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Abstract 

Classification is an important data mining 
problem. Although classification is a well- 
studied problem, most of the current classi- 
fication algorithms require that all or a por- 
tion of the the entire dataset remain perma- 
nently in memory. This limits their suitability 
for mining over large databases. We present 
a new decision-tree-based classification algo- 
rithm, called SPRINT that removes all of the 
memory restrictions, and is fast and scalable. 
The algorithm has also been designed to be 
easily parallelized, allowing many processors 
to work together to build a single consistent 
model. This parallelization, also presented 
here, exhibits excellent scalability as well. The 
combination of these characteristics makes the 
proposed algorithm an ideal tool for data min- 
ing. 

1 Introduction 

Classification has been identified as an important 
problem in the emerging field of data mining[2]. While 
classification is a well-studied problem (see [24] [16] 
for excellent overviews), only recently has there been 
focus on algorithms that can handle large databases. 
The intuition is that by classifying larger datasets, we 

Also, Department of Computer Science, University of Wis- 
consin, Madison. 

Permission to copy without fee all 07 part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the VLDB copyright notice and 
the title of the publication and its date appear, and notice is 
given that copying is by permission of the Very Large Data Base 
Endowment, To copy otherwise, or to republish, requires a fee 
and/or special permission from the Endowment. 

Proceedings of the 22nd VLDB Conference 
Mumbai(Bombay), India, 1996 

will be able to improve the accuracy of the classifi- 
cation model. This hypothesis has been studied and 
confirmed in [4], [5], and [6]. 

In classification, we are given a set of example 
records, called a training set, where each record con- 
sists of several fields or attributes. Attributes are ei- 
ther continuous, coming from an ordered domain, or 
categorical, coming from an unordered domain. One 
of the attributes, called the classifyang attribute, in- 
dicates the class to which each example belongs. The 
objective of classification is to build a model of the 
classifying attribute based upon the other attributes. 
Figure l(a) shows a sample training set where each 
record represents a car-insurance applicant. Here we 
are interested in building a model of what makes an 
applicant a high or low insurance risk. Once a model 
is built, it can be used to determine the class of fu- 
ture unclassified records. Applications of classification 
arise in diverse fields, such as retail target market- 
ing, customer retention, fraud detection and medical 
diagnosis[l6]. 

Several classification models have been proposed 
over the years, e.g. neural networks [14], statistical 
models like linear/quadratic discriminants [13], deci- 
sion trees [3][20] and genetic models[llj. Among these 
models, decision trees are particularly suited for data 
mining [2][15]. D ecision trees can be constructed rel- 
atively fast compared to other methods. Another ad- 
vantage is that decision tree models are simple and 
easy to understand [20]. Moreover, trees can be eas- 
ily converted into SQL statements that can be used to 
access databases efficiently [l]. Finally, decision tree 
classifiers obtain similar and sometimes better accu- 
racy when compared with other classification methods 
[16]. We have therefore focused on building a scalable 
and parallelizable decision-tree classifier. 

A decision tree is a class discriminator that recur- 
sively partitions the training set until each partition 
consists entirely or dominantly of examples from one 
class. Each non-leaf node of the tree contains a split 
point which is a test on one or more attributes and 
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Figure 1: Car Insurance Example 

determines how the data is partitioned. Figure l(b) 
shows a sample decision-tree classifier based on the 
training set shown in Figure la. (Age < 25) and 
(CaTType E (sports}) are two split points that parti- 
tion the records into High and Low risk classes. The 
decision tree can be used to screen future insurance 
applicants by classifying them into the High or Low 
risk categories. 

Random sampling is often used to handle large 
datasets when building a classifier. Previous work on 
building tree-classifiers from large datasets includes 
Catlett’s study of two methods [4][25] for improv- 
ing the time taken to develop a classifier. The first 
method used data sampling at each node of the de- 
cision tree, and the second discretized continuous at- 
tributes. However, Catlett only considered datasets 
that could fit in memory; the largest training data 
had only 32,000 examples. Chan and Ytolfo [5] [6] 
considered partitioning the data into subsets that fit 
in memory and then developing a classifier on each 
subset in parallel. The output of multiple classifiers is 
combined using various algorithms to reach the final 
classification. Their studies showed that although this 
approach reduces running time significantly, the mul- 
tiple classifiers did not achieve the accuracy of a single 
classifier built using all the data. Incremental learning 
methods, where the data is classified in batches, have 
also been studied [18][25]. However, the cumulative 
cost of classifying data incrementally can sometimes 
exceed the cost of classifying the entire training set 
once. In [l], a classifier built with database consider- 
ations, the size of the training set was overlooked. In- 
stead, the focus was on building a classifier that could 
use database indices to improve the retrieval efficiency 

while classifying test data. 
Work by Fifield in [9] examined parallelizing the 

decision-tree classifier ID3 [19] serial classifier. Like 
ID3, this work assumes that the entire dataset can 
fit in real memory and does not address issues such 
as disk I/O. The algorithms presented there also re- 
quire processor communication to evaluate any given 
split point, limiting the number of possible partition- 
ing schemes the algorithms can efficiently consider for 
each leaf. The Darwin toolkit from Thinking Ma- 
chines also contained a parallel implementation of the 
decision-tree classifier CART [3]; however, details of 
this parallelization are not available in published liter- 
ature. 

The recently proposed SLIQ classification algorithm 
[15] addressed several issues in building a fast scalable 
classifier. SLIQ gracefully handles disk-resident data 
that is too large to fit in memory. It does not use 
small memory-sized datasets obtained via sampling or 
partitioning, but builds a single decision tree using 
the entire training set. However, SLIQ does require 
that some data per record stay memory-resident all 
the time. Since the size of this in-memory data struc- 
ture grows in direct proportion to the number of input 
records, this limits the amount of data that can be 
classified by SLIQ. 

We present in this paper a decision-tree-based clas- 
sification algorithm, called SPRINTl, that removes all 
of the memory restrictions, and is fast and scalable. 
The algorithm has also been designed to be easily par- 
allelized. Measurements of this parallel implementa- 
tion on a shared-nothing IBM POWERparallel System 
SP2 [12], also presented here, show that SPRINT has 
excellent scaleup, speedup and sizeup properties. The 
combination of these characteristics makes SPRINT 
an ideal tool for data mining. 

The rest of the paper is organized as follows: In 
Section 2 we discuss issues in building decision trees 
and present the serial SPRINT algorithm. Section 3 
describes the parallelization of SPRINT as well as two 
approaches to parallelizing SLIQ. In Section 4, we give 
a performance evaluation of the serial and parallel al- 
gorithms using measurements from their implementa- 
tion on SP2. We conclude with a summary in Sec- 
tion 5. An expanded version of this paper is available 
in [22]. 

2 Serial Algorithm 

A decision tree classifier is built in two phases [3] [20]: 
a growth phase and a prune phase. In the growth 
phase, the tree is built by recursively partitioning the 

‘SPRINT stands for Scalable PaRallelizable INndution of -- - 
decision Trees. 
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data until each partition is either “pure” (all mem- 
bers belong to the same class) or sufficiently small (a 
parameter set by the user). This process is shown in 
Figure 2. The form of the split used to partition the 
data depends on the type of the attribute used in the 
split. Splits for a continuous attribute A are of the 
form value(A) < c where t is a value in the domain 
of A. Splits for a categorical attribute A are of the 
form value(A) E X where X C domain(A). We con- 
sider only binary splits because they usually lead to 
more accurate trees; however, our techniques can be 
extended to handle multi-way splits. Once the tree 
has been fully grown, it is pruned in the second phase 
to generalize the tree by removing dependence on sta- 
tistical noise or variation that may be particular only 
to the training set. 

The tree growth phase is computationally much 
more expensive than pruning, since the data is scanned 
multiple times in this part of the computation. Prun- 
ing requires access only to the fully grown decision- 
tree. Our experience based on our previous work on 
SLIQ has been that the pruning phase typically takes 
less than 1% of the total time needed to build a clas- 
sifier . We therefore focus only on the tree-growth 
phase. For pruning, we use the algorithm used in 
SLIQ, which is based on the Minimum Description 
Length principle[21]. 

Partition(Data S) 
if (all points in 5’ are of the same class) then 

return; 
for each attribute A do 

evaluate splits on attribute A; 
Use best split found to partition S into S1 and Sz; 
Partition(& ); 
Partition(&); 

Initial call: Partition(TrainingData) 

Figure 2: General Tree-growth Algorithm 

There are two major issues that have critical per- 
formance implications in the tree-growth phase: 

1. How to find split points that define node tests. 

2. Having chosen a split point, how to partition the 
data. 

The well-known CART [3] and C4.5 [20] classifiers, 
for example, grow trees depth-first and repeatedly sort 
the data at every node of the tree to arrive at the 
best splits for numeric attributes. SLIQ, on the other 
hand, replaces this repeated sorting with one-time sort 
by using separate lists for each attribute (see [15] for 
details). SLIQ uses a data structure called a class list 
which must remain memory resident at all times. The 
size of this structure is proportional to the number of 

Figure 3: Example of attribute lists 

input records, and this is what limits the number of 
input records that SLIQ can handle. 

SPRINT addresses the above two issues differently 
from previous algorithms; it has no restriction on the 
size of input and yet is a fast algorithm. It shares with 
SLIQ the advantage of a one-time sort, but uses differ- 
ent-data structures. In particular, there is no structure 
like the class list that grows with the size of input and 
needs to be memory-resident. We further discuss dif- 
ferences between SLIQ and SPRINT in Section 2.4, 
after we have described SPRINT. 

2.1 Data Structures 

Attribute lists 

SPRINT initially creates an attribute list for each at- 
tribute in the data (see Figure 3). Entries in these lists, 
which we will call attribute records, consist of an at- 
tribute value, a class label, and the index of the record 
(tid) from which these value were obtained. Initial lists 
for continuous attributes are sorted by attribute value 
once when first created. If the entire data does not fit 
in memory, attribute lists are maintained on disk. 

The initial lists created from the training set are 
associated with the root of the classification tree. As 
the tree is grown and nodes are split to create new 
children, the attribute lists belonging to each node are 
partitioned and associated with the children. When 
a list is partitioned, the order of the records in the 
list is preserved; thus, partitioned lists never require 
resorting. Figure 4 shows this process pictorially. 

Histograms 

For continuous attributes, two histograms are associ- 
ated with each decision-tree node that is under con- 
sideration for splitting. These histograms, denoted 
as Cabove and Cbelowr are used to capture the class 
distribution of the attribute records at a given node. 
As we will see, C&low maintains this distribution for 
attribute records that have already been processed, 
whereas C&,,e maintains it for those that have not. 

Categorical attributes also have a histogram asso- 
ciated with a node. However, only one histogram is 
needed and it contains the class distribution for each 
value of the given attribute. We call this histogram a 
count 7nat7-h. 
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Amibute lists for node I 

Attribute lisa for node 0 

spom High I 

Amibute lists for node 2 

CarType Class Tid 

sports High 2 

family LOW 3 

buck LOW 4 

Figure 4: Splitting a node’s attribute lists 

Since attribute lists are processed one at a time, 
memory is required for only one set of such histograms. 
Figures 5 and 6 show example histograms. 

2.2 Finding split points 

While growing the tree, the goal at each node is to de- 
termine the split point that “best” divides the train- 
ing records belonging to that leaf. The value of a 
split point depends upon how well it separates the 
classes. Several splitting indices have been proposed 
in the past to evaluate the goodness of the split. We 
use the gini index, originally proposed in [3], based 
on our experience with SLIQ. For a data set S con- 
taining examples from n classes, gini is defined as 
gini = 1 - Cp; where pj is the relative frequency 
of class j in S. If a split divides S into two subsets Sr 
and Sz, the index of the divided data gini,,ut(S) is 
given by gini,,ut(S) = Fgini(Si) + :gini(&). The 
advantage of this index is that its calculation requires 
only the distribution of the class values in each of the 
partitions. 

To find the best split point for a node, we scan 
each of the node’s attribute lists and evaluate splits 
based on that attribute. The attribute containing the 
split point with the lowest value for the gini index is 
then used to split the node. We discuss next how split 
points are evaluated within each attribute list. 

Continuous attributes 

For continuous attributes, the candidate split points 
are mid-points between every two consecutive at-, 
tribute values in the training data. For determining 
the split for an attribute for a node, the histogram 
(&low is initialized to zeros whereas Cabove is initia.l- 

State of Class Histograms 

Attribute List 
Position of 
cursor in scan 

Age Class tid 

17 High 1 -_- --_- ___ 
20 High 5 --- ---_ -__ 

il 

t- position 0 

23 High --- _-__ -’ - t- position 3 
32 Low 4 --- __-_ -__ 
43 High 2 --- _--_ -_- 
68 Low 3 

f- position 6 

H L 
cursor ‘below 
position 0: 

IO] 

‘above 14121 

H L 
cursor &low 
position 3: 

[3101 

‘above 11121 

cursor 
pos%on 6: 

cbelow 4 If-$-J 

‘above (0101 

Figure 5: Evaluating continuous split points 

ized with the class distribution for all the records for 
the node. For the root node, this distribution is ob- 
tained at the time of sorting. For other nodes this 
distribution is obtained when the node is created (dis- 
cussed below in Section 2.3). 

Attribute records are read one at a time and &low 
and Cabove are updated for each record read. Figure 5 
shows the schematic for this histogram update. After 
each record is read, a split between values (i.e. at- 
tribute records) we have and have not yet seen is eval- 
uated. Note that Cberour and C&,ve have all the neces- 
sary information to compute the gini index. !! Ice the 
lists for continuous attributes are kept in sorteu order, 
each of the candidate split-points for an attribute are 
evaluated in a single sequential scan of the correspond- 
ing attribute list. If a winning split point was found 
during the scan, it is saved and the f&low and Cabme 
histograms are deallocated before processing the next 
attribute. 

Categorical attributes 

For categorical split-points, we make a single scan 
through the attribute list collecting counts in the count 
matrix for each combination of class label and at- 
tribute value found in the data. A sample of a count 
matrix after a data scan is shown in Figure 6. Once we 
are finished with the scan, we consider all subsets of 
the attribute values as possible split points and com- 
pute the corresponding gini index. If the cardinality of 
an attribute is above certain threshold, the greedy al- 
gorithm initially proposed for IND [17] is instead used 
for subsetting. The important point is that the infor- 
mation required for computing the gini index for any 
subset splitting is available in the count matrix. 

The memory allocated for a count matrix is re- 
claimed after the splits for the corresponding attribute 
have been evaluated. 
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Attribute List 
1 

Car Type Class tid 

family High 0 ---- --..-- --- ---- 
sports High 1 ---- --_---- ----- 
sports High 2 __---_._---_~.__-_ 
family Low 3 _--------------- 
truck Low 4 -- ---- _ .--- .--.---- 
family High 5 

Count Matrix 

Figure 6: Evaluating categorical split points 

2.3 Performing the split 

Once the best split point has been found for a node, 
we execute the split by creating child nodes and divid- 
ing the attribute records between them. This requires 
splitting the node’s lists for every attribute into two 
(see Figure 4 for an illustration)2. Partitioning the at- 
tribute list of the winning attribute (i.e. the attribute 
used in the winning split point - Age in our exam- 
ple) is straightforward. We scan the list, apply the 
split test, and move the records to two new attribute 
lists - one for each new child. 

Unfortunately, for the remaining attribute lists of 
the node (CarType in our example), we have no test 
that we can apply to the attribute values to decide 
how to divide the records. We therefore work with 
the rids. As we partition the list of the splitting at- 
tribute (i.e. Age), we insert the rids of each record into 
a probe structure (hash table), noting to which child 
the record was moved. Once we have collected all the 
rids, we scan the lists of the remaining attributes and 
probe the hash table with the rid of each record. The 
retrieved information tells us with which child to place 
the record. 

If the hash-table is too large for memory, splitting 
is done in more than one step. The attribute list for 
the splitting attribute is partitioned upto the attribute 
record for which the hash table will fit in memory; 
portions of attribute lists of non-splitting attributes 
are partitioned; and the process is repeated for the re- 
mainder of the attribute list of the splitting attribute. 
If the hash-table can fit in memory (quite likely for 
nodes at lower levels of the tree), a simple optimiza- 
tion is possible. We can build the hash table out of the 
rids of only the smaller of the two children. Relative 
sizes of the two children are determined at the time 
the split point is evaluated. 

During this splitting operation, we also build class 

2Because file-creation is usually an expensive operation, we 
have a solution that does not require the creation of new files 
for each new attribute list. The details of this optimization can 
be found in [22]. 

Figure 7: Attribute and Class lists in SLIQ 

1 

histograms for each new leaf. As stated earlier, these 
histograms are used to initialize the Cabove histograms 
when evaluating continuous split-points in the next 
pass. 

2.4 Comparison with SLIQ 

The technique of creating separate attribute lists from 
the original data was first proposed by the SLIQ al- 
gorithm [15]. In SLIQ, an entry in an attribute list 
consists only of an attribute value and a rid, the class 
labels are kept in a separate data-structure called a 
class list which is indexed by rid. In addition to the 
class label, an entry in the class list also contains a 
pointer to a node of the classification tree which in- 
dicates to which node the corresponding data record 
currently belongs. Finally, there is only one list for 
each attribute. Figure 7 illustrates these data struc- 
tures. 

The advantage of not having separate sets of at- 
tribute lists for each node is that SLIQ does not have 
to rewrite these lists during a split. Reassignment of 
records to new nodes is done. simply by changing the 
tree-pointer field of the corresponding class-list entry. 
Since the class list is randomly accessed and frequently 
updated, it must stay in memory all the time or suffer 
severe performance degradations. The size of this list 
also grows in direct proportion to the training-set size. 
This ultimately limits the size of the training set that 
SLIQ can handle. 

Our goal in designing SPRINT was not to outper- 
form SLIQ on datasets where a class list can fit in 
memory. Rather, the purpose of our algorithm is to 
develop an accurate classifier for datasets that are sim- 
ply too large for any other algorithm, and to be able 
to develop such a classifier efficiently. Also, SPRINT 
is designed to be easily parallelizable as we will see in 
the next section. 

3 - Parallelizing Classification 

We now turn to the problem of building classification 
trees in parallel. We again focus only on the growth 
phase due to its da&intensive nature. The pruning 
phase can easily be done off-line on a serial processor as 
it is computationally inexpensive, and requires access 
to only the decision-tree grown in the training phase. 
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In parallel tree-growth, the primary problems re- 
main finding good split-points and partitioning the 
data using the discovered split points. As in any par- 
allel algorithm, there are also issues of data place- 
ment and workload balancing that must be consid- 
ered. Fortunately, these issues are easily resolved in 
the SPRINT algorithm. ‘SPRINT was specifically de- 
signed to remove any dependence on data structures 
that are either centralized or memory-resident; be- 
cause of these design goals, SPRINT parallelizes quite 
naturally and efficiently. In this section we will present 
how we parallelize SPRINT. For comparison, we also 
discuss two parallelizations of SLIQ. 

These algorithms all assume a shared-nothing paral- 
lel environment where each of N processors has private 
memory and disks. The processors are connected by a 
communication network and can communicate only by 
passing messages. Examples of such parallel machines 
include GAMMA [7], Teradata [23], and IBM’s SP2 
P21. 

3.1 Data Placement and Workload Balancing 

Recall that the main data structures used in SPRINT 
are the attribute lists and the class histograms. 
SPRINT achieves uniform data placement and work- 
load balancing by distributing the attribute lists 
evenly over N processors of a shared-nothing machine. 
This allows each processor to work on only l/N of the 
total data. 

The partitioning is achieved by first distributing the 
training-set examples equally among all the processors. 
Each processor then generates its own attribute-list 
partitions in parallel by projecting out each attribute 
from training-set examples it was assigned. Lists for 
categorical attributes are therefore evenly partitioned 
and require no further processing. However, contin- 
uous attribute lists must now be sorted and reparti- 
tioned into contiguous sorted sections. For this, we use 
the parallel sorting algorithm given in [8]. The result 
of this sorting operation is that each processor gets a 
fairly equal-sized sorted sections of each attribute list. 
Figure 3 shows an example of the initial distribution 
of the lists for a 2-processor configuration. 

3.2 Finding split points 

Finding split points in parallel SPRINT is very simi- 
lar to the serial algorithm. In the serial version, pro- 
cessors scan the attribute lists either evaluating split- 
points for continuous attributes or collecting distri- 
bution counts for categorical attributes. This does 
not change in the parallel algorithm - no extra work 
or communication is required while each processor is 
scanning its attribute-list partitions. We get the full 
advantage of having N processors simultaneously and 

Processor 0 
Car Type Class rid 

family High 0 
sports High 1 
sports High 2 

Processor 1 
Car Type Class rid 

family Low 3 
truck Low 4 
family High 5 

Figure 8: Parallel Data Placement 

independently processing l/N of the total data. The 
differences between the serial and parallel algorithms 
appear only before and after the attribute-list parti- 
tions are scanned. 

Continuous attributes 

For continuous attributes, the parallel version of 
SPRINT differs from the serial version in how it ini- 
tializes the C&low and C,,bove class-histograms. In a 
parallel environment, each processor has a separate 
contiguous section of a “global” attribute list. Thus, 
a processor’s Cbelou, and Cabove histograms must be 
initialized to reflect the fact that there are sections 
of the attribute list on other processors. Specifically, 
C&l- must initially reflect the class distribution of 
all sections of an attribute-list assigned to processors 
of lower rank. The C&,,,Ve histograms must likewise 
initially reflect the class distribution of the local sec- 
tion as well as all sections assigned to processors of 
higher rank. As in the serial version, these statistics 
are gathered when attribute lists for new leaves are 
created. After collecting statistics, the information is 
exchanged between all the processors and stored with 
each leaf, where it is later used to initialize that leaf’s 
C&we and Cb&vr class histograms. 

Once all the attribute-list sections of a leaf have 
been processed, each processor will have what it con- 
siders to be the best split for that leaf. The processors 
then communicate to determine which of the N split 
points has the lowest cost. 

Categorical attributes 

For categorical attributes, the difference between the 
serial and parallel versions arises after an attribute-list 
section has been scanned to build the count matrix for 
a leaf. Since the count matrix built by each processor 
is based on “local” information only, we must exchange 
these matrices to get the “global” counts. This is done 
by choosing a coordinator to collect the count matrices 
from each processor. The coordinator process then 
sums the local matrices to get the global count-matrix. 
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As in the serial algorithm, the global matrix is used to 
find the best split for each categorical attribute. 

3.3 Performing the Splits 

Having determined the winning split points, splitting 
the attribute lists for each leaf is nearly identical to 
the serial algorithm with each processor responsible 
for splitting its own attribute-list partitions. The only 
additional step is that before building the probe struc- 
ture, we will need to collect rids from all the pro- 
cessors. (Recall that a processor can have attribute 
records belonging to any leaf.) Thus, after partition- 
ing the list of a leaf’s splitting attribute, the rids col- 
lected during the scan are exchanged with all other 
processors. After the exchange, each processor contin- 
ues independently, constructing a probe-structure with 
all the rids and using it to split the leaf’s remaining 
attribute lists. 

No further work is needed to parallelize the 
SPRINT algorithm. Because of its design, SPRINT 
does not require a complex parallelizatiori and, as we 
will see in Section 4.3, scales quite nicely. 

3.4 Parallelizing SLIQ 

The attribute lists used in SLIQ can be partitioned 
evenly across multiple processors as is done in parallel 
SPRINT. However, the parallelization of SLIQ is com- 
plicated by its use of a centralized, memory-resident 
data-structure - the class list. Because the class list 
requires random access and frequent updating, parallel 
algorithms based on SLIQ require that the class list be 
kept memory-resident. This leads us to two primary 
approaches for parallelizing SLIQ : one where the class 
list is replicated in the memory of every processor, and 
the other where it is distributed such that each pro- 
cessor’s memory holds only a portion of the entire list. 

3.4.1 Replicated Class List 

In the first approach, which we call SLIQ/R, the class 
list for the entire training set is replicated in the lo- 
cal memory of every processor. Split-points are eval- 
uated in the same manner as in parallel SPRINT, 
by exchanging count matrices and properly initializ- 
ing the class histograms. However, the partitioning 
of attribute lists according to a chosen split point is 
different. 

Performing the splits requires updating the class list 
for each training example. Since every processor must 
maintain a consistent copy of the entire class list, every 
class-list update must be communicated to and applied 
by every processor. Thus, the time for this part of tree 
growth will increase with the size of the.training set, 
even if the amount of data at each node remains fixed. 

Although SLIQ/R parallelizes split-point evalua- 
tion and class-list updates, it suffers from the same 
drawback as SLIQ - the size of the training set is lim- 
ited by the memory size of a single processor. Since 
each processor has a full copy of the class list, SLIQ/R 
can efficiently process a training set only if the class 
list for the entire database can fit in the memory of 
every processor. This is true regardless of the number 
of processors used. 

3.4.2 Distributed Class List 

Our second approach to parallelizing SLIQ, called 
SLIQ/D, helps to relieve SLIQ ‘s memory constraints 
by partitioning the class list over the multiprocessor. 
Each.processor therefore contains only l/Nth of the 
class list. Note that the partitioning of the class list 
has no correlation with the partitioning of the continu- 
ous attribute lists; the class label corresponding to an 
attribute value could reside on a different processor. 
This implies that communication is required to look 
up a “non-local” class label. Since the class list is cre- 
ated from the original partitioned training-set, it will 
be perfectly correlated with categorical attribute lists. 
Thus, communication is only required for continuous 
attributes. 

Given this scenario, SLIQ/D has high communica- 
tion costs while evaluating continuous split points. As 
each attribute list is scanned, we need to look-up the 
corresponding class label and tree-pointer for each at- 
tribute value. This implies that each processor will 
require communication for N - l/N of its data. Also, 
each processor will have to service lookup requests 
from other processors in the middle of scanning its 
attribute lists. Although our SLIQ/D implementation 
reduces the communication costs by batching the look- 
ups to the class lists, the extra computation that each 
processor performs in requesting and servicing remote 
look-ups to the class list is still high. SLIQ/D also 
incurs similar communication costs when the class list 
is updated while partitioning the data using the best 
splits found. 

4 Performance Evaluation 

The primary metric for evaluating classifier perfor- 
mance is class$cation accuracy - the percentage of 
test samples that are correctly classified. The other 
important metrics are class$cation time and the size 
of the decision tree. The ideal goal for a decision tree 
classifier is to produce compact, accurate trees in a 
short classification time. 

Although the data structures and how a tree is 
grown are very different in SPRINT and SLIQ, they 
consider the same types of splits at every node and 
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use identical splitting index (gini index). The two al- 
gorithms, therefore, produce identical trees for a given 
dataset (provided SLIQ can handle the dataset). Since 
SPRINT uses SLIQ ‘s pruning method, the final trees 
obtained using the two algorithms are also identical. 
Thus, the accuracy and tree sise characteristics of 
SPRINT are identical to SLIQ. A detailed compari- 
son of SLIQ’s accuracy, execution time, and tree sire 
with those of CART [3] and C4 (a predecessor of C4.5 
[20]) is available in [15]. This performance evalua- 
tion shows that compared to other classifiers, SLIQ 
achieves comparable or better classification accuracy, 
but produces small decision trees and has small exe- 
cution times. We, therefore, focus only on the classi- 
fication time metric in our performance evaluation in 
this paper. 

4.1 Datasets 

An often used benchmark in classification is 
STATLOG[lG]; h owever, its largest dataset contains 
only 57,000 training examples. Due to the lack of a 
classification benchmark containing large datasets, we 
use the synthetic database proposed in [2] for all of our 
experiments. Each record in this synthetic database 
consists of nine attributes four of which are shown in 
Table 1. Ten classification functions were also pro- 
posed in [2] to produce databases with distributions 
with varying complexities. In this paper, we present 
results for two of these function. Function 2 results 
in fairly small decision trees, while function 7 pro- 
duces very large trees. Both these functions divide 
the database into two classes: Group A and Group B. 
Figure 9 shows the predicates for Group A are shown 
for each function. 

Function 2 - Group A: 
((age < 40) A (50K ,< salary 5 lOOK)) V 
((40 < age < 60) A (75K < salary > 125K)) V 
((age 2 60) A (25K < salary 5 75K)) 

Function 7 - Group A: 
disposable > 0 
where disposable = (0.67 x (salary + commission)) 

- (0.2 x loan - 20K) 

Figure 9: Classification Functions for Synthetic Data 

Table 1: Description of Attributes for Synthetic Data 

uniformly distributed from 20k to 150k 
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Figure 10: Response times for serial algorithms 

4.2 Serial Performance 

For our serial analysis, we compare the response times 
of serial SPRINT and SLIQ on training sets of vari- 
ous sizes. We only compare our algorithm with SLIQ 
because is has been shown in [15] that SLIQ in most 
cases outperforms other popular decision-tree classi- 
fiers. For the disk-resident datasets which we will be 
exploring here, SLIQ is the only other viable algo- 
rithm. 

Experiments were conducted on an IBM RS/SOOO 
250 workstation running AIX level 3.2.5. The CPU 
has a clock rate of 66MHz and 16MB of main memory. 
Apart from the standard UNIX daemons and system 
processes, experiments were run on an idle system. 

We used training sets ranging in size from 10,000 
records to 2.5 million records. This range was selected 
to examine how well SPRINT performs in operating 
regions where SLIQ can and cannot run. The results 
are shown in Figure 10 on databases generated using 
function 2. 

The results are very encouraging. As expected, for 
data sizes for which the class list could fit in memory, 
SPRINT is somewhat slower than SLIQ. In this oper- 
ating region, we are pitting SPRINT ‘s rewriting of the 
dataset to SLIQ ‘s in-memory updates to the class list. 
What is surprising is that even in this region SPRINT 
comes quite close to SLIQ. However, as soon as we 
cross an input size threshold (about 1.5 million records 
for our system configuration), SLIQ starts thrashing, 
whereas SPRINT continues to exhibit a nearly linear 
scaleup. 

4.3 Parallel Performance 

To examine how well the SPRINT algorithm performs 
in parallel environments, we implemented its paral- 
lelization on an IBM SP2 [12], using the standard MPI 
communication primitives [lo]. The use of MPI allows 
our implementation to be completely portable to other 
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Figure 11: Response times for parallel algorithms 

shared-nothing parallel architectures, including work- 
station clusters. Experiments were conducted on a 
16-node IBM SP2 Model 9076. Each node in the mul- 
tiprocessor is a 370 Node consisting of a POWER1 pro- 
cessor running at 62.5MHZ with 128MB of real mem- 
ory. Attached to each node is a 1OOMB disk on which 
we stored our datasets. The processors all run AIX 
level 4.1 and communicate with each other through 
the High-Performance-Switch with HPS-tb2 adaptors. 
See [12] for SP2 hardware details. 

Due to the available disk space being smaller than 
the available memory, we are prevented from running 
any experiments where attribute lists are forced to 
disk. This results in I/O costs, which scale linearly 
in SPRINT, becoming a smaller fraction of the overall 
execution time. Any other costs that may not scale 
well will thus be exaggerated. 

4.3.i Comparison of Parallel Algorithms 

We first compare parallel SPRINT to the two paral- 
lelizations of SLIQ. In these experiments, each proces- 
sor contained 50,000 training examples and the num- 
ber of processors varied from 2 to 16. The total 
training-set size thus ranges from 100,000 records to 
1.6 million records. The response times3 for each al- 
gorithm are shown in Figure 11. To get a more de- 
tailed understanding of each algorithm’s performance, 
we show in Figure 12 a breakdown of total response 
time into time spent discovering split points and time 
spent partitioning the data using the split points. 

Immediately obvious is how poorly SLIQ/D per- 
forms relative to both SLIQ/R and SPRINT. The com- 
munication costs of using a distributed class-list and 
time spent servicing class-list requests from other pro- 
cessors are extremely high - so much so that SLIQ/D 
will probably never be an attractive algorithm despite 

SResponse time is the total real time measured from the start 
of the program until its termination. 

its ability to handle training sets that are too large 
for either SLIQ and SLIQ/R. As shown in Figure 12, 

For our first set of sensitivity experiments, each pro- 
cessor has a fixed number of training examples and we 
examined SPRINT ‘s performance as the configuration 
changed from 2 to 16 processors. We studied three of 
these scaleup experiments, with 10, 50 and 100 thou- 
sand examples on each processor. The results of these 
runs are shown in Figure 13. Since the amount of data 
per processor does not change for a given experiment, 
the response times should ideally remain constant as 
the configuration size is increased. 
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The results show nice scaleup. The drop in scaleup 
is due to the time needed to build SPRINT ‘s rid hash- 
tables. While the amount of local data on each proces- 
sor remains constant, the size of these hash-tables does 
not. The rid hash-tables grow in direct proportion to 
the total training-set size. Overall, we can conclude 
that parallel SPRINT can indeed. be used to classify 
very large datasets. 

4.3.3 Speedup 

Next, we examined the speedup characteristics of 
SPRINT. We kept the total training set constant and 
changed the processor configuration. We did this for 
training-set sizes of 800 thousand and 1.6 million ex- 
amples. Results for these speedup experiments are 

SLIQ/D pays this high penalty in both components of 
tree growth (i.e. split-point discovery and data parti- 
tioning) and scales quite poorly. 

SPRINT performs much better than SLIQ/R, both 
in terms of response times and scalability. For both 
algorithms, finding the best split points takes roughly 
constant time, because the amount of data on each 
processor remains fixed as the problem size is in- 
creased. The increase in response times is from time 
spent partitioning the data. SPRINT shows a slight 
increase because of the cost of building the rid hash- 
tables used to split the attribute lists. Since these 
hash-tables may potentially contain the rids of all the 
tuples belonging to a particular leaf-node, this cost in- 
creases with the data size. SLIQ/R performs worse 
than SPRINT, because each processor in SLIQ/R 
must not only communicate but also apply class-list 
updates for every training example. As the problem 
size increase, so do the number of updates each pro- 
cessor must perform. While SPRINT may perform as 
much communication as SLIQ/R, it only requires pro- 
cessors to update their own local records. 

The rest of this section examines the scalability, 
speedup, and sizeup characteristics of SPRINT in 
greater detail. 

4.3.2 Scaleup 
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Figure 12: Breakdown 6f response times 
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Figure 15: Sizeup of SPRINT 

shown in Figure 14. Due to limited disk space, the 
2-processor configuration could not create the dataset 
containing the 1.6 million examples. As can be ex- 
pected, speedup performance improves with larger 
datasets. For small datasets, communication becomes 
a significant factor of the overall response time. This 
is especially true as the configuration sizes are in- 
creased to the point where there are only a few tens of 
thousand examples on each processor. Another factor 
limiting speedup performance is the rid hash-tables. 
These hash tables have the same size regardless of the 
processor configuration. Building these hash-tables 
thus requires a constant amount of time whether we 
are using 2 or 16 processors. These experiments show 
that we do get nice speed-up with SPRINT, with the 
results improving for larger datasets. 

4.3.4 Sizeup 

In sizeup experiments, we examine how SPRINT per- 
forms on a fixed processor configuration as we in- 
crease the size of the dataset. Figure 15 shows this for 
three different processor configurations where the per- 
processor training-set size is increased from 10 thou- 
sand to 100 thousand examples. SPRINT exhibits 
sizeup results better than ideal - processing twice as 
much data does not require twice as much process- 
ing time. The reason is that communication costs 
for exchanging split points and count matrices does 
not change as the training-set size is increased. Thus, 
while doubling the training-set size doubles most of the 
response costs, others remain unaffected. The result 
is superior sizeup performance. 

5 Conclusion 

With the recent emergence of the field of data min- 
ing, there is a great need for algorithms for building 
classifiers that can handle very large databases. The 

recently proposed SLIQ algorithm was the first to ad- 
dress these concerns. Unfortunately, due to the use of 
a memory-resident data structure that scales with the 
size of the training set, even SLIQ has an upper limit 
on the number of records it can process. 

In this paper, we presented a new classification al- 
gorithm called SPRINT that removes all memory re- 
strictions that limit existing decision-tree algorithms, 
and yet exhibits the same excellent scaling behavior 
as SLIQ. By eschewing the need for any centralized, 
memory-resident data structures, SPRINT efficiently 
allows classification of virtually any sized dataset. 
Our design goals also included the requirement that 
the algorithm be easily and efficiently parallelizable. 
SPRINT does have an efficient parallelization that re- 
quires very few additions to the serial algorithm. 

Using measurements from actual implementations 
of these algorithms, we showed that SPRINT is an at- 
tractive algorithm in both serial and parallel environ- 
ments. On a uniprocessor, SPRINT exhibits execu- 
tion times that compete favorably with SLIQ. We also 
showed that SPRINT handles datasets that are too 
large for SLIQ to handle. Moreover, SPRINT scales 
nicely with the size of the dataset, even into the large 
problem regions where no other decision-tree classifier 
can compete. 

Our implementation on SP2, a shared-nothing mul- 
tiprocessor, showed that SPRINT does indeed paral- 
lelize efficiently. It outperforms our two parallel im- 
plementations of SLIQ in terms of execution time and 
scalability Parallel SPRINT ‘s efficiency improves as 
the problem size increases. It has excellent scaleup, 
speedup, and sizeup characteristics. 

Given SLIQ ‘s somewhat superior performance in 
problem regions where a class list can fit in mem- 
ory, one can envision a hybrid algorithm combining 
SPRINT and SLIQ . The algorithm would initially run 
SPRINT until a point is reached where a class list 
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could be constructed and kept in real memory. At this 
point, the algorithm would switch over from SPRINT 
to SLIQ exploiting the advantages of each algorithm 
in the operating regions for which they were intended. 
Since the amount of memory needed to build a class 
list is easily calculated, the switch over point would 
not be difficult to determine. We plan to build such a 
hybrid algorithm in future. 
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