
A hadoop based platform for natural language processing of
web pages and documents

Paolo Nesi n,1, Gianni Pantaleo 1, Gianmarco Sanesi 1

Distributed Systems and Internet Technology Lab, DISIT Lab, Department of Information Engineering (DINFO), University of Florence,
Firenze, Italy

a r t i c l e i n f o

Available online 30 October 2015

Keywords:
Natural language processing
Hadoop
Part-of-speech tagging
Text parsing
Web crawling
Big Data Mining
Parallel computing
Distributed systems

a b s t r a c t

The rapid and extensive pervasion of information through the web has enhanced the
diffusion of a huge amount of unstructured natural language textual resources. A great
interest has arisen in the last decade for discovering, accessing and sharing such a vast
source of knowledge. For this reason, processing very large data volumes in a reasonable
time frame is becoming a major challenge and a crucial requirement for many commercial
and research fields. Distributed systems, computer clusters and parallel computing
paradigms have been increasingly applied in the recent years, since they introduced
significant improvements for computing performance in data-intensive contexts, such as
Big Data mining and analysis. Natural Language Processing, and particularly the tasks of
text annotation and key feature extraction, is an application area with high computational
requirements; therefore, these tasks can significantly benefit of parallel architectures. This
paper presents a distributed framework for crawling web documents and running Natural
Language Processing tasks in a parallel fashion. The system is based on the Apache
Hadoop ecosystem and its parallel programming paradigm, called MapReduce. In the
specific, we implemented a MapReduce adaptation of a GATE application and framework
(a widely used open source tool for text engineering and NLP). A validation is also offered
in using the solution for extracting keywords and keyphrase from web documents in a
multi-node Hadoop cluster. Evaluation of performance scalability has been conducted
against a real corpus of web pages and documents.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Present day information societies deals with very large
repositories of data (in the form of public and private data,
including both human and automatically generated con-
tent). A statistic reported in the 2014 by the International
Data Corporation (IDC), sponsored by MC Digital Universe
(EMC) asserts that the digital universe is doubling every
two years, and will reach a size of 40 zettabytes (i.e., 40

trillion gigabytes) by 2020, from 4.4 zettabytes in 2013 [1].
Due to the increasing expansion of the web, the Internet of
Things and related information technologies, the ICT world
and consequently digital users’ experience have been lar-
gely influenced by data-driven methods for extracting and
managing knowledge. Access to large amounts of data has
opened new perspectives and challenges. Actually, the
term Big Data does not only refer to a matter of size, but
implies also other aspects (summarized in the Big Data 4 V
paradigm: Volume, Variety, Velocity and Veracity) such as
data reliability and consistency, as well as data encoding
which comes in many heterogeneous formats, often lead-
ing to interoperability lacks. For all these reasons, current
IR tools and applications must be able to scale up to

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jvlc

Journal of Visual Languages and Computing

http://dx.doi.org/10.1016/j.jvlc.2015.10.017
1045-926X/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: paolo.nesi@unifi.it (P. Nesi),

gianni.pantaleo@unifi.it (G. Pantaleo).
1 http://www.disit.dinfo.unifi.it

Journal of Visual Languages and Computing 31 (2015) 130–138

www.sciencedirect.com/science/journal/1045926X
www.elsevier.com/locate/jvlc
http://dx.doi.org/10.1016/j.jvlc.2015.10.017
http://dx.doi.org/10.1016/j.jvlc.2015.10.017
http://dx.doi.org/10.1016/j.jvlc.2015.10.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2015.10.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2015.10.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2015.10.017&domain=pdf
mailto:paolo.nesi@unifi.it
mailto:gianni.pantaleo@unifi.it
http://www.disit.dinfo.unifi.it
http://dx.doi.org/10.1016/j.jvlc.2015.10.017


datasets of interest, in most cases up to web scale. We are
currently facing growing needs and requirements for effi-
ciently processing such large volumes of data, as the
amount of information that can be stored and analyzed is
rapidly increasing. Furthermore, about 85% of digital
information available over the Internet is in unstructured
form [2]. This represents a challenging application field for
automatic Information Retrieval (IR) solutions. Actually,
annotation and extraction of high level features has
become an extremely time consuming and inefficient
operation to be done manually. Anyway, the ability to
extract information from text is nowadays demanded from
the market to improve effectiveness and competitivity.

A feasible approach to handle Big Data processing in a
more efficient way is represented by the “Divide and
Conquer” concept [3]. The basic idea is to partition a large
problem into smaller sub-problems; to the extent that
these sub-problems are independent, they can be parallely
processed by different threads. This aspect, concurrently
with the evolution of multi-processor architectures and
network speeds, is leading to the application of distributed
architectures and parallel-computing paradigms to Big
Data mining and processing. Actually, single CPU-based or
even multi core CPU-based algorithms have revealed not
to be fast enough for data processing in application areas
such as Information Technologies [4]. On the other hand,
typical drawbacks of parallel programming are the use of
very low level languages as well as the necessity for the
programmer to handle communication and synchroniza-
tion issues [5]. Parallel solutions have been applied also to
search engines and indexing systems; for instance, the
MOSE (My Own Search Engine) [6] platform was specifi-
cally designed to run on parallel architectures, exploiting
document partitioning as data-parallel technique. MOSE
uses both task-parallel and data-parallel approaches to
increase efficiency for data storage and computational
resource usage. The Elastic Search2 is a more recent open
source distributed search engine, designed to be scalable,
near real-time capable and providing full-text search
capabilities [7]. The development of parallel computing
models and commodity LAN-connected cluster of com-
puters represents a cost-effective solution to increase time
performances for Big Data processing. Among the several
proposed solutions, the Apache Hadoop3 ecosystem has
recently gathered a quite diffuse interest. It has been
designed to support distributed applications, large-scale
data processing and storage, providing high scalability.
Data access and management relies on the Hadoop Dis-
tributed File System (HDFS), modeled upon the Google File
System – GFS [8]. The MapReduce programming paradigm
is the core of the Hadoop HDFS file system. It provides an
easier and transparent way for programmers to write
applications to be executed in parallel on commodity
hardware clusters.

NLP technologies allow to automatically extract machine
readable information and knowledge from unstructured nat-
ural language data, which is at the basis of many application

areas, e.g.: comprehension and supervised classification of
text documents [9], content extraction [10], design of recom-
mendation tools and Decision Support Systems, query
expansion [11], Question–Answer frameworks and Sentiment
Analysis. This last category is capturing a growing interest
recently, since it represents one of the most widely used
technological approach for understanding users’ behavior in
social media monitoring, opinion mining and target-
marketing. NLP is therefore a data-intensive application area
with large computational needs and growing complexity,
which can benefit of distributed frameworks and parallel
programming paradigms, assuming that fault tolerance to
machine failures is provided. Actually, since NLP algorithms
can be very time consuming to produce results, it is of fun-
damental importance to recover from failures in order not to
lose intermediate computational results. NLP routines are
generally executed in a pipeline where different plugins and
tools are responsible for a specific task. One of the most
intensive tasks is text annotation, which is defined as the
process of adding structured linguistic information (related to
grammatical, morphological and syntactical features of
annotated words and phrases) to natural language data [12].
Text annotation is at the basis of higher level tasks such as
extraction of keywords and keyphrases, which is defined as
the identification of a set of single words or small phrases that
can describe the general topic of a document [13]. Keywords
annotation is widely used for content extraction and sum-
marization, in order to produce machine-readable corpora, as
well as to build content-based multi-faceted search queries.
Currently, a large portion of web documents still does not
have any keywords or keyphrases assigned. However, it is
necessary to design and implement efficient and scalable
automated solutions, since manual annotation results to be a
highly time-consuming and inefficient process. Current inte-
grated NLP architectures are often prone to problems related
with information congestion and losses [14]. Several studies in
literature show how existing NLP tools and frameworks are
not well suited to process very large corpora, since their pri-
mary design focus was not oriented to scalability [15].

This paper proposes an extended and improved
version of the work presented in [16]. The proposed
system allows the execution of general purpose NLP
applications, through the use of the open source GATE4

APIs [17] executed via MapReduce on a multi-node
Hadoop cluster. The paper is organized as follows:
Section 2 provides an overview of related work and
state of the art for the main research areas involved; in
Section 3, the architecture of the proposed system is
described; in Section 4, a validation of the system is
reported, performed on real corpora retrieved online.
Finally, Section 5 is left for conclusions and future work
considerations.

2. Related work

The task of automatic keyword extraction deals with
automated annotation of relevant, topical words and

2 https://www.elastic.co/products/elasticsearch
3 http://hadoop.apache.org/ 4 https://gate.ac.uk/

P. Nesi et al. / Journal of Visual Languages and Computing 31 (2015) 130–138 131

http://https://www.elastic.co/products/elasticsearch
http://hadoop.apache.org/
http://https://gate.ac.uk/


phrases from the text body of a document [18]. This
activity, which is deeply connected with NLP methods, has
been extensively studied in recent literature. Existing
solutions are typically divided into four categories,
depending on the processing approach: statistic, linguistic,
machine learning and mixed approaches [19]. Statistical
methods are commonly based on estimation of simple
features (e.g., terms position, frequency, POS-tag, co-
occurrence, IR measures of relevance, such as TF-IDF [20])
and more complex models (e.g., Bayesian Networks,
K-Nearest Neighbor, Expectation-Maximization [21]). NLP
techniques are at the foundation of linguistic-based solu-
tions, which generally provide more accurate results with
respect to statistical methods, even though they are com-
putationally more expensive [22]. Linguistic methods
include lexical analysis, syntactic analysis, exploiting also
semantic features [23]. Machine learning methods treat
keyword extraction task as a supervised learning problem;
they employ different techniques, such as naive Bayes
algorithms [24], genetic algorithms, least square support
vector machines (LS-SVM) [25]. Mixed approaches rely on
a combination of both the previously mentioned solutions,
possibly with the addition of heuristic knowledge like
annotated lists, gazetteers, blacklists [26]. POS-tag based
filtering [27]. Training datasets and corpora can be jointly
used with external resources, for instance lexical knowl-
edge repositories (Wikipedia [28], DBpedia etc.). Graph-
based approaches typically extract a graph from input
documents and use a graph-based ranking function to
determine the relevance of the nodes as key terms [29].
They have been proving to effectively model structural
information and relationships in natural language data.
Neural networks have been used to design keywords [21]
and keyphrases extraction systems [30]. Topic-based
clustering is used in content extraction and text summar-
ization methods; this usually involves grouping the can-
didate keyphrases into topics or domains [31,32].

Parallel computing applications for NLP tasks have been
studied since the 90 s: Chung and Moldovan [33] proposed
a parallel memory-based parser called Parallel, imple-
mented on a Semantic Network Array Processor (SNAP).
Van Lohuizen [34] proposed a parallel parsing method
relying on a work stealing multi-thread strategy in a
shared memory multi-processor environment. Hamon
et al. realized Ogmios [15], a platform for annotation of
specialized domain documents within a distributed cor-
pus; in this case the scaling capabilities are provided by
distributing data (as an alternative approach to distributed
processing). The system provide NLP functionalities such
as word and sentence segmentation, named entity recog-
nition, POS-tagging and syntactic parsing. Jindal et al. [5]
developed a parallel NLP system based on Learning Based
Java (LBJ) model [35] (which is a platform for developing
NLP applications), and using Charmþþ [36] as a parallel
programming paradigm. The Koshik [37] multi-language
NLP platform has been designed for large scale-processing
and querying of unstructured natural language documents
distributed upon a Hadoop-based cluster. It supports sev-
eral types of algorithms, such as text tokenization,
dependency parsers and co-reference solver. The advan-
tage of using the Hadoop distributed architecture and its

MapReduce programming model is the capability to effi-
ciently and easily scale by adding inexpensive commodity
hardware to the cluster.

Commercial tools have also been proposed: InfoTech
Radar5 is a software solution implementing NLP and Sen-
timent Analysis on the Hortonworks Sandbox Hadoop
distribution. Beemoth6 is an open source platform for large
scale document processing based on Apache Hadoop,
employing third party NLP tools (including GATE, Tika and
UIMA). GATECloud [38] is an adaptation of the GATE
software suite to a cloud computing environment using
the PaaS paradigm.

Other parallel computing environments have been
proposed: the Spark framework [39] has been originally
developed at Berkeley UC to support applications imple-
menting acyclic data flow models (such as iterative algo-
rithms and applications which require low-latency data
sharing processes). Spark introduces programming trans-
formations on Resilient Distributed Datasets (RDD) [40],
which are read-only collections of objects distributed over
a cluster of machines. Fault tolerance is provided by
rebuilding lost data relying on lineage information (with-
out requiring data replication). RDD allows to store data on
memory, as well as to define the persistence strategy.
Gopalani and Arora [41] have compared Spark and Hadoop
performances on K-means clustering algorithms, showing
that Spark outperforms Hadoop on different cluster
configurations.

3. System architecture

The proposed system aims at executing a generic NLP
application on real corpora in a distributed architecture.
The open source GATE Embedded Java APIs are used to
perform the NLP tasks. In this paper, the specific design
case of POS-annotated keywords and keyphrases extrac-
tion from unstructured text is presented. However, any
other GATE application can be executed, with very mini-
mal modification to the code, in order to properly set up
the desired output features that may change according to
different use cases. The open source Apache Hadoop fra-
mework has been chosen for the realization of an efficient
and scalable solution, in order to improve performances
with respect to a single node architecture, providing also
data integrity and failures handling. The HDFS file system
has been installed on a multi-node commodity cluster
(more details will be provided in Section 4). Typically, a
cluster is composed by a master Namenode, which assigns
tasks to the different clients (Datanodes), monitoring their
execution progress and also handling data failures. Data-
nodes are moreover responsible for data storage. An
overview of the proposed system architecture is depicted
in Fig. 1.

The MapReduce programming paradigm is used to
parallelize the crawler work, the execution of NLP tasks

5 http://www.itcinfotech.com/software-product-engineering/solu
tions/RADAR.aspx

6 https://github.com/DigitalPebble/behemoth/wiki/tutorial

P. Nesi et al. / Journal of Visual Languages and Computing 31 (2015) 130–138132

http://www.itcinfotech.com/software-product-engineering/solutions/RADAR.aspx
http://www.itcinfotech.com/software-product-engineering/solutions/RADAR.aspx
http://https://github.com/DigitalPebble/behemoth/wiki/tutorial


and the final output writing on external SQL database. The
proposed architecture receives as input two absolute file
paths: the first points to the location on the local file
system where the GATE application and required plugins
are stored; the other points at a text file containing the
seed URLs for the crawling module. The different modules
work asynchronously; actually, the crawling phase and the
keywords/keyphrases extraction process can be scheduled
and executed independently. Finally, a dedicated proce-
dure stores extracted keywords and keyphrases in an
external SQL database. The whole system architecture is
implemented in Java. In the next subsections, a description
will follow of the main modules constituting the proposed
framework, which are listed as following:

� The Web Crawler module is responsible for crawling
web pages and documents, starting from an input text
file containing user defined seed URLs.

� The Keywords & Keyphrase Extractor module is in charge
of two main operations. The first is the execution of the
GATE Application implemented in a MapReduce envir-
onment and the subsequent is the storage of extracted
keywords and keyphrases in the HDFS. The second
operation is the relevance estimation of keywords and
keyphrases within their corresponding domain corpora,
by computing the TF-IDF Relevance function, which is a
metric widely adopted in Information Retrieval.

� The DB Storage module finally stores extracted key-
words, keyphrases and corresponding metadata into an
external SQL database.

We are planning to soon release the source code of the
proposed system, with open source licence, at: https://
github.com/disit.

3.1. MapReduce

Let us first to recall the basic principles of the MapRe-
duce programming paradigm. For a more comprehensive
and detailed reference, see [42,43]. Inheriting the basic
concepts of functional programming, the idea at the basis
of MapReduce is to divide the process to be executed into
smaller jobs, undertaken by the Mapper and Reducer
computational primitives. Mappers and Reducers imple-
ment the map and reduce functions, respectively, which
define the specific atomic tasks to be executed on
input data.

Hadoop partitions input data, splitting into fixed-size
parts, according to the HDFS block size (which is set to
64 MB by default). A MapReduce job assigns one map task
for each split. The basic data structure under MapReduce is
represented by key-value pairs. Actually, input and output
of both the map and the reduce functions are formed by
key-value pairs, which can be arbitrarily defined as

Fig. 1. Overview of the proposed system architecture. Map and Reduce functions in the Keyword & Keyphrase Extractor module can be customized by the
user/porgrammer, depending on the desired NLP actions to be performed upon input text documents. In our case, the Map function produces a key/value
pair composed by the web domain of each analyzed document and the corresponding parsred text. The Reduce function, in turn, fulfills the execution of
the GATE application and the computation of TF-IDF relevance metric.

P. Nesi et al. / Journal of Visual Languages and Computing 31 (2015) 130–138 133

http://https://github.com/disit
http://https://github.com/disit


numerical values, strings, or even more complex objects,
such as arrays, lists, etc. The Map function generates, as an
intermediate output, key/value pairs representing logical
records from the input data source (as an example, it could
be a single text line in case the input is a text file, or a row
in case it is a database). Subsequently, a Shuffle and Sort
process merges all intermediate values associated with the
same key. The sorted pairs form the input of the Reduce
function/phase (which is called once per unique map
output key) that performs the required processing on the
splitted input data. The whole process can be summarized
by the following notation [36]:

Map: (k1, v1) - list{k2, v2}
Shuffle & Sort: list{k2, v2} - (k2, list{v2})
Reduce: (k2, list{v2}) - list{k3, v3}

The MapReduce design introduces an abstraction of the
complexity involved in the management of common par-
allel frameworks. This allows the programmer to focus
only on properly defining the map and reduce functions,
while lower level constrain (like parallelization, work
distribution and communication issues among cluster
nodes) are completely transparent and automatically
managed by the Hadoop ecosystem. Anyway, it is assumed
that the whole computational process to be executed can
be considered as a problemwhich can be treated through a
key/value approach.

The services in charge of managing and assigning tasks
and data blocks to the different nodes are the JobTracker
and the TaskTracker. The JobTracker daemon determines
which files to process and which node to assign to each
task; it also monitors all tasks while they are running.
TaskTrackers run atomic tasks and send back reports about
task progress to the JobTracker. If a task fails, the Job-
Tracker reschedules its assignation on a different Task-
tracker, up to a limit number of attempts defined in the
configuration environment. The example of a simple
inverted index creation, shown in Fig. 2, could be useful to
clarify the outlined concepts.

A fundamental aspect behind MapReduce is the use of
data locality optimization principle. In order to scale out
and improve computational performances by minimizing
the use of cluster bandwidth, the JobTracker assigns
MapReduce jobs in a way such that TaskTrackers on each
node would run the map reduce code only on data blocks
locally present on that node, when it is possible.

3.2. Web crawler

The crawling engine of the proposed system is based on
the open source Apache Nutch7 tool. It has been initialized
with a set of seed URLs of commercial companies, services
and research institutes.

The Nutch workflow follows different phases: the first
is the Inject phase, in which some seed URLs are injected
for initial bootstrapping. The Generate phase define the set
of URLs that are going to be fetched. Next, the Fetch phase
deals with fetching the previously generated set of URLs
into segments. The Parse phase is dedicated to the parsing
of fetched segments content; the Update phase populates
an external SQL Database with navigated URLs and corre-
sponding parsed segment contents. All of these operations
are carried on by single MapReduce Jobs, and the outcome
of each phase is stored in the local HDFS. Finally, Apache
Solr8 is used to index all collected documents, providing
also a search interface. The Solr index is ultimately
installed onto the master Namenode only.

3.3. Keywords/keyphrases extractor

This module takes as input the parsed text content
associated to each web URLs ingested during the crawling
phase and retrieved by querying the Solr index. The pre-
sent module is in charge of defining the MapReduce
model, that is, of properly designing the map and reduce

Fig. 2. Example of an inverted word index creation in MapReduce.

7 http://nutch.apache.org/
8 http://lucene.apache.org/solr/

P. Nesi et al. / Journal of Visual Languages and Computing 31 (2015) 130–138134

http://nutch.apache.org/
http://lucene.apache.org/solr/


functions for the execution of the GATE application. In the
proposed case, Map and Reduce functions are defined in a
proper way for our goals: since we are interested in
annotating keywords and keyphrases at single web-
domain level, we designed a Map function that associ-
ates key/value record pairs where the key is the domain
extracted from the web URL of the single page/document,
and the value is the text previously parsed by the Nutch-
based crawler. The Reduce function, in turn, fulfills the
configuration and execution of a multi-corpora GATE
application (each corpus containing text documents and
pages belonging to a single web domain), as well the
subsequent estimation of extracted keywords/keyphrases
relevance at web domain level (as later described in
Section 3.5).

3.4. GATE application

This block is in charge of executing the GATE applica-
tion in the MapReduce environment, according to the
input configuration parameters and the pipeline defined in
an input file (usually a.xgapp or.gapp file). This is an XML-
based file which is considered, by extension, as the effec-
tive GATE application file, containing file paths and refer-
ences to all the Processing Resources and plugins used, in
addition to the definition of the processing pipeline. As
previously addressed, the proposed system allows the
execution of a generic GATE application. In this specific
case, the ANNIE (A Nearly-New Information Extraction Sys-
tem) plugin, more specifically the Sentence Splitter and the
Tokenizer tools, have been used to segment into tokens the
text content of crawled documents, while the TreeTagger
plugin has been used for POS-tagging. Finally, the Java
written JAPE (Java Annotation Pattern Engine) plugin syntax
has been employed to define custom rules for filtering
undesired, noisy parts of speech and user defined stop-
words. These rules are contained in a dedicated jape file.
Common nouns and adjectives are then annotated as
potential keywords candidates. Next, candidate key-
phrases are identified as contiguous phraseological com-
binations and patterns of candidate keywords. The
described GATE pipeline is depicted in Fig. 2.

The following strategy has been followed to run the
GATE application in MapReduce: the Namenode loads, at
run time, a zip archive containing all the required GATE
APIs, configuration and application files, libraries and
plugins, in the HDFS Distributed Cache. By this way our
application will copy in memory and extract the necessary
files only once, and the allocated content will be accessible
by all the Datanode. This has been considered as the most
efficient solution, since there is no need to install required
plugins and libraries on each single node. As mentioned
earlier, an additional advantage of this approach is repre-
sented by fact that any generic GATE application can be
potentially executed in the proposed architecture (taking
benefits of all the NLP features and capabilities offered),
providing to embed the xgapp application file, the.jape file
for annotation rules and patterns, as well as all the
required resources and plugins in the input zip file.

3.5. TF-IDF relevance estimation

The TF-IDF metric (Term Frequency – Inverse Document
Frequency) is calculated for each candidate keywords and
keyphrases as a measure of their relevance with respect
not only to the single document in which it has been
extracted, but rather to the whole corpus, represented by
all documents and pages belonging to a single web
domain. A simple thresholding upon computed TF-IDF
values allows discarding the most common stop words
and non-relevant terms, such as articles or conjunctions
which usually have a high occurrence in natural language
texts, although they do not contain significant information.
TF-IDF is given by the product of two functions: the Term
Frequency (TF) which provides a direct measure about how
frequently a term occurs in a certain document, and the
Inverse Document Frequency (IDF) which acts as balance
term, showing higher values for terms having lower
occurrence in the whole corpus (which are supposed to
have a higher specificity for the specific domain context).
The TF-IDF value for a candidate keyword or keyphrase k
in a document d contained in a corpus D is given by:

ðTF� IDFÞk ¼ TFk U IDFk;

where:

TFk ¼
f k
nd

; IDFk ¼ log
Nd

Nk

being fk the number of occurrences of the candidate
keyword k in the document d, nd the total number of terms
contained in document d, ND the total number of docu-
ments in the corpus D and NK the total number of docu-
ments within the corpus in which the candidate key k
appears. Candidate keywords and keyphrases having a
TF-IDF value above a defined threshold are annotated as
final keywords/keyphrases, while the other are pruned.
Extracted keywords and keyphrases are finally stored in
the Hadoop HDFS file system, together with their corre-
sponding TF-IDF values and source web domain URL.

3.6. External DB storage

Once the output of the Keywords & Keyprhase Extractor
module has been written on the Hadoop file system, a final
processing step is required to populate an external SQL
database which allows external access to the extracted
information. For this purpose, the Apache Sqoop9 open
source tool has been used, which has been specifically
designed for data transfer between Hadoop HDFS and rela-
tional datastores. The Sqoop tool has been installed on the
master Namnode only and the export feature has been used
to insert HDFS resident data into an external SQL database. In
order to successfully accomplish the data export, full read/
write privileges on the database have been granted to all the
machines on the cluster. Each database record is populated
with an extracted keyword or keyphrase and its corre-
sponding metadata, that is POS-tag (or a different custom tag

9 http://sqoop.apache.org/

P. Nesi et al. / Journal of Visual Languages and Computing 31 (2015) 130–138 135

http://sqoop.apache.org/


if it is a keyphrase), the TF-IDF value, the source web domain
and the crawling timestamp.

4. Evaluation

As an improvement of the work presented in [16], the
evaluation of performances scalability of the proposed
system has been conducted in a way similar to the former
validation. However, we extended the dataset from 10,000
to 20,000 web page and documents and we evaluated the
processing time for the execution of the Keyword Extrac-
tor Module on the text content of considered dataset
which had been previously parsed by the Nutch-based
crawler. In this way, no more external network access is
required for keywords and keyphrase extraction. By this
way we minimize bottlenecks and other issues which not
depend from the parallelization of the process. Thanks to
these general optimizations to the code and to the test
configuration, the proposed solution has shown several
improvements, with respect to the version proposed in
[16], both in terms of time performances and scalability.
The Hadoop cluster architecture used for tests has been
assessed on different configurations, ranging from 2 to
5 nodes. Each node is a Linux 8-cores workstation with
Hadoop HDFS installed. In order to avoid data integrity
errors and failures due to decommission and re-
commission of cluster nodes, Hadoop allows to perform
a rebalance of stored blocks among the active nodes of the
cluster, if necessary.

The MapReduce model supplies speculative execution
of tasks, and it is designed to provide redundancy in order
to handle fault tolerance. By this way, it may happen that
the JobTracker has to reschedule failed or killed tasks, and
this can affect the execution time of the whole process.
Therefore, for performance comparison, the best proces-
sing times have been selected among several test instances
that have been conducted for each node configuration. By

this way, the number of attempts for re-executing failed or
killed tasks is supposed to be minimized. For the whole
test dataset, containing about 20,000 documents, a total of
nearly 9 million keywords and keyphrases have been
extracted. Time processing results for the different tested
node configurations are shown in Table 1. As a term of
comparison, running the same GATE application on the
same corpora dataset on a single non-Hadoop workstation
took approximately 115 h. A possible explanation to this
significant performance gap can be the fact that the Java
code of our standalone GATE application is not optimized
for multi-threading, while the MapReduce adaptation
executed in Hadoop can benefit of MapReduce configura-
tion parameters, which define the maximum number of
map and reduce task slots to run simultaneously
(exploiting multi-core technology even on a single-node
cluster). The resulting speed-up curve for our test data is
shown in Fig. 3. The present solution outperforms the
previous version proposed in [16].

As it can be noticed, the scaling capabilities of the
proposed system confirm the nearly linear growth trend of
the Hadoop architecture, and a significant improve can be
already noticed with a small numbers of computational
nodes (see Fig. 4).

5. Conclusions and future work

In this paper, a distributed system for crawling web
documents and extracting keywords and keyphrases has

Fig. 3. The GATE pipeline used in the proposed framework. It is worthy to remark that the proposed system allows the execution of a generic GATE
application.

Table 1
Evaluation results: time performances assessed for different cluster
configurations.

Configuration Processing time (hh:mm:ss) Speed-up

HDFS-single node 06:55:46 –

HDFS-2 nodes 04:35:39 1.51
HDFS-3 nodes 03:12:26 2.16
HDFS-4 nodes 02:21:01 2.95
HDFS-5 nodes 01:56:11 3.58

0

1

2

3

4

5

6

2 3 4 5

Sp
ee

dU
p

Nodes #

Fig. 4. Processing time performances depicted for distributed extraction
of Keywords and Keyphrases (solid curve), performed with different
cluster configurations, against the ideal linear trend (dashed curve) and
test results (dotted curve) obtained in our previous work presented
in [16].

P. Nesi et al. / Journal of Visual Languages and Computing 31 (2015) 130–138136



been presented. The parallel architecture is provided by
implementing the Apache Hadoop platform, while text
annotation and key features extraction rely on the NLP
opens source GATE platform. The main contributions
offered by our work is the capability of executing general
purpose GATE applications (including a wide range of NLP
activities) in a distributed design (exploiting the benefits
of scaling performances, especially for very large text
corpora) with minimal code update and without the need
for programmers to care about parallel computing con-
straints, such as task decomposition, mapping and syn-
chronization issues. Evaluating processing performances
on different cluster configurations (from 2 to 5 nodes) has
showed a nearly linear scalability of the system, which is
an encouraging result for future assessments on even lar-
ger datasets and cluster configurations. These actually
represents open issues for future work. Moreover, it could
be interesting to implement our keywords/keyphrases
extraction module on other parallel computing environ-
ment, such as the cited Spark. Furthermore, in order to
improve the quality of key features extraction, external
knowledge resources could be used, especially Semantic
repositories and frameworks, to allow the annotation of
semantic features and relations.

References

[1] V. Turner, J.F. Gantz, D. Reinsel, S. Minton, The Digital Universe of
Opportunities: Rich Data and the Increasing Value of the Internet of
Things, IDC White Paper, 2014.

[2] P. Monali, K. Sandip, A Concise Survey on Text Data Mining, Int. J.
Adv. Res. Comput. Commun. Eng. 3 (9) (2014) 8040–8043.

[3] J. Lin, C. Dyer, Data-Intensive text processing with MapReduce,
Synthesis Lectures on Human Language Technologies, 177, , 2010.

[4] C.A. Navarro, N. Hitschfeld-Kahler, L. Mateu, A Survey on parallel
computing and its applications in data-parallel problems using GPU
architectures, Commun. Comput. Phys. 15 (2) (2014) 285–329.

[5] P. Jindal, D. Roth, L.V Kale, Efficient development of parallel NLP
applications, Tech. Report of IDEALS (Illinois Digital Environment for
Access to Learning and Scholarship), 2013.

[6] S. Orlando, R. Perego and F. Silvestri, Design of a Parallel and Dis-
tributed WEB Search Engine, In: Proceedings of the Parallel Com-
puting (ParCo) Conference, Imperial College Press, September, 2001.

[7] O. Kononenko, O. Baysal, R. Holmes, M.W. Godfrey, Mining modern
repositories with elasticsearch, In: Proceedings of the 11th Working
Conference on Mining Software Repositories, 2014, pp. 328–331.

[8] S. Ghemawat, H. Gobioff, S.T. Leung, The google file system, In:
Proceeedings of the 19th ACM Symposium on Operating Systems
Principles, Lake George, NY, October, 2003.

[9] F. Colace, M. De Santo, L. Greco, P. Napoletano, Text classification
using a few labeled examples, Comput. Hum. Behav. 30 (2014)
689–697.

[10] R. Al-Hashemi, Text summarization extraction system (TSES) using
extracted keywords, Int. Arab J. e-Technol. 1 (4) (2010) 164–168.

[11] F. Colace, M. De Santo, L. Greco, P. Napoletano, Weighted word pairs
for query expansion, Inf. Process. Manag. 51 (1) (2015) 179–193.

[12] N. Ide., L. Romary, International standard for a linguistic annotation
framework, Nat. Lang. Eng. 10 (3–4) (2004) 211–225.

[13] A. Hulth, Improved automatic keyword extraction given more lin-
guistic knowledge, In: Proceedings of the 2003 Conference on
Emprical Methods in Natural Language Processing, Sapporo, Japan,
2003.

[14] T. Luis, Parallelization of Natural Language Processing Algorithms on
Distributed Systems (master thesis), Information Systems and
Computer Engineering, Instituto Superior Técnico, Univ. Técncica de
Lisboa, 2008.

[15] T. Hamon, J. Deriviere, Nazarenko, Ogmios: a scalable NLP platform
for annotating large web document collections, In: Proceedings of
the Corpus Linguistics, Birmingham, United Kingdom, 2007.

[16] P. Nesi, G. Pantaleo, G. Sanesi, A distributed framework for NLP-
based keyword and keyphrase extraction from web pages and
documents, In: Proceedings of 21st International Conference on
Distibuted Multimedia Systems (DMS2015), 2015.

[17] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, GATE: a fra-
mework and graphical development enviroment for robust NLP
tools and applications, In: Proceedings of the 40th Anniversary
Meeting of the Association for Computational Linguistics, ACL ‘02,
Philadelphia, 2002.

[18] P. Turney, Learning algorithms for keyphrase extraction, Inf. Retr. 2
(2000) 303–336.

[19] C. Zhang, H. Wang, Y. Liu, D. Wu, Yi Liao, Bo Wang, Automatic key-
word extraction from documents using conditional random fields, J.
Comput. Inf. Syst. (2008).

[20] Y. Matsuo, M. Ishizuka, Keyword extraction from a single document
using word co-ocuurrence statistical information, Int. J. Artif. Intell.
Tools (2004).

[21] A. Azcarraga, M. David Liu, R. Setiono, Keyword extraction using
backpropagation neural networks and rule extraction, In: Proceed-
ings of IEEE World Congress on Computational Intelligence (WCCI),
Brisbane, Australia, June, 2012.

[22] S. Siddiqi, A. Sharan, Keyword and keyphrase extraction techniques:
a literature review, Int. J. Comput. Appl. 109 (2) .

[23] J. Kaur, V. Gupta, Effective approaches for extraction of keywords,
Int. J. Comput. Sci. Issues 7 (6) (2010) 144–148.

[24] I. Witten, G. Paynte, E. Frank, C. Gutwin, C. Nevill-Manning, KEA:
practical automatic keyphrase extraction, In: Proceedings of the 4th
ACM Conference on Digital Library, 1999.

[25] C. Wu, M. Marches, J. Jiang, A. Ivanyukovich, Y. Liang, Machine
learning-based keywords extraction for scientific literature, J. Univ.
Comput. Sci. 13 (10) (2007) 1471–1483.

[26] Z. Liu, P. Li, Y. Zheng, M. Sun, Clustering to find exemplar terms for
keyphrase extraction, In: Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing, 2009, pp. 257–
266.

[27] F. Liu, D. Pennell, F. Liu, Yang Liu, Unsupervised approaches for
automatic keyword extraction using meeting transcripts, In: Pro-
ceedings of the Human Language Technologies: The Annual Con-
ference of the North American Chapter of the Association for
Computational Linguistics, 2009, pp. 620–628.

[28] O. Medelyan, E. Frank, I.H. Witten, Human-competitive tagging
using automatic keyphrase extraction, In: Proceedings of the 2009
Conference on Empirical Methods in Natural Language Processing,
2009, pp. 1318–1327.

[29] K.S. Hasan, V. Ng, Automatic keyphrase extraction: a survey of the
state of the art, In: Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, vol. 1, 2014, pp. 1262–
1273.

[30] K. Sarkar, M. Nasipuri, S. Ghose, A new approach to keyphrase
extraction using neural networks, Int. J. Comput. Sci. Issues vol. 7
(Issue 2) (2010) 16–25. No 3.

[31] M. Grineva, M. Grinev, D. Lizorkin, Extracting key terms from noisy
and multitheme documents, In: Proceedings of the 18th Interna-
tional Conference on World Wide Web, 2009, pp. 661–67.

[32] Z. Liu, W. Huang, Y. Zheng, M. Sun, Automatic keyphrase extraction
via topic decomposition, In: Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing, 2010, pp. 366–
376.

[33] M. Chung, D.I. Moldovan, Parallel natural language processing on a
semantic network array processor, IEEE Trans. Knowl. Data Eng. vol.
7 (3) (1995) 391–404.

[34] M.P. van Lohuizen, Parallel processing of natural language parsers,
In: Proceedings of the 15th Conference of Parallel Computing, 2000,
pp. 17–20.

[35] N. Rizzolo, D. Roth, Learning based java for rapid development of
NLP systems, In: Proceedings of the International Conference on
Language Resources and Evaluation (LREC), 2010.

[36] L.V. Kale, G. Zheng, Charmþþ and AMPI: adaptive runtime strate-
gies via migratable objects, In: M. Parashar, X. Li (Eds.), Advanced
Computational Infrastructures for Parallel and Distributed Applica-
tions, Wiley Interscience, New York, 2009, pp. 265–282.

[37] P. Exner, P. Nugues, KOSHIK-A large-scale distributed computing
framework for NLP, In: Proceedings of the International Conference
on Pattern Recognition Applications and Methods (ICPRAM 2014),
2014, pp. 463–470.

[38] V. Tablan, R.I. Cunningham, K. Bontcheva, GATECloud.net: a platform
for large-scale, open-source text processing on the cloud, Philos.
Trans. R. Soc. 37 (2013).

P. Nesi et al. / Journal of Visual Languages and Computing 31 (2015) 130–138 137

http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref1
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref1
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref1
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref2
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref2
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref3
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref3
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref3
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref3
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref4
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref4
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref4
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref4
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref5
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref5
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref5
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref6
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref6
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref6
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref7
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref7
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref7
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref8
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref8
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref8
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref9
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref9
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref9
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref10
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref10
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref10
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref11
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref11
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref12
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref12
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref12
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref13
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref13
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref13
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref13
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref14
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref14
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref14
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref14
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref15
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref15
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref15
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref15
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref16
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref16
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref16
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref16
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref16
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref16
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref16
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref16
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref16
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref16
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref16
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref17
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref17
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref17


[39] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark:
Cluster Computing with Working Sets, Technology Report of UC
Berkeley, 2011.

[40] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M.J.
Franklin, S. Shenker, I. Stoica, Resilient distributed datasets: a fault-
tolerant abstraction for in-memory cluster computing, In: Proceed-
ings of the 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12), 2012, pp. 15–28.

[41] S. Gopalani, R. Arora, Comparing apache spark and map reduce with
performance analysis using K-means, Int. J. Comput. Appl. 113 (1)
(2015) 8–11.

[42] T. White, Hadoop, the Definitive Guide, O’Reilly, Sebastopol, CA, USA,
2012.

[43] A. Holmes (Ed.), Hadoop in Practice, Manning Publications Co.,
Greenwich, CT, USA, 2012.

P. Nesi et al. / Journal of Visual Languages and Computing 31 (2015) 130–138138

http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref18
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref18
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref18
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref18
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref19
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref19
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref20
http://refhub.elsevier.com/S1045-926X(15)00074-9/sbref20

	A hadoop based platform for natural language processing of web pages and documents
	Introduction
	Related work
	System architecture
	MapReduce
	Web crawler
	Keywords/keyphrases extractor
	GATE application
	TF-IDF relevance estimation
	External DB storage

	Evaluation
	Conclusions and future work
	References


