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Crosstalk between the heart and peripheral organs
in heart failure

James Won Suk Jahng, Erfei Song and Gary Sweeney

Mediators from peripheral tissues can influence the development and progression of heart failure (HF). For example, in obesity,

an altered profile of adipokines secreted from adipose tissue increases the incidence of myocardial infarction (MI). Less

appreciated is that heart remodeling releases cardiokines, which can strongly impact various peripheral tissues. Inflammation,

and, in particular, activation of the nucleotide-binding oligomerization domain-like receptors with pyrin domain (NLRP3)

inflammasome are likely to have a central role in cardiac remodeling and mediating crosstalk with other organs. Activation of the

NLRP3 inflammasome in response to cardiac injury induces the production and secretion of the inflammatory cytokines

interleukin (IL)-1β and IL-18. In addition to having local effects in the myocardium, these pro-inflammatory cytokines are

released into circulation and cause remodeling in the spleen, kidney, skeletal muscle and adipose tissue. The collective effects

of various cardiokines on peripheral organs depend on the degree and duration of myocardial injury, with systematic

inflammation and peripheral tissue damage observed as HF progresses. In this article, we review mechanisms regulating

myocardial inflammation in HF and the role of factors secreted by the heart in communication with peripheral tissues.
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INTRODUCTION

Heart failure and the role of inflammation
Cardiovascular diseases are the leading cause of death
worldwide, and heart failure (HF) is an important contributor
to this statistic.1 When the heart is under stress or injured, it
undergoes structural and functional changes termed cardiac
remodeling.2 These include cardiac hypertrophy, fibrosis,
apoptosis and altered metabolism.3 When an individual suffers
from myocardial ischemia, it is intuitively important to
re-perfuse the damaged area and re-establish the supply of
blood to the damaged area. However, it has also been realized
that some cellular events which occur during reperfusion may
lead to worse outcomes, a phenomenon termed myocardial
ischemia/reperfusion (I/R) injury.4

The various mechanisms underlying the detrimental effects
of ischemia and subsequent reperfusion are complex and are
not fully understood. Nevertheless, a number of clinical and
animal studies suggest that inflammation is a key contributor
to adverse myocardial remodeling.4 Broadly speaking,
inflammation is a wound-healing process mediated by innate
immune cells that recognize microbial and non-microbial
sources of danger/stress. Inflammation triggered in the
absence of infection is termed ‘sterile inflammation’. Multiple
studies have highlighted the importance of targeting sterile

inflammation in HF.5–7 Sterile inflammation involves the
secretion of inflammatory cytokines and recruitment of
innate immune cells, such as neutrophils and monocytes/
macrophages. However, prolonged exposure to inflammatory
cytokines will exacerbate adverse remodeling and enhance
myocardial damage.8 Importantly, in addition to local adverse
effects on cardiac remodeling, ischemia- or I/R-induced
inflammation in the heart releases pro-inflammatory cytokines,
such as interleukin (IL)-1β and IL-18, into circulation.
These, and other so-called cardiokines, can have significant
endocrine effects on other tissues, leading to damage in
multiple peripheral organs.9 For example, prolonged exposure
to IL-1β and IL-18 can lead to caspase-1-dependent cell death
via pyroptosis.10,11 Thus, crosstalk from the heart to other
tissues can elicit multi-organ damage as a consequence of
ischemia-induced inflammation.9 This review highlights the
current knowledge of inflammasome activation in the heart
and its consequences on other organs.

Mechanisms regulating cardiac inflammation in HF, focus
on the NLRP3 inflammasome
The nucleotide-binding oligomerization domain-like receptors
with pyrin domain (NLRP3) inflammasome is a cytoplasmic
protein complex composed of NLRP, apoptosis-associated

Department of Biology, York University, Toronto, ON, Canada
Correspondence: Dr G Sweeney, Department of Biology, York University, Toronto, ON, Canada M3J 1P3.
E-mail: gsweeney@yorku.ca
Received 20 November 2015; revised 10 December 2015; accepted 11 December 2015

Experimental & Molecular Medicine (2016) 48, e217; doi:10.1038/emm.2016.20
& 2016 KSBMB. All rights reserved 2092-6413/16

www.nature.com/emm

http://dx.doi.org/10.1038/emm.2016.20
mailto:gsweeney@yorku.ca
http://dx.doi.org/10.1038/emm.2016.20
http://www.nature.com/emm


speck-like protein containing CARD (ASC), a caspase
recruitment domain and pro-caspase-1.12,13 NLRP is composed
of C-terminal leucine-rich repeats, a central nucleotide domain
(NACHT) and N-terminal effector pyrin domain. Upon
recognizing patterns, either from a pathogenic source
(pathogen-associated molecular patterns) or from a
non-pathogenic source (danger/damage-associated molecular
patterns, DAMPs), NLRP will recruit ASC, which, in turn,
recruits pro-caspase 1, which will then get activated.14

Inflammasomes are classified based on NLRPs, which
recognize or sense different stimuli.15 The NLRP3
inflammasome is the most widely studied to date due to its
ability to recognize various cellular stressors and its strong
relationship with diseases such as HF.16 The key consequence
of inflammasome activation is maturation of pro-inflammatory
cytokines, in particular IL-1β and IL-18. The generation of
active forms of IL-1β and IL-18 is regulated at two steps:
expression of pro-IL-1β and pro-IL-18 is mediated by nuclear
factor kappa-light chain enhancer of activated B cells (NF-κB),
and processing to the mature form of IL-1β and IL-18 is
mediated by active caspase-1 in the inflammasome.14

Multiple DAMPs have been found to activate NLRP3
inflammasomes, including monosodium urate, calcium
phosphate crystals, cholesterol crystals, amyloid β, hyaluronan,
islet amyloid polypeptide, asbestos and silica.14 However, in

HF, we suggest that mitochondria have a critical role in
initiating inflammasome activation.17,18 In HF-associated
inflammasome activation, the three main triggers are adenosine
triphosphate (ATP), mitochondrial DNA (mtDNA), and
reactive oxygen species (ROS) (see Figure 1). When cells
undergo death they release ATP. Multiple studies have
suggested that ATP directly activates the NLRP3
inflammasome.19,20 High extracellular ATP levels activate
P2X7 purinergic receptors to cause potassium efflux. Low
intracellular levels of potassium promote the assembly of
NLRP3 and ASC. In addition, it has been suggested that
low intracellular potassium will also promote pannexin-1
membrane pore formation, further easing the access of
inflammasome activating agents.21 mtDNA has been
established as a DAMP when liberated into the extracellular
space.22,23 It was shown24 that the translocation of mtDNA to
the cytosol was associated with subsequent inflammasome
activation. A DNAse treatment reduced secretion of IL-1β in
macrophages. It has also been reported25 that mitochondrial
dysfunction and oxidized mtDNA directly activate the
NLRP3 inflammasome. Macrophages lacking mtDNA or
treated with the oxidized nucleoside 8-OH-dG to confer
competitive inhibition had severely attenuated IL-1β
secretion. Mitochondrial marker and NLRP3 inflammasome
colocalization and a significant activation of NLRP3

Figure 1 Mechanisms of NLRP3 inflammasome activation in heart failure. Myocardial infarction (MI), ischemia or ischemia/reperfusion
(I/R) injury induces cardiomyocytes to release ROS, ATP and mtDNA. ROS mediates autocrine and paracrine activation and nuclear
translocation of NF-κB, which regulates the transcription of pro-IL-1β and pro-IL-18. mtDNA directly primes NLRP3 and ATP via binding
to P2X7 receptors and leads to potassium efflux, a trigger for the assembly of NLRP3 inflammasome. These collective effects result in
activation of the NLRP3 inflammasome-associated caspase-1, which processes pro-IL-1β and pro-IL-18 into mature IL-1β and IL-18 and
can exacerbate local inflammation. It can also be released into circulation to mediate endocrine effects. ATP, adenosine triphosphate;
IL, interleukin; mtDNA, mitochondrial DNA; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; NLRP3, NLR family,
pyrin domain containing 3; ROS, reactive oxygen species; K+, potassium.
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inflammasome upon mitochondrial membrane disruption have
been shown.26 It was reported27 that activation of the NLRP3
inflammasome in macrophages occurred due to an
ATP-mediated ROS-dependent activation of phosphoinositide
3 kinase signaling. ROS stimulates the activation of NF-kB and
increases the expression of pro-IL-1β and pro-IL-18.21

Mitochondrial regulation by autophagy in the heart
Because all the mediators discussed above (ATP, mtDNA and
ROS) may come from mitochondria, our hypothesis is that this
organelle has a vital role in inflammasome activation. Thus,
mitochondrial integrity is a key limiting factor for NLRP3
inflammasome activation. Furthermore, this may be especially
relevant in the heart where cardiomyocytes have a higher
mitochondrial content relative to other cell types. Overall, the
heart is likely to be highly susceptible to mitochondria-derived
DAMPs. Thus, effective regulation of damaged mitochondria is
critical. Autophagy is a quality control system mediating
degradation of protein aggregates and damaged organelles.
Multiple studies have documented the importance of
mitochondrial regulation by autophagy, specifically referred
to as mitophagy, in HF.28 Multiples studies have also now
established a strong association between autophagy and
inflammasome activation. First, stimulating autophagy in
macrophages using rapamycin can directly target precursors
of IL-1β for degradation. Mice pretreated with rapamycin
showed reduced circulating levels of IL-1β following a challenge
with an inflammatory stimulus.29 Using ATG16L1-deficient
cells, it was shown that autophagy was involved in endotoxin
(lipopolysaccharide)-induced inflammasome activation and
increased IL-1β and IL-18 secretion.30 Another study31

reported that inflammasomes can be directly sequestered into
autophagosomes and destined for autophagic degradation.
Nakahira et al.24 reported on the regulation of mtDNA-
driven inflammasome activation by autophagy. They deleted
genes encoding key autophagy proteins LC3B and Beclin1,
and found a significant enhancement in caspase-1 activation
and secretion of IL-1β and IL-18. Thus, defective
autophagy-mediated quality control mechanisms resulted in
enhanced inflammasome activation via the accumulation of
damaged mitochondria and reduced inflammasome clearance
in both in vitro and in vivo settings.

Distinct roles of cardiomyocytes, fibroblasts and immune
cells in cardiac inflammasome activation
Numerous studies have now established a strong association
between inflammasome activation and adverse remodeling in
HF. For example, both ASC-KO and caspase-1-KO mice
exhibited a significant reduction in infarct zone and fibrosis,
as well as improved cardiac function after myocardial I/R
injury.32 As highlighted in Figure 1, it has been proposed that
activation of the inflammasome occurs via cell-to-cell
communication within heterogeneous cell populations of
heart tissue, including cardiomyocytes, fibroblasts and innate
immune cells.6,33 Kawaguchi et al.32 identified that both
hematopoietic and non-hematopoietic cells are responsible

for secreting IL-1β after myocardial I/R injury, because only
chimeric mice with ASC-KO bone marrow on an ASC-KO
background showed reduction in infarct zone. They followed
up with in vitro experiments in which hypoxia/reoxygenation
stimulated inflammasome activation in cardiac fibroblasts, but
not in cardiomyocytes. This notion was supported by studies in
adult cardiomyocytes in which NLRP3 inflammasome
activation was inhibited using either siRNA or pharmacological
inhibitors. This resulted in fewer cell deaths but not IL-1β
secretion.34 Upon permanent myocardial ischemia in both
murine and rat models, myocardial fibroblasts were shown to
be the primary source of IL-1β secretion in response to ATP
released from damaged neighboring cells.35 Further work36 has
also supported the notion of non-immune cell-mediated IL-1β
and IL-18 secretion. This work concluded that mitochondrial
ROS from cardiomyocytes acts as a trigger to prime the NLRP3
inflammasome. Taken together, the data suggest that
cardiomyocytes, cardiac fibroblasts and infiltrating immune
cells contribute via different roles toward inflammation and
cardiac remodeling in myocardial infarction (MI) (Figure 1).

CROSSTALK BETWEEN THE HEART AND ADIPOSE

TISSUE

Alterations in adipokine profiles influence the development
of HF
There is a well-documented association between obesity and
HF.2 Adipose tissue is clearly an important contributor to
inflammation in HF. Multiple studies have established both
pro- and anti-inflammatory effects of adipokines.37,38 In
obesity, adipose tissue undergoes changes induced by metabolic
stress. It releases more pro-inflammatory cytokines, including
IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1), and
less of the anti-inflammatory cytokines, including IL-10 and
adiponectin.39–41 Visceral fat is the most important depot,
which responds to metabolic stress in this way. There is a
well-established positive correlation between visceral fat levels
and HF.42 However, it is interesting to note that epicardial and
pericardial fat depots exhibit a similar phenotype to visceral fat
and have been strongly correlated with the progression of
adverse cardiac remodeling.43 McKenney et al.44 observed
increased epicardial adipose tissue after MIs, which correlated
with a reduced adiponectin level after MI. In their study they
compared pigs with or without adipectomy subjected to MI.
They observed that the progression of adverse remodeling after
the MI was attenuated, and the infarct zone size was
diminished in adipectomized animals. This correlates with a
previous observation in which a pig with myocardial I/R injury
developed improved cardiac function, reduced infarct size and
less tumor necrosis factor alpha (TNFα) production with a
greater production of IL-10 after intracoronary administration
of adiponectin.45 In summary, whereas it is generally accepted
that in obesity, the profile of adipokines from various fat depots
mediates detrimental effects on the myocardium, the obesity
paradox suggests that these adipokines can confer beneficial
effects during post-MI stages of remodeling.2
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Extensive epidemiological and clinical data suggest that type
2 diabetes increases the risk for HF independently of other risk
factors, such as hypertension.46,47 One potential mechanism is
that type 2 diabetes, often associated with obesity, leads to
myocardial lipotoxicity that contributes to cell death, and thus,
to cardiac dysfunction. Diabetic cardiomyopathy is also
characterized by interstitial and perivascular fibrosis. A
significant increase in collagen deposition was found around
intramural vessels and between myofibers in heart biopsies in
patients with diabetes.48–50 Given that fibrosis is one
consequence of inflammation, IL-1β and other inflammatory
markers, such as fibrosis, signal the onset and progression of
HF in this way.51–54

Cardiokine and endocrine effects on peripheral tissues in HF
In recent years, there has been an increased realization of
endocrine effects mediated by factors produced and secreted by
the heart.55 Collectively, these are referred to as cardiokines.
Ischemic stress results in a substantial change in the profile of
cardiokines secreted from the myocardium.9,55 In particular,
upon activation of the inflammasome and infiltration of
splenocytes in the infarct zone, the heart will release more
pro-inflammatory cytokines.9 Cardiac fibroblasts have been
proposed as the principal source of inflammatory signals in
pathological conditions, although cardiomyocytes also
contribute to the pro-inflammatory environment in the
myocardium by producing different cytokines and
chemokines.56,57 Injured cardiac cells release damage-
associated molecular pattern molecules, such as high-mobility
group box 1, DNA fragments, heat-shock proteins and
matricellular proteins, which instruct surrounding healthy
cardiomyocytes to produce inflammatory mediators. These
mediators, mainly IL-1β, IL-18, IL-6, MCP-1 and TNFα, in
turn activate versatile signaling networks within surviving
cardiomyocytes and trigger leukocyte activation and
recruitment.

Evidence for myocardial production of TNFα has been
controversial.58,59 However, it is now clear that TNFα can be
produced by isolated cardiomyocytes under certain conditions,
such as treatment with lipopolysaccharide.60–63 Similarly,
increased expression of TNFα in cardiac myocytes and
fibroblasts isolated from failing hearts suggests that if exposed
to pathophysiological stimuli, the heart has the capacity to
produce TNFα.64,65 IL-6 can be produced in most cells in the
heart, including cardiomyocytes66,67 and fibroblasts.68,69

A lipopolysaccharide treatment or hypoxia-reoxygenation
stimulated the production of IL-1β in isolated cardiac
fibroblasts, while isolated cardiomyocytes did not respond to
either treatment.32 A co-culture of cardiomyocytes with
fibroblasts induced by an angiotensin-II treatment secreted
much greater levels of IL-6 and TNFα than cultures of
fibroblasts alone, indicating that a paracrine action has a vital
role in the production of pro-inflammatory cytokines.70

Another good example of a cardiokine is atrial natriuretic
peptide (ANP), which is produced mainly in the myocardium.
Its expression is enhanced during myocardial stretching.71 ANP

has a beneficial role in cardiac remodeling by acting in an
autocrine or paracrine manner. For example, treatment with
cultured cardiac myocytes with an antagonist of ANP receptor
HS-142-1 increased expression of contractile protein genes,
such as skeletal-actin and beta-myosin heavy chain, as well as
the size of cardiomyocytes.72 ANP also contributes to
oxytocin-induced protection in myocardial ischemia-
reperfusion injury by reducing lipid peroxidation in a nitric
oxide-dependent mechanism.73

ANP receptors are found in adipose tissue and mediate
effects, including enhanced lipolysis and energy expenditure, as
well as altering adipokine production and release.74–76 Thus,
natriuretic peptides can definitely influence peripheral
metabolism by acting on adipose tissue. Therapeutically
targeting ANP action may confer metabolic and cardiovascular
benefits in the future.74

CROSSTALK BETWEEN THE HEART AND SPLEEN: THE

CARDIO-SPLENIC AXIS

Neutrophil activation and leukocyte infiltration in the heart are
prominent features of MIs that exacerbate inflammatory
cytokine release and tissue damage.77 Indeed, the mononuclear
phagocyte network undergoes extensive remodeling after MI.
There are different subpopulations of monocytes residing in
mice. These are converted from one to another upon
inflammatory responses after an MI. Monocytes are generally
classified into two categories: migratory monocytes with
inflammatory characteristics, which express high levels of
Ly6C and CC chemokine receptor CCR2 and low levels of
fractalkine receptor CX3CR1 (Ly-6Chi,CCR2hiCX3CR1low),
and reparative monocytes with anti-inflammatory profiles
(Ly-6Clow,CCR2lowCX3CR1high).78 The exact mechanism of
how each phenotype of monocytes regulates the inflammatory
response during an MI is complicated and is not resolved.79

However, under acute MI conditions, monocyte recruitment to
the heart is very dynamic and largely dependent on the
spleen. The spleen is one of most important lymphoid tissues.
It has a role in filtering blood and regulating immune
responses to circulating agents.80 The spleen contains large
pools of undifferentiated monocyte reservoirs80,81 that
can undergo splenic hematopoiesis, increasing motility and
pro-inflammatory characteristics (Ly-6Chi).81 Recruitment
of reparative monocytes (Ly-6low) ultimately helps resolve
inflammation and promote tissue healing.81,82

Dendritic cells (DCs), specialized for presenting antigens to
T cells, also have an important role in the immune response to
an MI.83 In an acute MI, both DCs and monocytes/
macrophages have been shown to positively contribute to
tissue healing. Upon an initial cardiac inflammatory response,
DCs infiltrate the infarcted area to confer a protective role. This
is demonstrated with DC-ablated mice exhibiting greater
adverse cardiac remodeling after an MI.84 In these mice, there
was sustained expression of pro-inflammatory cytokines, IL-1β,
IL-18 and TNFα, yet reduced IL-10 expression.84

Interestingly, under chronic MI conditions, the protective
roles of splenocytes become detrimental. Mice with a long-term
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MI (8 weeks) showed profound splenic remodeling with a
prolonged existence of pro-inflammatory monocytes (Ly-6Chi)
and increased expression of alarmins.85 A splenectomy
was performed to investigate the role of splenocytes
(splenic monocytes/macrophages and DCs) in the progression
of HF-associated inflammation and post-MI remodeling.
Intriguingly, mice without spleens showed less cardiac
dysfunction. This was associated with attenuated monocytes/
DC infiltration in the heart.85 When splenocytes from the mice
with an MI were injected into normal mice, the recipient mice
developed left ventricule (LV) dilation, cardiac hypertrophy,
systolic dysfunction, myocardial apoptosis and fibrosis.85 How-
ever, the recipient mice did not reveal changes in
pro-inflammatory cytokines in circulation, indicating that the
adverse cardiac remodeling in chronic MI model was
specifically due to splenocytes. Therefore, there is a clear
sequential activation of inflammatory responses depending on
the duration of MI via splenocyte-mediated crosstalk to the
heart (Figure 2).

CROSSTALK BETWEEN THE HEART AND KIDNEY:

CARDIO-RENAL AXIS

Multiple clinical studies have suggested that patients with
chronic kidney disease experience extremely high mortality
rates following acute MI.86–89 This suggests that there is a
strong crosstalk between the kidneys and heart. The association
between end-stage renal disease and cardiovascular disease is
often termed cardio-renal syndrome.90 The renin-angiotensin
system (RAS), a signaling cascade responsible for regulating
blood pressure, has a well-established critical role in
cardio-renal syndrome.91 Ogawa et al.92 reported that
nephrectomy in mice with an MI influenced cardiac
remodeling after the MI. The combination of nephrectomy
and MI resulted in deteriorated left ventricular remodeling and
RAS activation, oxidative stress and MCP-1. This observation
was similar to transgenic mice overexpressing renin and
angiotensinogen after a coronary artery ligation (CAL)
surgery.92 This correlates with previous findings that cardio-
myocytes increase the expression of TNFα and IL-1 family
through activation of NF-kB and activator protein 1 transcrip-
tion factor in response to angiotensin II.93–95

Other than RAS, a new biomarker has been identified that
strongly correlated with cardio-renal syndrome. HF patients
with declined renal function exhibit elevated levels of
neutrophil gelatinase-associated lipocalin (also known as
lipocalin-2)96. Neutrophil gelatinase-associated lipocalin levels
are strongly correlated with inflammation and cardiac
remodeling in HF patients with renal dysfunction.96

Pro-inflammatory effects of lipocalin-2 are also known to
induce endothelial dysfunction97,98 and promote apoptosis in
cardiomyocytes.99,100

In addition, cardiokines, such as ANP, can mediate
endocrine effects on the kidney.101 They have effects on
electrolyte balance and water excretion in the kidney by
increasing glomerular permeability and filtration rate.
ANP also antagonizes the deleterious effects of the renin-
angiotensin-aldosterone system activation.101–103 Furthermore,
crosstalk between the heart and kidney are evident from the
observation that worsening renal function manifests only in
end-stage HF and is strongly related to mortality.104 Although
cardio-renal interactions in HF are well established, many
questions, especially mechanistic, remain unanswered.

CROSSTALK BETWEEN THE HEART AND SKELETAL

MUSCLE

We now appreciate that HF is strongly associated with skeletal
muscle wasting, which is typically not associated with general
weight loss.105,106 Skeletal muscle in congestive HF patients
shows increased fatigability as well as decreased endurance and
exercise capacity.105,106 Changes evident in muscle include
metabolic imbalance, increased degradation of myofibrils and
myocyte apoptosis. The signals mediating crosstalk from the
heart need to be comprehensively identified.107,108 One
possibility is that generation of TNFα from the failing heart
has a detrimental effect on several processes in skeletal muscle.
NF-κB is rapidly activated by TNFα in differentiated skeletal

Figure 2 Crosstalk mechanisms in the cardio-splenic axis in heart
failure, and their functional consequences on peripheral tissues. In
acute myocardial infarction (MI), splenocytes (splenic monocytes/
macrophages and dendritic cells) migrate to the heart and mediate
protective effects during the inflammatory response. In chronic MI,
cardiokines induce dramatic changes in the spleen, such that
splenocytes develop inflammatory profiles. This exacerbates existing
inflammation in the heart and promotes adverse cardiac remodeling
leading to cardiac dysfunction. Inflammatory splenocytes also lead
to peripheral organ damage. For example, kidney inflammation
results in enhanced activation of the renin-angiotensin system (RAS)
and release of lipocalin-2. In vasculature, inflammation results in
adverse alterations in vascular tone and vascular cell proliferation.
Skeletal muscle is also strongly affected by heart failure, at least in
part via inflammation resulting in cellular changes, such as
sphingosine accumulation and muscle wasting. In adipose tissue,
inflammation results in reduced adiponectin levels and further
increased levels of pro-inflammatory adipokines (IL-6, MCP-1,
IL-10). IL, interleukin; MCP-1, monocyte chemotactic protein 1.
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muscle cells, which directly induces skeletal muscle protein
loss.109 Another proposed mechanism is that TNFα induces
sphingosine production, which then leads to induction of
apoptosis in these cells.110 In addition, exercise attenuates the
local expression of TNFα, IL-1β and inducible Nitric Oxide
Synthase (iNOS) in skeletal muscle and decreases the catabolic
wasting process in HF patients.34,111,112 Angiotensin-II is also
produced by the heart under conditions of stress and
contributes to cardiac hypertrophy and fibrosis.113 Studies
have shown that there is a catabolic effect of angiotensin-II
on skeletal muscle, suggesting its role in muscle wasting
in HF.114,115

THERAPEUTIC APPROACHES TARGETING

INFLAMMATION IN HF

As outlined above, myocardial inflammation in HF is often
detrimental to peripheral tissues. There have been several
studies addressing consequences of manipulating HF-associated
inflammation.116 Targeting TNFα has been extensively studied
in numerous clinical trials. Patients who already have severe
inflammatory conditions, such as rheumatoid arthritis (RA),
were treated with TNFα inhibitors (etanercept, infliximab and
adalimumab), which effectively reduced the inflammatory
activity and reduced the prevalence of HF complications.117

The data from two-large-scale trials with more than 2000 HF
patients showed that etanercept treatment reduced the risk of
mortality or morbidity in HF.64 Indeed, the US Food and Drug
Administration has issued a directive concerning the use of
etanercept in the population with HF.118 However, targeting
TNFα using a neutralizing antibody (infliximab) showed no
improvement and perhaps even worsened the clinical condition
of patients with chronic HF.119 Other studies indicated that
patients treated with high-dose infliximab continued to show a
worse outcome compared with other groups.57,120 Several other
agents have also been suggested to have potential as therapeutic
tools for chronic HF because of their inhibitory effect on
TNFα, including the glutamic acid derivative thalidomide.121

Thalidomide prevents the accumulation of TNFα by inducing
the degradation of TNFα messenger ribonucleic acid
transcripts, and thus, protein production.121 The xanthine
derivative pentoxifylline has also been reported to have a role
in therapeutic TNFα modulation. Reduced TNFα in the serum
of patients treated with pentoxifylline was observed. This
correlated with improved peripheral vasodilation and blood
hemodynamics.122 Other studies demonstrated a significant
improvement in NYHA functional class in patients treated with
pentoxifylline.123,124 However, the results were not reproduced
by another group,125 suggesting that the significance of

Table 1 Cytokines/chemokines involved in crosstalk between the heart and peripheral organs

Cytokines/Chemokines Effect Reference

IL-1β, IL-189,32–35 Neutrophil activation and leukocyte infiltration 77

[@Spleen] increasing mobility and inflammatory characteristics
of monocytes, and infiltration of DCs to heart

78,80–82

[@Heart] autocrine production of IL-6, TNFα 71

Prolonged exposure led to pyroptosis 148,149

IL-6, IL-8, MCP-160,67–69 Pro-inflammatory cytokines 60,67–69

DAMPs, HMGB1, DNA fragments, heat
shock proteins,
matricellular protein9,55–57

[@Heart] autocrine effects to produce
pro-inflammatory cytokines; IL-1β, IL-18, IL-6, MCP-1, TNFα

56,57

TNFα58,59 Prolonged exposure led to pyroptosis 64,65

[@Skeletal Muscle] muscle wasting, sphingosine production, induction of apoptosis 109,110

ANP71 Paracrine effect: oxytocin production, reducing lipid peroxidation
with NO-dependent mechanism

73

[@Heart] autocrine effect on heart by increasing expression of contractile protein, actin and
myosin, and induce hypertrophy

72

[@Adipose Tissue] enhancing lipolysis and increasing energy
expenditure, adipokines production

75,76,150

[@Kidney] increasing glomerular permeability and filtration rate, antagonizing RAS activation 101–103

IL-6, IL-8, MCP-137,38 Pro-inflammatory cytokines 39–41

IL-1037,38 Anti-inflammatory cytokines 39–41

Adiponectin37,38 [@Heart] reducing TNFα production, increasing IL-10 production, reducing infarct size 45,55

Alarmins85 [@Heart] worsening cardiac dysfunction, inducing myocardial apoptosis, fibrosis 85

Angiotensin-II91 [@Heart] inducing cardiac hypertrophy/fibrosis, increasing expression of
TNFα, IL-1 family cytokines

70,93,94,113

[@Skeletal Muscle] muscle wasting 114,115

Lipocalin-296 endothelial dysfunction, cardiomyocyte apoptosis 97–100

Abbreviations: ANP, atrial natriuretic peptide; DAMPs, danger/damage-associated molecular patterns; DCs, dendritic cells; HMGB1, high-mobility group box 1;
IL, interleukin; MCP-1, monocytes chemoattractant protein-1; NO, nitric oxide; TNFα, tumor necrosis factor alpha.
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targeting TNFα is controversial and requires further
exploration.126 This may be because pleiotropic TNFα effects
may be involved in many beneficial physiologic, as well as
pathologic, processes. For example, TNFα provides
endogenous cyto-protective signals that prevent cardiomyocyte
apoptosis following ischemic injury.127 Additionally, TNF type
1 receptor deficiency was associated with accelerated
myocardial death.128 Overall, the cardiomodulatory effects of
TNFα and other cytokines likely depend on factors such as cell
type and timing and extent of inhibition.

We propose that IL-1β is a major mediator between HF and
peripheral tissues. In fact, multiple studies have targeted IL-1β.
Canakinumab, a neutralizing antibody against IL-1β, and
anakinra, a recombinant IL-1 receptor antagonist, were shown
to exert beneficial effects on acute MI in animal models.129,130

Several clinical trials identified therapeutic benefits by blocking
IL-1β.131,132 Anakinra successfully reduced adverse remodeling
in patients with an MI and reduced the level of C-reactive
protein, a common biomarker used to determine the severity
of inflammation.133,134 Patients diagnosed with HF were
treated with Anakinra and subjected to exercise performance
testing. Two weeks of the Anakinra treatment significantly
increased oxygen consumption, decreased carbon dioxide
retention and exercise performance with significant reduction
in IL-1β, C-reactive protein and IL-6 serum profiles.135 These
correlated with a previous study in which patients with RA
treated with Anakinra had improved cardiac function. A single
injection of Anakinra resulted in increased blood flow in 3 h.136

The commercial usage of Anakinra was approved by Food and
Drug Administration in 2001. However, it was for treating
patients with RA not chronic HF, although multiple studies
demonstrated cardiac benefits of Anakinra in treating
RA.137–139

There also have been therapeutic efforts to target IL-18 and
inflammasome activation. A recombinant human IL-18
binding protein and neutralizing antibody for IL-18 have been
developed, and initial clinical trials to treat patients with RAs
are ongoing.140,141 In subjects with moderate to severe RA,
IL-18 binding protein shows a favorable safety profile and is
well tolerated in healthy volunteers. Because IL-18 binding
protein stays in circulation much longer than any other
inhibitors previously described, it has attracted a lot of
attention.141,142 Antagonists targeting P2X7 receptors have also
been tested to potentially block inflammasome activation.
Many successful cases have been shown; they limit neuronal
damage and lung, liver and kidney injury in several animal
models.143–146 Currently, the safety and efficacy of P2X7

receptor antagonists are being investigated and have progressed
to phase 2 clinical trials. However, their main use is to target
inflammatory bowel disease, RA and chronic obstructive airway
disease.147

CONCLUDING REMARKS

Myocardial ischemia- and I/R-induced inflammation involve
NLRP3 inflammasome activation. One principal trigger for
inflammasome activation is the recognition of mitochondrial

DAMPs. This results in the production and secretion of
pro-inflammatory cytokines, including IL-1β and IL-18
(Table 1). These and other factors produced by the heart
during inflammation can have local effects. They can also
crosstalk with other peripheral tissues via endocrine effects.
For example, HF is associated with dramatic changes in the
spleen, skeletal muscle wasting, alterations in adipose
metabolism and kidney function. The extent and significance
of bidirectional crosstalk between the heart and other organs
may have been underappreciated, but is now becoming more
established and may represent a logical focus of therapeutic
interventions in the future.
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