
SPRINT: A Scalable Parallel Classifier for Data Mining

John Shafer* Rakeeh Agrawal Manish Mehta

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120

Abstract

Classification is an important data mining
problem. Although classification is a well-
studied problem, most of the current classi-
fication algorithms require that all or a por-
tion of the the entire dataset remain perma-
nently in memory. This limits their suitability
for mining over large databases. We present
a new decision-tree-based classification algo-
rithm, called SPRINT that removes all of the
memory restrictions, and is fast and scalable.
The algorithm has also been designed to be
easily parallelized, allowing many processors
to work together to build a single consistent
model. This parallelization, also presented
here, exhibits excellent scalability as well. The
combination of these characteristics makes the
proposed algorithm an ideal tool for data min-
ing.

1 Introduction

Classification has been identified as an important
problem in the emerging field of data mining[2]. While
classification is a well-studied problem (see [24] [16]
for excellent overviews), only recently has there been
focus on algorithms that can handle large databases.
The intuition is that by classifying larger datasets, we

Also, Department of Computer Science, University of Wis-
consin, Madison.

Permission to copy without fee all 07 part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment, To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

will be able to improve the accuracy of the classifi-
cation model. This hypothesis has been studied and
confirmed in [4], [5], and [6].

In classification, we are given a set of example
records, called a training set, where each record con-
sists of several fields or attributes. Attributes are ei-
ther continuous, coming from an ordered domain, or
categorical, coming from an unordered domain. One
of the attributes, called the classifyang attribute, in-
dicates the class to which each example belongs. The
objective of classification is to build a model of the
classifying attribute based upon the other attributes.
Figure l(a) shows a sample training set where each
record represents a car-insurance applicant. Here we
are interested in building a model of what makes an
applicant a high or low insurance risk. Once a model
is built, it can be used to determine the class of fu-
ture unclassified records. Applications of classification
arise in diverse fields, such as retail target market-
ing, customer retention, fraud detection and medical
diagnosis[l6].

Several classification models have been proposed
over the years, e.g. neural networks [14], statistical
models like linear/quadratic discriminants [13], deci-
sion trees [3][20] and genetic models[llj. Among these
models, decision trees are particularly suited for data
mining [2][15]. D ecision trees can be constructed rel-
atively fast compared to other methods. Another ad-
vantage is that decision tree models are simple and
easy to understand [20]. Moreover, trees can be eas-
ily converted into SQL statements that can be used to
access databases efficiently [l]. Finally, decision tree
classifiers obtain similar and sometimes better accu-
racy when compared with other classification methods
[16]. We have therefore focused on building a scalable
and parallelizable decision-tree classifier.

A decision tree is a class discriminator that recur-
sively partitions the training set until each partition
consists entirely or dominantly of examples from one
class. Each non-leaf node of the tree contains a split
point which is a test on one or more attributes and

544

rid
0
1
2

4"
5

(a) Training Set

Age < 25

High LOW

(b) Decision Tree

Figure 1: Car Insurance Example

determines how the data is partitioned. Figure l(b)
shows a sample decision-tree classifier based on the
training set shown in Figure la. (Age < 25) and
(CaTType E (sports}) are two split points that parti-
tion the records into High and Low risk classes. The
decision tree can be used to screen future insurance
applicants by classifying them into the High or Low
risk categories.

Random sampling is often used to handle large
datasets when building a classifier. Previous work on
building tree-classifiers from large datasets includes
Catlett’s study of two methods [4][25] for improv-
ing the time taken to develop a classifier. The first
method used data sampling at each node of the de-
cision tree, and the second discretized continuous at-
tributes. However, Catlett only considered datasets
that could fit in memory; the largest training data
had only 32,000 examples. Chan and Ytolfo [5] [6]
considered partitioning the data into subsets that fit
in memory and then developing a classifier on each
subset in parallel. The output of multiple classifiers is
combined using various algorithms to reach the final
classification. Their studies showed that although this
approach reduces running time significantly, the mul-
tiple classifiers did not achieve the accuracy of a single
classifier built using all the data. Incremental learning
methods, where the data is classified in batches, have
also been studied [18][25]. However, the cumulative
cost of classifying data incrementally can sometimes
exceed the cost of classifying the entire training set
once. In [l], a classifier built with database consider-
ations, the size of the training set was overlooked. In-
stead, the focus was on building a classifier that could
use database indices to improve the retrieval efficiency

while classifying test data.
Work by Fifield in [9] examined parallelizing the

decision-tree classifier ID3 [19] serial classifier. Like
ID3, this work assumes that the entire dataset can
fit in real memory and does not address issues such
as disk I/O. The algorithms presented there also re-
quire processor communication to evaluate any given
split point, limiting the number of possible partition-
ing schemes the algorithms can efficiently consider for
each leaf. The Darwin toolkit from Thinking Ma-
chines also contained a parallel implementation of the
decision-tree classifier CART [3]; however, details of
this parallelization are not available in published liter-
ature.

The recently proposed SLIQ classification algorithm
[15] addressed several issues in building a fast scalable
classifier. SLIQ gracefully handles disk-resident data
that is too large to fit in memory. It does not use
small memory-sized datasets obtained via sampling or
partitioning, but builds a single decision tree using
the entire training set. However, SLIQ does require
that some data per record stay memory-resident all
the time. Since the size of this in-memory data struc-
ture grows in direct proportion to the number of input
records, this limits the amount of data that can be
classified by SLIQ.

We present in this paper a decision-tree-based clas-
sification algorithm, called SPRINTl, that removes all
of the memory restrictions, and is fast and scalable.
The algorithm has also been designed to be easily par-
allelized. Measurements of this parallel implementa-
tion on a shared-nothing IBM POWERparallel System
SP2 [12], also presented here, show that SPRINT has
excellent scaleup, speedup and sizeup properties. The
combination of these characteristics makes SPRINT
an ideal tool for data mining.

The rest of the paper is organized as follows: In
Section 2 we discuss issues in building decision trees
and present the serial SPRINT algorithm. Section 3
describes the parallelization of SPRINT as well as two
approaches to parallelizing SLIQ. In Section 4, we give
a performance evaluation of the serial and parallel al-
gorithms using measurements from their implementa-
tion on SP2. We conclude with a summary in Sec-
tion 5. An expanded version of this paper is available
in [22].

2 Serial Algorithm

A decision tree classifier is built in two phases [3] [20]:
a growth phase and a prune phase. In the growth
phase, the tree is built by recursively partitioning the

‘SPRINT stands for Scalable PaRallelizable INndution of -- -
decision Trees.

545

data until each partition is either “pure” (all mem-
bers belong to the same class) or sufficiently small (a
parameter set by the user). This process is shown in
Figure 2. The form of the split used to partition the
data depends on the type of the attribute used in the
split. Splits for a continuous attribute A are of the
form value(A) < c where t is a value in the domain
of A. Splits for a categorical attribute A are of the
form value(A) E X where X C domain(A). We con-
sider only binary splits because they usually lead to
more accurate trees; however, our techniques can be
extended to handle multi-way splits. Once the tree
has been fully grown, it is pruned in the second phase
to generalize the tree by removing dependence on sta-
tistical noise or variation that may be particular only
to the training set.

The tree growth phase is computationally much
more expensive than pruning, since the data is scanned
multiple times in this part of the computation. Prun-
ing requires access only to the fully grown decision-
tree. Our experience based on our previous work on
SLIQ has been that the pruning phase typically takes
less than 1% of the total time needed to build a clas-
sifier . We therefore focus only on the tree-growth
phase. For pruning, we use the algorithm used in
SLIQ, which is based on the Minimum Description
Length principle[21].

Partition(Data S)
if (all points in 5’ are of the same class) then

return;
for each attribute A do

evaluate splits on attribute A;
Use best split found to partition S into S1 and Sz;
Partition(&);
Partition(&);

Initial call: Partition(TrainingData)

Figure 2: General Tree-growth Algorithm

There are two major issues that have critical per-
formance implications in the tree-growth phase:

1. How to find split points that define node tests.

2. Having chosen a split point, how to partition the
data.

The well-known CART [3] and C4.5 [20] classifiers,
for example, grow trees depth-first and repeatedly sort
the data at every node of the tree to arrive at the
best splits for numeric attributes. SLIQ, on the other
hand, replaces this repeated sorting with one-time sort
by using separate lists for each attribute (see [15] for
details). SLIQ uses a data structure called a class list
which must remain memory resident at all times. The
size of this structure is proportional to the number of

Figure 3: Example of attribute lists

input records, and this is what limits the number of
input records that SLIQ can handle.

SPRINT addresses the above two issues differently
from previous algorithms; it has no restriction on the
size of input and yet is a fast algorithm. It shares with
SLIQ the advantage of a one-time sort, but uses differ-
ent-data structures. In particular, there is no structure
like the class list that grows with the size of input and
needs to be memory-resident. We further discuss dif-
ferences between SLIQ and SPRINT in Section 2.4,
after we have described SPRINT.

2.1 Data Structures

Attribute lists

SPRINT initially creates an attribute list for each at-
tribute in the data (see Figure 3). Entries in these lists,
which we will call attribute records, consist of an at-
tribute value, a class label, and the index of the record
(tid) from which these value were obtained. Initial lists
for continuous attributes are sorted by attribute value
once when first created. If the entire data does not fit
in memory, attribute lists are maintained on disk.

The initial lists created from the training set are
associated with the root of the classification tree. As
the tree is grown and nodes are split to create new
children, the attribute lists belonging to each node are
partitioned and associated with the children. When
a list is partitioned, the order of the records in the
list is preserved; thus, partitioned lists never require
resorting. Figure 4 shows this process pictorially.

Histograms

For continuous attributes, two histograms are associ-
ated with each decision-tree node that is under con-
sideration for splitting. These histograms, denoted
as Cabove and Cbelowr are used to capture the class
distribution of the attribute records at a given node.
As we will see, C&low maintains this distribution for
attribute records that have already been processed,
whereas C&,,e maintains it for those that have not.

Categorical attributes also have a histogram asso-
ciated with a node. However, only one histogram is
needed and it contains the class distribution for each
value of the given attribute. We call this histogram a
count 7nat7-h.

546

Amibute lists for node I

Attribute lisa for node 0

spom High I

Amibute lists for node 2

CarType Class Tid

sports High 2

family LOW 3

buck LOW 4

Figure 4: Splitting a node’s attribute lists

Since attribute lists are processed one at a time,
memory is required for only one set of such histograms.
Figures 5 and 6 show example histograms.

2.2 Finding split points

While growing the tree, the goal at each node is to de-
termine the split point that “best” divides the train-
ing records belonging to that leaf. The value of a
split point depends upon how well it separates the
classes. Several splitting indices have been proposed
in the past to evaluate the goodness of the split. We
use the gini index, originally proposed in [3], based
on our experience with SLIQ. For a data set S con-
taining examples from n classes, gini is defined as
gini = 1 - Cp; where pj is the relative frequency
of class j in S. If a split divides S into two subsets Sr
and Sz, the index of the divided data gini,,ut(S) is
given by gini,,ut(S) = Fgini(Si) + :gini(&). The
advantage of this index is that its calculation requires
only the distribution of the class values in each of the
partitions.

To find the best split point for a node, we scan
each of the node’s attribute lists and evaluate splits
based on that attribute. The attribute containing the
split point with the lowest value for the gini index is
then used to split the node. We discuss next how split
points are evaluated within each attribute list.

Continuous attributes

For continuous attributes, the candidate split points
are mid-points between every two consecutive at-,
tribute values in the training data. For determining
the split for an attribute for a node, the histogram
(&low is initialized to zeros whereas Cabove is initia.l-

State of Class Histograms

Attribute List
Position of
cursor in scan

Age Class tid

17 High 1 -_- --_- ___
20 High 5 --- ---_ -__

il

t- position 0

23 High --- _-__ -’ - t- position 3
32 Low 4 --- __-_ -__
43 High 2 --- _--_ -_-
68 Low 3

f- position 6

H L
cursor ‘below
position 0:

IO]

‘above 14121

H L
cursor &low
position 3:

[3101

‘above 11121

cursor
pos%on 6:

cbelow 4 If-$-J

‘above (0101

Figure 5: Evaluating continuous split points

ized with the class distribution for all the records for
the node. For the root node, this distribution is ob-
tained at the time of sorting. For other nodes this
distribution is obtained when the node is created (dis-
cussed below in Section 2.3).

Attribute records are read one at a time and &low
and Cabove are updated for each record read. Figure 5
shows the schematic for this histogram update. After
each record is read, a split between values (i.e. at-
tribute records) we have and have not yet seen is eval-
uated. Note that Cberour and C&,ve have all the neces-
sary information to compute the gini index. !! Ice the
lists for continuous attributes are kept in sorteu order,
each of the candidate split-points for an attribute are
evaluated in a single sequential scan of the correspond-
ing attribute list. If a winning split point was found
during the scan, it is saved and the f&low and Cabme
histograms are deallocated before processing the next
attribute.

Categorical attributes

For categorical split-points, we make a single scan
through the attribute list collecting counts in the count
matrix for each combination of class label and at-
tribute value found in the data. A sample of a count
matrix after a data scan is shown in Figure 6. Once we
are finished with the scan, we consider all subsets of
the attribute values as possible split points and com-
pute the corresponding gini index. If the cardinality of
an attribute is above certain threshold, the greedy al-
gorithm initially proposed for IND [17] is instead used
for subsetting. The important point is that the infor-
mation required for computing the gini index for any
subset splitting is available in the count matrix.

The memory allocated for a count matrix is re-
claimed after the splits for the corresponding attribute
have been evaluated.

547

Attribute List
1

Car Type Class tid

family High 0 ---- --..-- --- ----
sports High 1 ---- --_---- -----
sports High 2 __---_._---_~.__-_
family Low 3 _---------------
truck Low 4 -- ---- _ .--- .--.----
family High 5

Count Matrix

Figure 6: Evaluating categorical split points

2.3 Performing the split

Once the best split point has been found for a node,
we execute the split by creating child nodes and divid-
ing the attribute records between them. This requires
splitting the node’s lists for every attribute into two
(see Figure 4 for an illustration)2. Partitioning the at-
tribute list of the winning attribute (i.e. the attribute
used in the winning split point - Age in our exam-
ple) is straightforward. We scan the list, apply the
split test, and move the records to two new attribute
lists - one for each new child.

Unfortunately, for the remaining attribute lists of
the node (CarType in our example), we have no test
that we can apply to the attribute values to decide
how to divide the records. We therefore work with
the rids. As we partition the list of the splitting at-
tribute (i.e. Age), we insert the rids of each record into
a probe structure (hash table), noting to which child
the record was moved. Once we have collected all the
rids, we scan the lists of the remaining attributes and
probe the hash table with the rid of each record. The
retrieved information tells us with which child to place
the record.

If the hash-table is too large for memory, splitting
is done in more than one step. The attribute list for
the splitting attribute is partitioned upto the attribute
record for which the hash table will fit in memory;
portions of attribute lists of non-splitting attributes
are partitioned; and the process is repeated for the re-
mainder of the attribute list of the splitting attribute.
If the hash-table can fit in memory (quite likely for
nodes at lower levels of the tree), a simple optimiza-
tion is possible. We can build the hash table out of the
rids of only the smaller of the two children. Relative
sizes of the two children are determined at the time
the split point is evaluated.

During this splitting operation, we also build class

2Because file-creation is usually an expensive operation, we
have a solution that does not require the creation of new files
for each new attribute list. The details of this optimization can
be found in [22].

Figure 7: Attribute and Class lists in SLIQ

1

histograms for each new leaf. As stated earlier, these
histograms are used to initialize the Cabove histograms
when evaluating continuous split-points in the next
pass.

2.4 Comparison with SLIQ

The technique of creating separate attribute lists from
the original data was first proposed by the SLIQ al-
gorithm [15]. In SLIQ, an entry in an attribute list
consists only of an attribute value and a rid, the class
labels are kept in a separate data-structure called a
class list which is indexed by rid. In addition to the
class label, an entry in the class list also contains a
pointer to a node of the classification tree which in-
dicates to which node the corresponding data record
currently belongs. Finally, there is only one list for
each attribute. Figure 7 illustrates these data struc-
tures.

The advantage of not having separate sets of at-
tribute lists for each node is that SLIQ does not have
to rewrite these lists during a split. Reassignment of
records to new nodes is done. simply by changing the
tree-pointer field of the corresponding class-list entry.
Since the class list is randomly accessed and frequently
updated, it must stay in memory all the time or suffer
severe performance degradations. The size of this list
also grows in direct proportion to the training-set size.
This ultimately limits the size of the training set that
SLIQ can handle.

Our goal in designing SPRINT was not to outper-
form SLIQ on datasets where a class list can fit in
memory. Rather, the purpose of our algorithm is to
develop an accurate classifier for datasets that are sim-
ply too large for any other algorithm, and to be able
to develop such a classifier efficiently. Also, SPRINT
is designed to be easily parallelizable as we will see in
the next section.

3 - Parallelizing Classification

We now turn to the problem of building classification
trees in parallel. We again focus only on the growth
phase due to its da&intensive nature. The pruning
phase can easily be done off-line on a serial processor as
it is computationally inexpensive, and requires access
to only the decision-tree grown in the training phase.

548

In parallel tree-growth, the primary problems re-
main finding good split-points and partitioning the
data using the discovered split points. As in any par-
allel algorithm, there are also issues of data place-
ment and workload balancing that must be consid-
ered. Fortunately, these issues are easily resolved in
the SPRINT algorithm. ‘SPRINT was specifically de-
signed to remove any dependence on data structures
that are either centralized or memory-resident; be-
cause of these design goals, SPRINT parallelizes quite
naturally and efficiently. In this section we will present
how we parallelize SPRINT. For comparison, we also
discuss two parallelizations of SLIQ.

These algorithms all assume a shared-nothing paral-
lel environment where each of N processors has private
memory and disks. The processors are connected by a
communication network and can communicate only by
passing messages. Examples of such parallel machines
include GAMMA [7], Teradata [23], and IBM’s SP2
P21.

3.1 Data Placement and Workload Balancing

Recall that the main data structures used in SPRINT
are the attribute lists and the class histograms.
SPRINT achieves uniform data placement and work-
load balancing by distributing the attribute lists
evenly over N processors of a shared-nothing machine.
This allows each processor to work on only l/N of the
total data.

The partitioning is achieved by first distributing the
training-set examples equally among all the processors.
Each processor then generates its own attribute-list
partitions in parallel by projecting out each attribute
from training-set examples it was assigned. Lists for
categorical attributes are therefore evenly partitioned
and require no further processing. However, contin-
uous attribute lists must now be sorted and reparti-
tioned into contiguous sorted sections. For this, we use
the parallel sorting algorithm given in [8]. The result
of this sorting operation is that each processor gets a
fairly equal-sized sorted sections of each attribute list.
Figure 3 shows an example of the initial distribution
of the lists for a 2-processor configuration.

3.2 Finding split points

Finding split points in parallel SPRINT is very simi-
lar to the serial algorithm. In the serial version, pro-
cessors scan the attribute lists either evaluating split-
points for continuous attributes or collecting distri-
bution counts for categorical attributes. This does
not change in the parallel algorithm - no extra work
or communication is required while each processor is
scanning its attribute-list partitions. We get the full
advantage of having N processors simultaneously and

Processor 0
Car Type Class rid

family High 0
sports High 1
sports High 2

Processor 1
Car Type Class rid

family Low 3
truck Low 4
family High 5

Figure 8: Parallel Data Placement

independently processing l/N of the total data. The
differences between the serial and parallel algorithms
appear only before and after the attribute-list parti-
tions are scanned.

Continuous attributes

For continuous attributes, the parallel version of
SPRINT differs from the serial version in how it ini-
tializes the C&low and C,,bove class-histograms. In a
parallel environment, each processor has a separate
contiguous section of a “global” attribute list. Thus,
a processor’s Cbelou, and Cabove histograms must be
initialized to reflect the fact that there are sections
of the attribute list on other processors. Specifically,
C&l- must initially reflect the class distribution of
all sections of an attribute-list assigned to processors
of lower rank. The C&,,,Ve histograms must likewise
initially reflect the class distribution of the local sec-
tion as well as all sections assigned to processors of
higher rank. As in the serial version, these statistics
are gathered when attribute lists for new leaves are
created. After collecting statistics, the information is
exchanged between all the processors and stored with
each leaf, where it is later used to initialize that leaf’s
C&we and Cb&vr class histograms.

Once all the attribute-list sections of a leaf have
been processed, each processor will have what it con-
siders to be the best split for that leaf. The processors
then communicate to determine which of the N split
points has the lowest cost.

Categorical attributes

For categorical attributes, the difference between the
serial and parallel versions arises after an attribute-list
section has been scanned to build the count matrix for
a leaf. Since the count matrix built by each processor
is based on “local” information only, we must exchange
these matrices to get the “global” counts. This is done
by choosing a coordinator to collect the count matrices
from each processor. The coordinator process then
sums the local matrices to get the global count-matrix.

549

As in the serial algorithm, the global matrix is used to
find the best split for each categorical attribute.

3.3 Performing the Splits

Having determined the winning split points, splitting
the attribute lists for each leaf is nearly identical to
the serial algorithm with each processor responsible
for splitting its own attribute-list partitions. The only
additional step is that before building the probe struc-
ture, we will need to collect rids from all the pro-
cessors. (Recall that a processor can have attribute
records belonging to any leaf.) Thus, after partition-
ing the list of a leaf’s splitting attribute, the rids col-
lected during the scan are exchanged with all other
processors. After the exchange, each processor contin-
ues independently, constructing a probe-structure with
all the rids and using it to split the leaf’s remaining
attribute lists.

No further work is needed to parallelize the
SPRINT algorithm. Because of its design, SPRINT
does not require a complex parallelizatiori and, as we
will see in Section 4.3, scales quite nicely.

3.4 Parallelizing SLIQ

The attribute lists used in SLIQ can be partitioned
evenly across multiple processors as is done in parallel
SPRINT. However, the parallelization of SLIQ is com-
plicated by its use of a centralized, memory-resident
data-structure - the class list. Because the class list
requires random access and frequent updating, parallel
algorithms based on SLIQ require that the class list be
kept memory-resident. This leads us to two primary
approaches for parallelizing SLIQ : one where the class
list is replicated in the memory of every processor, and
the other where it is distributed such that each pro-
cessor’s memory holds only a portion of the entire list.

3.4.1 Replicated Class List

In the first approach, which we call SLIQ/R, the class
list for the entire training set is replicated in the lo-
cal memory of every processor. Split-points are eval-
uated in the same manner as in parallel SPRINT,
by exchanging count matrices and properly initializ-
ing the class histograms. However, the partitioning
of attribute lists according to a chosen split point is
different.

Performing the splits requires updating the class list
for each training example. Since every processor must
maintain a consistent copy of the entire class list, every
class-list update must be communicated to and applied
by every processor. Thus, the time for this part of tree
growth will increase with the size of the.training set,
even if the amount of data at each node remains fixed.

Although SLIQ/R parallelizes split-point evalua-
tion and class-list updates, it suffers from the same
drawback as SLIQ - the size of the training set is lim-
ited by the memory size of a single processor. Since
each processor has a full copy of the class list, SLIQ/R
can efficiently process a training set only if the class
list for the entire database can fit in the memory of
every processor. This is true regardless of the number
of processors used.

3.4.2 Distributed Class List

Our second approach to parallelizing SLIQ, called
SLIQ/D, helps to relieve SLIQ ‘s memory constraints
by partitioning the class list over the multiprocessor.
Each.processor therefore contains only l/Nth of the
class list. Note that the partitioning of the class list
has no correlation with the partitioning of the continu-
ous attribute lists; the class label corresponding to an
attribute value could reside on a different processor.
This implies that communication is required to look
up a “non-local” class label. Since the class list is cre-
ated from the original partitioned training-set, it will
be perfectly correlated with categorical attribute lists.
Thus, communication is only required for continuous
attributes.

Given this scenario, SLIQ/D has high communica-
tion costs while evaluating continuous split points. As
each attribute list is scanned, we need to look-up the
corresponding class label and tree-pointer for each at-
tribute value. This implies that each processor will
require communication for N - l/N of its data. Also,
each processor will have to service lookup requests
from other processors in the middle of scanning its
attribute lists. Although our SLIQ/D implementation
reduces the communication costs by batching the look-
ups to the class lists, the extra computation that each
processor performs in requesting and servicing remote
look-ups to the class list is still high. SLIQ/D also
incurs similar communication costs when the class list
is updated while partitioning the data using the best
splits found.

4 Performance Evaluation

The primary metric for evaluating classifier perfor-
mance is class$cation accuracy - the percentage of
test samples that are correctly classified. The other
important metrics are class$cation time and the size
of the decision tree. The ideal goal for a decision tree
classifier is to produce compact, accurate trees in a
short classification time.

Although the data structures and how a tree is
grown are very different in SPRINT and SLIQ, they
consider the same types of splits at every node and

550

use identical splitting index (gini index). The two al-
gorithms, therefore, produce identical trees for a given
dataset (provided SLIQ can handle the dataset). Since
SPRINT uses SLIQ ‘s pruning method, the final trees
obtained using the two algorithms are also identical.
Thus, the accuracy and tree sise characteristics of
SPRINT are identical to SLIQ. A detailed compari-
son of SLIQ’s accuracy, execution time, and tree sire
with those of CART [3] and C4 (a predecessor of C4.5
[20]) is available in [15]. This performance evalua-
tion shows that compared to other classifiers, SLIQ
achieves comparable or better classification accuracy,
but produces small decision trees and has small exe-
cution times. We, therefore, focus only on the classi-
fication time metric in our performance evaluation in
this paper.

4.1 Datasets

An often used benchmark in classification is
STATLOG[lG]; h owever, its largest dataset contains
only 57,000 training examples. Due to the lack of a
classification benchmark containing large datasets, we
use the synthetic database proposed in [2] for all of our
experiments. Each record in this synthetic database
consists of nine attributes four of which are shown in
Table 1. Ten classification functions were also pro-
posed in [2] to produce databases with distributions
with varying complexities. In this paper, we present
results for two of these function. Function 2 results
in fairly small decision trees, while function 7 pro-
duces very large trees. Both these functions divide
the database into two classes: Group A and Group B.
Figure 9 shows the predicates for Group A are shown
for each function.

Function 2 - Group A:
((age < 40) A (50K ,< salary 5 lOOK)) V
((40 < age < 60) A (75K < salary > 125K)) V
((age 2 60) A (25K < salary 5 75K))

Function 7 - Group A:
disposable > 0
where disposable = (0.67 x (salary + commission))

- (0.2 x loan - 20K)

Figure 9: Classification Functions for Synthetic Data

Table 1: Description of Attributes for Synthetic Data

uniformly distributed from 20k to 150k

8000 - I

7000 -

8 6000

E 5000
'3

f 4000

8 3000
L

0 0.5 1 1.5 2 2.5 3
of examples (in millions)

Figure 10: Response times for serial algorithms

4.2 Serial Performance

For our serial analysis, we compare the response times
of serial SPRINT and SLIQ on training sets of vari-
ous sizes. We only compare our algorithm with SLIQ
because is has been shown in [15] that SLIQ in most
cases outperforms other popular decision-tree classi-
fiers. For the disk-resident datasets which we will be
exploring here, SLIQ is the only other viable algo-
rithm.

Experiments were conducted on an IBM RS/SOOO
250 workstation running AIX level 3.2.5. The CPU
has a clock rate of 66MHz and 16MB of main memory.
Apart from the standard UNIX daemons and system
processes, experiments were run on an idle system.

We used training sets ranging in size from 10,000
records to 2.5 million records. This range was selected
to examine how well SPRINT performs in operating
regions where SLIQ can and cannot run. The results
are shown in Figure 10 on databases generated using
function 2.

The results are very encouraging. As expected, for
data sizes for which the class list could fit in memory,
SPRINT is somewhat slower than SLIQ. In this oper-
ating region, we are pitting SPRINT ‘s rewriting of the
dataset to SLIQ ‘s in-memory updates to the class list.
What is surprising is that even in this region SPRINT
comes quite close to SLIQ. However, as soon as we
cross an input size threshold (about 1.5 million records
for our system configuration), SLIQ starts thrashing,
whereas SPRINT continues to exhibit a nearly linear
scaleup.

4.3 Parallel Performance

To examine how well the SPRINT algorithm performs
in parallel environments, we implemented its paral-
lelization on an IBM SP2 [12], using the standard MPI
communication primitives [lo]. The use of MPI allows
our implementation to be completely portable to other

551

2 4 6 6 10 12 14 16 16 20
#Of processors

Figure 11: Response times for parallel algorithms

shared-nothing parallel architectures, including work-
station clusters. Experiments were conducted on a
16-node IBM SP2 Model 9076. Each node in the mul-
tiprocessor is a 370 Node consisting of a POWER1 pro-
cessor running at 62.5MHZ with 128MB of real mem-
ory. Attached to each node is a 1OOMB disk on which
we stored our datasets. The processors all run AIX
level 4.1 and communicate with each other through
the High-Performance-Switch with HPS-tb2 adaptors.
See [12] for SP2 hardware details.

Due to the available disk space being smaller than
the available memory, we are prevented from running
any experiments where attribute lists are forced to
disk. This results in I/O costs, which scale linearly
in SPRINT, becoming a smaller fraction of the overall
execution time. Any other costs that may not scale
well will thus be exaggerated.

4.3.i Comparison of Parallel Algorithms

We first compare parallel SPRINT to the two paral-
lelizations of SLIQ. In these experiments, each proces-
sor contained 50,000 training examples and the num-
ber of processors varied from 2 to 16. The total
training-set size thus ranges from 100,000 records to
1.6 million records. The response times3 for each al-
gorithm are shown in Figure 11. To get a more de-
tailed understanding of each algorithm’s performance,
we show in Figure 12 a breakdown of total response
time into time spent discovering split points and time
spent partitioning the data using the split points.

Immediately obvious is how poorly SLIQ/D per-
forms relative to both SLIQ/R and SPRINT. The com-
munication costs of using a distributed class-list and
time spent servicing class-list requests from other pro-
cessors are extremely high - so much so that SLIQ/D
will probably never be an attractive algorithm despite

SResponse time is the total real time measured from the start
of the program until its termination.

its ability to handle training sets that are too large
for either SLIQ and SLIQ/R. As shown in Figure 12,

For our first set of sensitivity experiments, each pro-
cessor has a fixed number of training examples and we
examined SPRINT ‘s performance as the configuration
changed from 2 to 16 processors. We studied three of
these scaleup experiments, with 10, 50 and 100 thou-
sand examples on each processor. The results of these
runs are shown in Figure 13. Since the amount of data
per processor does not change for a given experiment,
the response times should ideally remain constant as
the configuration size is increased.

552

The results show nice scaleup. The drop in scaleup
is due to the time needed to build SPRINT ‘s rid hash-
tables. While the amount of local data on each proces-
sor remains constant, the size of these hash-tables does
not. The rid hash-tables grow in direct proportion to
the total training-set size. Overall, we can conclude
that parallel SPRINT can indeed. be used to classify
very large datasets.

4.3.3 Speedup

Next, we examined the speedup characteristics of
SPRINT. We kept the total training set constant and
changed the processor configuration. We did this for
training-set sizes of 800 thousand and 1.6 million ex-
amples. Results for these speedup experiments are

SLIQ/D pays this high penalty in both components of
tree growth (i.e. split-point discovery and data parti-
tioning) and scales quite poorly.

SPRINT performs much better than SLIQ/R, both
in terms of response times and scalability. For both
algorithms, finding the best split points takes roughly
constant time, because the amount of data on each
processor remains fixed as the problem size is in-
creased. The increase in response times is from time
spent partitioning the data. SPRINT shows a slight
increase because of the cost of building the rid hash-
tables used to split the attribute lists. Since these
hash-tables may potentially contain the rids of all the
tuples belonging to a particular leaf-node, this cost in-
creases with the data size. SLIQ/R performs worse
than SPRINT, because each processor in SLIQ/R
must not only communicate but also apply class-list
updates for every training example. As the problem
size increase, so do the number of updates each pro-
cessor must perform. While SPRINT may perform as
much communication as SLIQ/R, it only requires pro-
cessors to update their own local records.

The rest of this section examines the scalability,
speedup, and sizeup characteristics of SPRINT in
greater detail.

4.3.2 Scaleup

Total time spent discovering splits Total time spent partitioning data

::I: 1

600

200 -
+-----*.---..-..-.--+.-...--.----.----.---------+
Q. .._ 0 __._____....__ a _.._____..._______._............ 0

0' ' I ' I " "
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

#of processors #of processors

Figure 12: Breakdown 6f response times

Total response time

Elzi/

0’1 ’ t ’ I I ’ I I ’
2 4 6 8 10 12 14 16 18 20

#of processors

Relative response time
2,, I I 86 I I I

4 i~~~~~

if 0.; -

0.6 -

0.4 -

2 4 6 8 10 12 14 16 18 20
##of processors

Figure 13: Scaleup of SPRINT

Total response time
1200, I I I I u I I 1

1.6M Examples -
0.8M Examples -+--- _

Relative response time
101, I I I I I I 1 I

8-

Ideal +-
1.6M Examples -+---

6-

0’) ’ ’ I ’ ’ ’ ’ ’ ’
2'4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

#of prccessors- #of processors

Figure 14: Speedup of SPRINT

553

Total response time Relative response time

I 0' I
20 40 60 80 100 0 20 40 60 80 100

of examples per processor (in thousands) # of examples per processor (in thousands)

4 w iij

Figure 15: Sizeup of SPRINT

shown in Figure 14. Due to limited disk space, the
2-processor configuration could not create the dataset
containing the 1.6 million examples. As can be ex-
pected, speedup performance improves with larger
datasets. For small datasets, communication becomes
a significant factor of the overall response time. This
is especially true as the configuration sizes are in-
creased to the point where there are only a few tens of
thousand examples on each processor. Another factor
limiting speedup performance is the rid hash-tables.
These hash tables have the same size regardless of the
processor configuration. Building these hash-tables
thus requires a constant amount of time whether we
are using 2 or 16 processors. These experiments show
that we do get nice speed-up with SPRINT, with the
results improving for larger datasets.

4.3.4 Sizeup

In sizeup experiments, we examine how SPRINT per-
forms on a fixed processor configuration as we in-
crease the size of the dataset. Figure 15 shows this for
three different processor configurations where the per-
processor training-set size is increased from 10 thou-
sand to 100 thousand examples. SPRINT exhibits
sizeup results better than ideal - processing twice as
much data does not require twice as much process-
ing time. The reason is that communication costs
for exchanging split points and count matrices does
not change as the training-set size is increased. Thus,
while doubling the training-set size doubles most of the
response costs, others remain unaffected. The result
is superior sizeup performance.

5 Conclusion

With the recent emergence of the field of data min-
ing, there is a great need for algorithms for building
classifiers that can handle very large databases. The

recently proposed SLIQ algorithm was the first to ad-
dress these concerns. Unfortunately, due to the use of
a memory-resident data structure that scales with the
size of the training set, even SLIQ has an upper limit
on the number of records it can process.

In this paper, we presented a new classification al-
gorithm called SPRINT that removes all memory re-
strictions that limit existing decision-tree algorithms,
and yet exhibits the same excellent scaling behavior
as SLIQ. By eschewing the need for any centralized,
memory-resident data structures, SPRINT efficiently
allows classification of virtually any sized dataset.
Our design goals also included the requirement that
the algorithm be easily and efficiently parallelizable.
SPRINT does have an efficient parallelization that re-
quires very few additions to the serial algorithm.

Using measurements from actual implementations
of these algorithms, we showed that SPRINT is an at-
tractive algorithm in both serial and parallel environ-
ments. On a uniprocessor, SPRINT exhibits execu-
tion times that compete favorably with SLIQ. We also
showed that SPRINT handles datasets that are too
large for SLIQ to handle. Moreover, SPRINT scales
nicely with the size of the dataset, even into the large
problem regions where no other decision-tree classifier
can compete.

Our implementation on SP2, a shared-nothing mul-
tiprocessor, showed that SPRINT does indeed paral-
lelize efficiently. It outperforms our two parallel im-
plementations of SLIQ in terms of execution time and
scalability Parallel SPRINT ‘s efficiency improves as
the problem size increases. It has excellent scaleup,
speedup, and sizeup characteristics.

Given SLIQ ‘s somewhat superior performance in
problem regions where a class list can fit in mem-
ory, one can envision a hybrid algorithm combining
SPRINT and SLIQ . The algorithm would initially run
SPRINT until a point is reached where a class list

554

could be constructed and kept in real memory. At this
point, the algorithm would switch over from SPRINT
to SLIQ exploiting the advantages of each algorithm
in the operating regions for which they were intended.
Since the amount of memory needed to build a class
list is easily calculated, the switch over point would
not be difficult to determine. We plan to build such a
hybrid algorithm in future.

References

PI

PI

[31

PI

I51

PI

171

PI

PI

PO1

Rakesh Agrawal, Sakti Ghosh, Tomasz Imielinski,
Bala Iyer, and Arun Swami. An interval classi-
fier for database mining applications. In PTOC. of
the VLDB Conference, pages 560-573, Vancou-
ver, British Columbia, Canada, August 1992.

Rakesh Agrawal, Tomasz Imielinski, and Arun
Swami. Database mining: A performance per-
spective. IEEE Transactions on Knowledge and
Data Engineering, 5(6):914-925, December 1993.

L. Breiman, J. H. Friedman, R. A. Olshen, and
C. J. Stone. Classification and Regression Trees.
Wadsworth, Belmont, 1984.

Jason Catlett. Megainduction: Machine Learning
on Very Large Databases. PhD thesis, University
of Sydney, 1991.

Philip K. Chan and Salvatore J. Stolfo. Ex-
periments on multistrategy learning by met.+
learning. In Proc. Second Intl. Conference on
Info. and Knowledge Mgmt., pages 314-323,1993.

Philip K. Chan and Salvatore J. Stolfo. Meta
learning for multistrategy and parallel learning.
In PTOC. Second Intl. Workshop on Multistrategy
Learning, pages 150-165, 1993.

D. J. Dewitt, S. Ghandeharizadeh, D. A. Schnei-
der, A. Bricker, H.-I. Hsiao, and R. Rasmussen.
The Gamma database machine project. In IEEE
Transactions on Knowledge and Data Engineer-
ing, pages 4462, March 1990.

D. J. Dewitt, J. F. Naughton, and D. A. Schnei-
der. Parallel sorting on a shared-nothing architec-
ture using probabilistic splitting. In Proc. of the
1st Int’l Conf. on Parallel and Distributed Infor-
mation Systems, pages 280-291, December 1991.

D. J. Fifield. Distributed tree construction from
large datasets. Bachelor’s Honours Thesis, Aus-
tralian National University, 1992.

Message Passing Interface Forum. MPI: A
Message-Passing Interface Standard, May 1994.

WI

P21

P31

P41

P51

WI

P71

P81

WI

WI

WI

WI

P31

P41

P51

D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Morgan
Kaufmann, 1989.

Int’l Business Machines. Scalable PO WERparallel
Systems, GA23-2475-02 edition, February 1995.

M. James. Classificaton Algorithms. Wiley, 1985.

R. Lippmann. An introduction to computing with
neural nets. IEEE ASSP Magazine, 4(22), April
1987.

Manish Mehta, Rakesh Agrawal, and Jorma Ris-
sanen. SLIQ: A fast scalable classifier for data
mining. In PTOC. of the Fifth Int’l Conference
on Extending Database Technology (EDBT), Avi-
gnon, France, March 1996.

D. Michie, D. J. Spiegelhalter, and C. C. Taylor.
Machine Learning, Neural and Statistical Classi-
fication. Ellis Horwood, 1994.

NASA Ames Research Center. Introduction to
IND Version 2.1, GA23-2475-02 edition, 1992.

J. R. Quinlan. Induction over large databases.
Technical Report STAN-CS-739, Stanfard Uni-
versity, 1979.

J. Ross Quinlan. Induction of decision trees. Ma-
chine Learning, 1:81-106, 1986.

J. Ross Quinlan. C4.5: Programs for Machine
Learning. Morgan Kaufman, 1993.

J. Rissanen. Stochastic Complexity in Statistical
Inquiry. World Scientific Publ. Co., 1989.

John C. Shafer, Rakesh Agrawal, and Manish
Mehta. SPRINT: A scalable parallel classifier for
data
mining. Research report, IBM Almaden Research
Center, San Jose, California, 1996. Available from
http://www.almaden.ibm.com/cs/quest.

Teradata Corp. DBC/lOl2 Data Base Computer
System Manual, ClO-0001-02 release 2.0 edition,
November 1985.

Sholom M. Weiss and Casimir A. Kulikowski.
Computer Systems that Learn: Classification and
Prediction Methods from Statistics, Neural Nets,
Machine Learning, and Expert Systems. Morgan
Kaufman, 1991.

J. Wirth and J. Catlett. Experiments on the costs
and benefits of windowing in ID3. In 5th Int’l
Conference on Machine Learning, 1988.

555

