of feature values
might contribute something):

A(S) = wZSI(W), SCN. @)

Assumingl(2) = 0 (that is, an interaction of nothing always contributes 0) yields a reeursi
definition. Therefore, functiord, which describes the interactions, always exists and is uniquely
defined for a giveN and functionA:

1(S) =A(S) —\AZSI(W), SCN. ©)

Now we distribute the interaction contributions amongrtieature values. For each interaction
the involved feature values can be treated as equally responsible fotdteetion as the interaction
would otherwise not exist. Therefore, we define a feature valuesibation ¢; by assigning it an
equal share of each interaction it is involved in

IWU{i})

$i(8) = WU

WCENR i}

=12 ..,n 4)

Itis not surprising that we manage in some way to uniquely quantify all theifdesnteractions,
because we explore the entire power set of the involved feature v8agesvo questions aris€an
we make this approach computationally feasible® What are the advantages of this approach
over other possible divisions of contributiond®e now address both of these issues, starting with
the latter.

Theorem 2 (N = {1,2,...,n},A) is a coalitional form game ang(A) = (¢p1,¢2,...,¢n) corre-
sponds to the game’s Shapley valué/Sh

Proof Following the definition ofA we get thatA(@) = 0, so the explanation of the classifier’s
prediction can be treated as a coalitional form gaiegd). Now we provide an elementary proof
that the contributions of individual feature values correspond to thel8haplue for the game
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(N,A). The recursive definition of given in Eq. (3) can be transformed into its non-recursive
form:

1(9) ZWZS((—l)‘SHW‘A(W))' (5)

Eq. (5) can be proven by induction. We combine Eq. (4) and Eq. (5) ireddiowing
non-recursive formulation of the contribution of a feature value:

((_1)\Wu{i}|—|Q\A(Q))
QC(WU{i})
WO ©

¢i(d)= >
WCNV{i}

Let us examine the number of timAgSU {i}), SC N,i ¢ S, appears on the right-hand side of
Eq. (6). LetMx(s,qiy) be the number of all such appearanceskanc — S — 1. The termA(SU{i})
appears whets C W and only once for each sudN. ForW, whereSC W and |W| = |§ + a,
A(SU{i}) appears with an alternating sign, depending on the parity ahd there are exactl
suchW in the sum in Eg. (6), because we can use any combinatiaradflitional elements from
the remainingk elements that are not already in the Setf we write all such terms up t&/ =N
and take into account that each interactigW) is divided by|W|, we get the following series:

The treatment is similar fok(S), i ¢ Swhere we geMu g = —V(n,k). The seriey/(n,k) can
be expressed with the beta function:

UsingB(p,q) = rr((pgig;) we getv (n,k) = "D Therefore:

di(Q) = Z V(nn—s—1)-A(SU{i}) — Z V(nn—s—1)-A(S) =

s=Am iy sAmiy
-5 Ln_isn_'l)!sl-(A(SU{i})—A(S)).
sy M

So, the explanation method can be interpreted as follows. The instanaisefealues form a
coalition which causes a change in the classifier’'s prediction. We dividelthisge amongst the
feature values in a way that is fair to their contributions across all posaibleaalitions. Now
that we have established that the contributions correspond to the Shapley we take another
look at its axiomatization. Axioms 1 to 3 and their interpretation in the context oémpilanation
method are of particular interest. The 1st axiom corresponds to oumghesition in Eq. (2) - the
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sum of alln contributions in an instance’s explanation is equal to the difference irgbicdA(N).
Therefore, the contributions are implicitly normalized, which makes them gasiempare across
different instances and different models. According to the 2nd axiompiféatures values have an
identical influence on the prediction they are assigned contributions of sipe. The 3rd axiom
says that if a feature has no influence on the prediction it is assignedt@bation of 0. When
viewed together, these properties ensure that any effect the featigeshave on the classifiers
output will be reflected in the generated contributions, which effectivebisiwith the issues of
previous general explanation methods.

3.1.1 AN ILLUSTRATIVE EXAMPLE

In the introduction we used a simple boolean logic example to illustrate the shorgowfirex-
isting general explanation methods. We concluded that in the expressi®R () both values are
irrelevant and contribute nothing to the result being 1. This error reswlts hot observing all
the possible subsets of features. With the same example we illustrate howptamagion method
works. We writeN = {1,2}, 4 = {0,1} x {0,1}, andx = (1,1). In other words, we are explaining
the classifier’s prediction for the expressidnOR 1). Following the steps described in Section 3,
we use Eq. (1) to calculate tie-terms. Intuitively,A(S) is the difference between the classifiers
expected prediction if only values of featuresSiare known and the expected prediction if no values
are known. If the value of at least one of the two features is known,amgeedict, with certainty,
that the result is 1. If both values are unknown (that is, masked) onpreditt that the probability
of the result being 1 i§. ThereforeA(1) =A(2) =A(1,2) =1-2 =21 andA(e)=2-2=0.
Now we can calculate the interactiong(1) = A(1) = 3 and I(2) = A(2) = . When observed
together, the two features contribute less than their individual contributiongdveuggest, which
results in a negative interactiony(1,2) = A(1,2) — (I(1) + I(2)) = —31. Finally, we divide the
interactions to get the final contributiong; = 7(1) + 232 = L andd, = 1(2) + 2152 = L. The
generated contributions reveal that both features contribute the samataowards the prediction
being 1 and the contributions sum up to the initial difference between thepoador this instance
and the prior belief.

3.2 An Approximation

We have shown that the generated contributignsare effective in relating how individual fea-
ture values influence the classifier's prediction. Now we provide aneiti@pproximation. The
approximation method is based on a well known alternative formulation of thpl&hvalue. Let
n(N) be the set of all ordered permutationshbof Let Pré (O) be the set of players which are pre-
decessors of playerin the orderO € Ti(N). A feature value’s contribution can now be expressed
as:

di(A) = % Z (A(Pré(0)U{i}) —A(Pré(0))), i=1,...n @)
" 0em(N)

Eqg. (7) is the a well-known alternative formulation of the Shapley value. I§ordhm for the
computation of the Shapley value, which is based on Eq. (7), was prddsn@astro et al. (2008).
However, in our case, the exponential time complexity is still hidden in ouritdefinof A (see
Eqg. (1)). If we use the alternative definition used in our previous weee (Remark 3), we can
compute functiod\(S), for a givenS, in polynomial time (assuming that the learning algorithm has
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a polynomial time complexity). However, this requires retraining the classdieedchSC N, so

the method would no longer be independent of the learning algorithm andowlel\&lso require
the training set that the original classifier was trained on. To avoid thistdhaichieve an efficient
explanation method, we extend the sampling algorithm in the following way. We déféerent,

but equivalent formulation of Eq. (1). While the sum in this equation redaotig counts each
f(t(x,y,S)) term | 4g| times (instead of just once) it is equivalent to Eq. (1) and simplifies the
sampling procedure:

AS) = > (Fxy,9) - f(y)). (8)

We replace occurrences 4fin Eq. (7) with Eqg. (8):

di (D) L

> (f(t(x,y,Pré(0)U{i})) — f(1(x,y,Pré (0)))).

nt-|4| Ocm(N)yeA

We use the following sampling procedure. Our sampling populatian N x 4 and each
order/instance pair defines one sam¥ilgyc7 = f(T(x,y,Pré(0) U {i})) — f(t1(x,y,Preé(0))). If
some features are continuous, we have an infinite population, but therpespof the sampling
procedure do not change. If we draw a sample completely at randomathsamples have an
equal probability of being drawrh(ﬁ) andE[Xpyea] = ¢;. Now consider the case whemesuch

samples are drawn (with replacement) and observe the random vdriiabliﬁ zljn:]_Xj, whereX; is
the j—th sample. According to the central limit theorefq,is approximately normally distributed

2
with mean¢; and variance%, whereo? is the population variance for theth feature. Therefore,
¢i is an unbiased and consistent estimatapofThe computation is summarized in Algorithm 1.

Algorithm 1 Approximating the contribution of thieth feature’s valueg;, for instancex € 4.
determinem, the desired number of samples
$i <0
for j =1tomdo
choose a random permutation of featuees 1(N)
choose a random instange 4
vi — f(T1(x,y,Pré(0)U{i}))
Vo — f(T(x,y,Pre(0)))
oi — ¢i + (Vi —V2)
end for
o — &

m

{v1 andv; are the classifier's predictions for two instances, which are constrimteedking
instancey and then changing the value of each feature which appears befor¢htiieature in
order O (for v1 this includes the—th feature) to that feature’s value x1 Therefore, these two
instances only differ in the value of theth feature}
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3.2.1 ERROR/'SPEED TRADEOFF

We have established an unbiased estimator of the contribution. Now we iratestig relationship
between the number of samples we draw and the approximation error. é¢fopgedahe number

of samples we need to draw to achieve the desired error, depends oiflg population variance

o2, In practice,0? is usually unknown, but has an upper bound, which is reached if thelatogn

is uniformly distributed among its two extreme values. According to Eqg. (1), thémusn and
minimum value of a single sample are 1 and, respectively, so? < 1. Let the tuple(1—a,€)

be a description of the desired error restriction &i; — ¢i| < €) = 1— a the condition, which

has to be fulfilled to satisfy the restriction. For any givdn- a,e), there is a constant number

of samples we need to satisfy the restriction((1—a,e)) = %, wherez?_ is the Z-score,
which corresponds to the-1a confidence interval. For example, we want 99% of the approximated
contributions to be less thandd away from their actual values and we assume worst-case variance
02 = 1, for eachi € N. Therefore, we have to draw approximately 65000 samples per feature,
regardless of how large the feature space is. The variances are nartiigoractice, as we show

in the next section.

For each feature value, the number of sampigsl — a,e)) is a linear function of the sample
varianceo?. The key to minimizing the number of samples is to estimate the sample vadaacel
draw the appropriate number of samples. This estimation can be done deis@tipling process,
by providing confidence intervals for the required number of samplegdoan our estimation of
variance on the samples we already took. While this will improve running timesll ihot have
any effect on the time complexity of the method, so we delegate this to furthér Whe optimal
(minimal) number of samples we need for the entire explanatiomjg:;((1—a,e)) =n- Zf‘gz'oz.
whereg? = 15 o2 Therefore, the number- 02, whereo? is estimated across several instances,
gives a complete description of how complex a model’s prediction is to explahigtiproportional
to how many samples we need).

A note on the method'’s time complexity. When explaining an instance, the samptingssr
has to be repeated for each of thieature values. Therefore, for a given error and confidencé leve
the time complexity of the explanation@n-T(4)), where functionTl (1) describes the instance
classification time of the model oft. For most machine learning modéi$4) < n.

4. Empirical Results

The evaluation of the approximation method is straightforward as we fody®prapproximation
errors and running times. We use a variety of different classifiers ballustrate that it is indeed
a general explanation method and to investigate how the method behaves feitbrdifypes of
classification models. The following models are used: a decision tree (ONgjv@ Bayes (NB),
a SVM with polynomial kernel (SVM), a multi-layer perceptron artificial reduretwork (ANN),

Breiman’s random forests algorithm (RF), logistic regression (logRB&J, ADABoost boosting
with either Naive Bayes (bstNB) or a decision tree (bstDT) as the weakdeaAll experiments
were done on an off-the-shelf laptop computer (2GHz dual core C8B,RAM), the explanation
method is a straightforward Java implementation of the equations presentedpakis and the
classifiers were imported from the Weka machine learning softweire/(yww.cs.waikato.

ac.nz/ ~ml/weka/index.html ).

10
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model # instances # features (n) nak) max(©?) n- max(g?)
CondInd 2000 8 0.25 0.06 0.48
Xor 2000 6 0.32 0.16 0.96
Group 2000 4 0.30 0.16 0.64
Cross 2000 4 0.43 0.14 0.92
Chess 2000 4 0.44 0.22 0.88
Sphere 2000 5 0.21 0.13 0.65
Disjunct 2000 5 0.10 0.06 0.30
Random 2000 4 0.19 0.12 0.48
Oncology 849 13 0.16 0.08 1.04
Annealing 798 38 0.08 0.02 0.76
Arrhythymia 452 279 0.03 103 0.28

Breast cancer 286 9 0.22 0.10 0.90
Hepatitis 155 19 0.20 0.05 0.95
lonosphere 351 34 0.20 0.04 1.36
Iris 150 4 0.23 0.10 0.40
Monks1 432 6 0.29 0.12 0.72
Monks2 432 6 0.31 0.27 1.62
Monks3 432 6 0.20 0.07 0.42
Mushroom 8124 22 0.24 0.05 1.10
Nursery 12960 8 0.22 0.03 0.24
Soybean 307 35 0.20 0.01 0.35
Thyroid 7200 21 0.18 0.02 0.42
Zoo 101 17 0.25 0.02 0.14

Table 1: List of data sets used in our experiments. The variance of thecoroplex feature value
and the variance of most complex model to explain are included.

The list of data sets used in our experiments can be found in Table 1. $h8 fiata sets are
synthetic data sets, designed specifically for testing explanation methmﬁcﬁbeik—éikonja and
Kononenko, 2008étrumbe|j et al., 2009). The synthetic data sets contain the following concepts
conditionally independent features (Condind), the xor problem (Bawss, Chess), irrelevant fea-
tures only (Random), disjunction (Disjunct, Sphere), and spatially clubtdass values (Group).
The Oncology data set is a real-world oncology data set provided byngiitute of Oncology,
Ljubljana. To conserve space, we do not provide all the details aboutdtasset, but we do use an
instance from it as an illustrative example. Those interested in a more detagedmdion of this
data set and how our previous explanation method is successfully applieddiice can refer to
our previous work $trumbelj et al., 2009). The remaining 14 data sets are from the UCI machine
learning repository (Asuncion and Newman, 2009).

The goal of our first experiment is to illustrate how approximated contribsittemverge to the
actual values. The fact that they do is already evident from the thealratialysis. However, the
reader might find useful this additional information about the behavioretiproximation error.
The following procedure is used. For each data set we use half of ttemaes for training and
half for testing the explanation method. For each data set/classifier pairamwehe classifier on
the training set and use both the explanation method and its approximationtotesaimnstance.

For the approximation method the latter part is repeated several times, eachitimeedifferent
setting of how many samples are drawn per feature. Only synthetic data extsuged in this
procedure, because the smaller number of features allows us to compatgithkecontributions.
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Figure 2: Mean, 99th-percentile, and maximum errors for several ddtdassifier pairs and across
different settings of how many samples are drawn per feature. Note thatribr is the
absolute difference between the approximated and actual contributideatfiae’s value.
The maximum error is the largest such observed difference acrosstalaes.

Some of the results of this experiment are shown in Fig. 2. We can see timdy iakies about a
thousand of samples per feature to achieve a reasonably low approximatan/NVhen over 10000
samples are drawn, all the contributions across all features and allgtsides are very close to the
actual contributions. From the discussion of the approximation erroranesee that the number
of samples depends on the variance in the model’s output, which in turn dideggnds on how
much the model has learned. Therefore, it takes only a few samplesdodaagproximation when
explaining a model which has acquired little or no knowledge. This might bereitleeto the model
not being able to learn the concepts behind the data set or becauseréhroecancepts to learn.
A few such examples are the Naive Bayes model on the Group data setlgracturacy: (B2,
relative freq. of majority class:.83), the Decision Tree on Monks2 (acc. 0.65, rel. freq. 0.67), and
Logistic Regression on the Random data set (acc. 0.5, rel. freq. M3hether hand, if a model
successfully learns from the data set, it requires more samples to exmlagxdample, Naive Bayes
on CondInd (acc. 0.92, rel. freq. 0.50) and a Decision Tree on 8fhec. 0.80 , rel. freq. 0.50).
In some cases a model acquires incorrect knowledge or over-fits thaeta One such example is
the ANN model, which was allowed to over-fit the Random data set (acc.rél5freq. 0.5). In
this case the method explains what the model has learned, regardlesstbémthe knowledge is
correct or not. And although the explanations would not tell us much aheutoncepts behind
the data set (we conclude from the model’s performance, that it's kngevlisduseless), they would
reveal what the model has learned, which is the purpose of an explanatihod.

In our second experiment we measure sample variances and classificatiing times. These
will provide insight into how much time is needed for a good approximation. Veéetlis same
procedure as before, on all data sets, using only the approximation m&¥eattaw 50000 samples
per feature. Therefore, the total number of samples for each data ssfielgpair is: 50000times
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Figure 3: Visualization of explanation running times across all data set/cbagsafirs.

the number of test instances, which is sufficient for a good estimate offiasen times and
variances. The maximura? in Table 1 reveal that the crisp features of synthetic data sets have
higher variance and are more difficult to explain than features fromwedt data sets. Explaining

the prediction of the ANN model for an instance Monks2 is the most completaaion (that

is, requires the most samples - see Fig. 2), which is understandablethereomplexity of the
Monks2 concept (class label = 1 iff exactly two feature values are bte that most maximum
values are achieved when explaining ANN.

From the data gathered in our second experiment, we generate Fig. 8, stiuws the time
needed to provide an explanation with the desired é89% 0.01). For smaller data sets (smallerin
the number of features) the explanation is generated almost instantly. g data sets, generating
an explanation takes less than a minute, with the exception of bstNB on a fesetiatand the ANN
model on the Mushroom data set. These two models require more time for adaggiication.

The Arrhythmia data set, with its 279 features, is an example of a data seg thikexxplanation
can not be generated in some sensible time. For example, it takes more thanrda generate
an explanation for a prediction of the bstNB model. The explanation methodrefahe less ap-
propriate for explaining models which are built on several hundred rfegtor more. Arguably,
providing a comprehensible explanation involving a hundred or more fsatsra problem in its
own right and even inherently transparend models become less comgil#benith such a large
number of features. However, the focus of this paper is on providirgifaative and general expla-
nation method, which is computationally feasible on the majority of data sets wergacoAlso
note that large data sets are often reduced to a smaller number of feattirepieprocessing step
of data acquisition before a learning algorithm is applied. Thereforenwbpesidering the number
of features the explanation method can still handle, we need not codavangé features, which are
not included in the final model.

4.1 Example Explanation

Unlike running times and approximation errors, the usefulness and intigsgenf the generated
explanations is a more subjective matter. In this section we try to illustrate thelnsss of the
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Data: uci_monks1 Instance Explanation Data: uci_monks1 Instance Explanation
Model: NB Model: bstDT
Prediction: p(class = 1|x) = 0.46 Prediction: p(class = 1|x) = 1
Actual class label for this instance: 1 Actual class label for this instance: 1
Feature Contribution Value Feature Contribution Value
attrl = 2 attrl = 2
attr2 = 2 attr2 = 2
attr3 = 2 attr3 = 2
attrd = 3 attrd = 3
attr5 = 2 attr5 = 2
attré = 0.03 2 attré = 2
T T T
1 -0.6 0.2 0 0.2 0.6 1 1 -0.6 0.2 0 0.2 0.6 1

(a) NB model (b) bstDT model

Figure 4: The boosting model correctly learns the concepts of the Mahkisilset, while Naive
Bayes does not and misclassifies this instance.

method’s explanations with several examples. When interpreting the etiple)ave take into
account both the magnitude and the sign of the contribution. If a featlwe-kras a larger contribu-
tion than another it has a larger influence on the model’s prediction. Itargegalue’s contribution
has a positive sign, it contributes towards increasing the model’s outmhiafpility, score, rank,
...). A negative sign, on the other hand, means that the feature-valuéotedrtowards decreas-
ing the model’s output. An additional advantage of the generated contribudhat they sum
up to the difference between the model’'s output prediction and the modpkskd output, given
no information about the values of the features. Therefore, we caerdifow much the model’s
output moves when given the feature values for the instance, whichdeatte responsible for this
change, and the magnitude of an individual feature-value’s influefbese examples show how
the explanations can be interpreted. They were generated for valémssication models and data
sets, to show the advantage of having a general explanation method.

The first pair of examples (see Fig. 4) are explanations for an instaocethe first of the
well-known Monks data sets. For this data set the class label is 1 iff attrlatritiare equal
or attr5 equals 1. The other 3 features are irrelevant. The NB model, dtse aesumption of
conditional independence, does not learn the importance of equality dretive first two features
and misclassifies the instance. However, both NB and bstDT learn the imp®déihe fifth feature
and explanations reveal that value 2 for the fifth feature speaks aghkiss 1.

The second pair of examples (see Fig. 5) is from the Zoo data set. BotHayddict that
the instance represents a bird. Why? The explanations reveal thatedittsrthis animal is a bird,
because it has feathers. The more complex RF model predicts its a biediskeet has two legs,
but also because the animal is toothless, with feathers, without hair, etese Tirst two pairs of
examples illustrate how the explanations reflect what the model has ledrhbanve can compare
explanations from different classifiers.

In our experiments we are not interested in the prediction quality of the cassafid do not put
much effort into optimizing their performance. Some examples of underfittidgogerfitting are
actually desirable as they allow us to inspect if the explanation method reveatghe classifier
has (or has not) learned. For example, Fig. 6(a) shows the explanétibe mgREG model's
prediction for an instance from the Xor data set. Logistic regression ldeit@learn the exclusive-
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Data: uci_zoo Instance Explanation

Model: RF

Prediction: p(class = bird|x) =1

Actual class label for this instance: bird

Feature Contribution Value

hair =

Data: uci_zoo Instance Explanation milk = fals
Model: DT
Prediction: p(class = bird|x) =1 toothed = fals
Actual class label for this instance: bird

breathes = true
Feature Contribution Value legs = 2

(a) DT model (b) RF model

Figure 5: Explanations for an instance from the Zoo data set. The DT medglausingle feature,
while several feature values influence the RT model. Feature values wnthbtmions
< 0.01 have been removed for clarity.

or concept of this data set (for this data set the class label is the odd parity the first three
feature values) and the explanation is appropriate. On the other haMingwages to overfit the
Random data set and finds concepts where there are none (seedlig. 6(

Fig. 7(a) is an explanation for ANN'’s prediction for the introductory inst&afrom the Titanic
data set (see Fig. 1). Our explanation for the NB model’s prediction ([g) is very similar to the
inherent explanation (taking into account that a logarithm is applied in thegnhexplanation).
The ANN model, on the other hand, predicts a lower chance of survieejuse being a passenger
from the 3rd class has a much higher negative contribution for ANN.

Our final example illustrates how the method can be used in real-world situak@nss8 is an
explanation for RT’s prediction regarding whether breast cancer elds$ = 1) or will not (class
= 2) recur for this patient. According to RF it is more likely that cancer will rextur and the
explanation indicates that this is mostly due to a low number of positive lymph r{odgsiph).
The lack of lymphovascular invasion (LVI) or tissue invasion (invasaied contributes positively.
A high ratio of removed lymph nodes was positive (posRatio) has the onlyfisegt negative
contribution. Oncologists found this type of explanation very useful.

5. Conclusion

In the introductive section, we asked if an efficient and effective ggrexplanation method for
classifiers’ predictions can be made. In conclusion, we can answelJgisg only the input and
output of a classifier we decompose the changes in its prediction into cdian&wf individual

feature values. These contributions correspond to known conceptscioalitional game theory.
Unlike with existing methods, the resulting theoretical properties of the peahmethod guarantee
that no matter which concepts the classifier learns, the generated contrsbwilbreveal the influ-

ence of feature values. Therefore, the method can effectively ldeamsany classifier. As we show
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Data: xor

Model: logREG

Prediction: p(class = 1|x) = 0.482
Actual class label for this instance: 1

Contribution

Feature

Instance Explanation

Data: random
Model: SVM

Value Prediction: p(class = 1|x) =0
. Actual class label for this instance: 1
1 Feature Contribution
0 Al = T
1 a2 = T
0 a3 = T
1 M= o

Instance Explanation

Value

0.56
T |
0.6 1

(a) logREG model

(b) SVM model

Figure 6: The left hand side explanation indicates that the feature vadweslo significant influ-
ence on the logREG model on the Xor data set. The right hand side exptashtws

how SVM overfits the

Random data set.

Data: titanic

Model: ANN

Prediction: p(survived = yes|x) = 0.493
Actual class label for this instance: yes

Contribution

Feature

Class =

Instance Explanation

Data: titanic

Model: NB

Prediction: p(survived = yes|x) = 0.671
Actual class label for this instance: yes

Contribution

Value Feature

3rd Class =

adult

female

Instance Explanation

Value

3rd
adult

female

(2) ANN model

(b) NB model

Figure 7: Two explanations for the Titanic instance from the introductiore |€ft hand side ex-
planation is for the ANN model. The right hand side explanation is for the NBamod

Model: RF
Prediction:

Feature
menop =
stage =
histType =
invasive =
nLymph =
famHist =

VI =

Data: oncology

Actual class label for this instance: 2

Instance Explanation

p(class = 2|x) = 0.716

Contribution

Figure 8: An explanation or the RF model’s prediction for a patient from theol@dgy data set.
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on several examples, the method can be used to visually inspect modélistipres and compare
the predictions of different models.

The proposed approximation method successfully deals with the initial expaltgme com-
plexity, makes the method efficient, and feasible for practical use. A®pfnther work we intend
to research whether we can efficiently not only compute the contributiorishvaltready reflect
the interactions, but also highlight (at least) the most important individuakaictiens as well. A
minor issue left to further work is extending the approximation with an algorittmoftimizing the
number of samples we take. It would also be interesting to explore the possiiipplying the
same principles to the explanation of regression models.
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