
Research Article
Automated Bidirectional Languages Localization Testing for
Android Apps with Rich GUI

Aiman M. Ayyal Awwad and Wolfgang Slany

Institute of Software Technology, Graz University of Technology, 8010 Graz, Austria

Correspondence should be addressed to Wolfgang Slany; wolfgang.slany@tugraz.at

Received 24 February 2016; Accepted 11 April 2016

Academic Editor: Miltiadis D. Lytras

Copyright © 2016 A. M. Ayyal Awwad and W. Slany. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Mobile apps are everywhere. The release of apps on a worldwide scale requires them to be made available in many languages,
including bidirectional languages. Developers and translators are usually different persons. While automatic testing by itself
is important in general in order to be able to develop high quality software, such automatic tests become absolutely essential
when developers that do not possess enough knowledge about right-to-left languages need to maintain code that is written for
bidirectional languages. A few bidirectional localization tests of mobile applications exist. However, their functionality is limited
since they only cover translations and adoption of locales. In this paper we present our approach for automating the bidirectional
localization testing for Android applications with a complete consideration for BiDi-languages issues. The objective is to check for
any localization defects in the product.The proposedmethods are used to test issues of bidirectional apps in general and specifically
for the Arabic language. The results show that the methods are able to effectively reveal deficiencies in the app’s design, ensure that
the localized appmatches all expectations of local users, and guarantee that the product is culturally congruent to local conventions.

1. Introduction

The rapid proliferation of smartphones and the fast growth of
the internet make it easy for “apps” (applications for mobile
devices) to be accessed and downloaded from all over the
world. According to the latest preliminary results from Inter-
national Data Corporation (IDC), in the fourth quarter of
2015, smartphones sales topped in the worldwide with 399.5
million units and at the same time Android was the most
popular operating system with market share reach of 82.8%
[1, 2]. The greatest challenge is not only to develop apps but
also to test them to guarantee their usability and robustness.
Usually apps are distributed to many countries and language
regions [1, 3]. Many apps on Google Play are available in
more than 30 and up to 50 different languages from all over
the world, including languages with exotic fonts such as for
traditional andmodernChinese,Greek,Thai [4]. Every coun-
try or region has its own culture and customs; accordingly
Google strongly encourages developers to localize their apps
to meet demands of local users and thereby increase sales.

However, usually developers have little knowledge about
localization, and even if they would have the knowledge for
all the languages they would like to support, high-frequency
manual testing of all localized versions is practically infea-
sible, especially in a highly iterative development process
where tests would have to be executed many times a day in
order to avoid the accumulation and proliferation of bugs and
other problems among members of the development team.
Consequently, automatic app localization testing is getting
more and more attention [5].

In general, software globalization (G11n) is a process
which has two phases: internationalization (I18n), and local-
ization (L10n) [6]. Internationalization refers to the process
of designing and developing a system that support different
languages and regions. Localization refers to the process of
modifying internationalized software for use in a specific
country, region, or culture, by adding local-specific features
and translating text [6, 7].

The quality of international software is completely depen-
dent on the software’s localization level; therefore, localization

Hindawi Publishing Corporation
Mobile Information Systems
Volume 2016, Article ID 2872067, 13 pages
http://dx.doi.org/10.1155/2016/2872067

2 Mobile Information Systems

testing is an essential part of quality assurance of international
software and thus has turned into a major type of interna-
tional software testing [7, 8].

At present, most of the localization of software is only
expressed in language translation and adaptation of time,
date, number, and currency formats. Additionally, the local-
ized language accuracy, integrity, interface layout, and doc-
ument contents must satisfy the demands of local users and
regional culture [9]. However, localization testing usually is
either not done at all or infrequently done manually and
only partially, usually neglecting languages not spoken by the
testers; for example, localized versions of apps are only spot-
tested manually for a few selected languages before a release.

Popular software often is produced inmany language ver-
sions in order to bemore understandable and usable for users.
To an overwhelming percentage these applications are built
for left-to-right (LTR) languages such as English or German.
By contrast, Arabic language is written and read from right-
to-left (RTL) [9]. The Arabic language additionally is cursive
which means that the letters are connected together like
English handwriting.The same character set has been utilized
to express more than 25 languages in addition to Arabic [10].

In the area of software localization, the Arabic language
is considered as one of the most challenging languages. The
Arabic language “differs tremendously in terms of its char-
acters, morphology, and diacritization from other languages,
and to claimotherwisewould be amistake” [11]. It is ranked as
the 5th language in the world in number of native speakers,
and it is also one of the six official languages of the United
Nations [10]. As a result of these, different issues in software
localization to Arabic language should be considered.

Bidirectional (BiDi) languages such as Arabic, Farsi,
Urdu, and Hebrew, where text is read and written from RTL
while numbers are read and written from LTR, require layout
customizations not only for text but also for all user interface
(UI) widgets, including buttons, text views, edit texts, seek
bars, check boxes, menus, and dialog boxes. There are many
UI elements that need to be adjusted in both features and
content localization.These include strings, layout, images and
multimedia, character sets, and locale data [9].

Software localization testing is a critical method that is
carried out to control the quality of a product’s localization
for a specific geographical region or culture. This test is like a
passport for your app to transfer from country to country.The
main goal of automatic software L10n testing in a test driven
development process is to document the peculiarities of
different localization requirements for those developers that
do not know about them from their own cultural background
and to make sure that bugs and deficiencies that are intro-
duced at a later stage do not break the localization aspects of
the product.

Indeed, the tests must have the ability to confirm the
functionality and performance of localized software and
components according to the original product and to detect
linguistic and functional problems [12, 13].

It is essential that the correctness of translations is ver-
ified and that consideration of culture issues is guaranteed.

However, the localization process often introduces severe
issues such as the following [14, 15]:

(i) Clipped strings, or strings that overlap the edge of UI
elements on the screen.

(ii) Date and time formats.

(iii) Untranslated strings (strings are displayed in the
source language instead of their target language, pos-
sibly missing translation; this can happen quite fre-
quently when the app is developed in a continuous
way and not all translations can be added at the same
time).

(iv) Inappropriate layout or text direction.

(v) Incorrect alphabetical sorting.

Additionally, the L10n tests are in some cases able to reveal
deficiencies in the software’s design [9, 12].

Many localization issues need to be reviewed as discussed
by Kopsch [6]. Developers should consider the particular
characteristics of each destination. As a result of the trans-
lation, there are also some cosmetic checks that need to be
implemented. For example, one needs to check that the labels
still fit on the screen, whether they were clipped, that they
are not overlapped with other UI elements, and so forth as
discussed by Cavalleri [7].

During the localization process, many good practices and
tips should be considered, and the tester should follow the
localization checklist andmake it a priority to reveal I18n and
L10n defects by concentrating first on five languages includ-
ing English. Experience has shown that we are most likely
to find specific issues in the following languages: German,
Japanese, Arabic, and Hindi, as discussed by Kotze [12].

However, localization of mobile apps for BiDi-languages
has still not reached its full potential due to a shortage of
research. Most of the proposed approaches are designed to
test localization issues for desktop and traditional web appli-
cations as discussed in [9, 13]. In addition, a few of the
published papers identify the various unique challenges asso-
ciated with localization testing of mobile applications as dis-
cussed in [5, 16] and identify the components to be included
in an effective test strategy to build localization testing as
discussed in [5].

In this paper, an automated BiDi L10n testing approach
for smartphone applications is introduced; we have applied
the proposed methods to test critical issues in an image
manipulation app. The main contribution of this paper is
reengineering our Pocket Paint app to localize it with a full
and complete considerations for BiDi-languages issues, in
particular the Arabic language, and to check the app for any
localization defects in the user interface.

2. Bidirectional Localization Testing in
the Mobile World

A tendency toward mobile applications development has
increased in the past few years. Mobile phones and apps
play an integral part of our life, and applications must work

Mobile Information Systems 3

correctly anytime and anywhere.On the developer side, offer-
ing localized versions of one’s software simply increases the
number of potential customers, and there thus is a strong
economicmotivation to offer one’s software in as manymajor
languages of potential markets as possible. However, some
kind of internationalization and localization testing, be it
manually or automatically, is necessary before distribution to
the market makes sense.

The localization testing of apps faces many issues because
of the complexity of testing these apps and the limited
resources of mobile devices. Localization testing for mobile
applications is more complex and challenging as compared
to localization testing of traditional web-based and desktop
applications [17].

Mobile applications work in multiple operating systems
such as Android and iOS. Especially in the case of Android,
the many different Android versions supporting totally dif-
ferent GUI elements, the additional GUI modifications by
hardware manufacturers such as Samsung or HTC, the huge
number of different keyboard apps that users can freely
choose from, and the hugely varying display resolutions and
aspect ratios of devices, make the development of the GUI of
apps for all these combinations a difficult challenge.

Figure 1 illustrates the process of designing an effective
localization testing approach for BiDi-languages. The key
elements that should be considered while following this
approach are as follows:

(i) The localization testing needs to be done on different
types of devices on different platforms.

(ii) In addition to the original language, typically US
English, the mobile application needs to support
BiDi-languages.

(iii) The automation of localization testing can play an
important factor in reducing the time and cost of test-
ing the application in BiDi-languages.

3. Localization Test Automation

Manual testing for multilingual mobile apps is time and
resource consuming, while automatic testing can save time
and effort as well as increase accuracy and repeatability for
localization testing. In general, automated testing can be
considered the most desirable type of testing. The automated
test can also be written to control the progress of system
development and to find defects early and efficiently [5, 18].

It has been claimed that app features that are not tested are
in fact not existing, the rationale being that refactoring, which
by definition is the improvement of internal software quality
without adding new features and a practice that tremendously
helps to develop robust software, can only be done under
the presence of tests, as otherwise the maxim “never change
a running system” would prevail, and refactoring without
tests can lead to the unintended elimination of untested
functionality or could result in even worse consequences.

On the other hand, when automatic tests can be run by
pushing a button and the tests are all “green,” that is, there
is no unexpected behavior of the software, developers can be
sure that the current version of the app conforms to or, in

Create an effective
localization test
method specific to
each issue

Identify the
issues specific
to the
requirements

Identify BiDi
localization
testing
requirements,
such as languages,
OS, and
hardware

Figure 1: BiDi localization testing process.

other words, is correct with respect to these test cases. Psy-
chologically, there is the added benefit that the feeling of the
developers and, in case they are somehow in the development
loop, also the customers is good when they see that the tests
were all successful. If all features are tested, the development
productivity is increased, among other benefits, as a result of
the reduction of time spent for debugging, a time that conse-
quently can then be spent on more productive tasks [19].

Moreover, the automation for localization testing is very
effective when test steps are consistently repeated in the same
but also in a larger number of testing environments.With the
different types of platform and operating systems available for
smartphones, it would be impractical to manually test on all
permutations [5, 19].

4. Why Test First?

In test driven development, the developer first writes an
automated test which initially must fail before writing the
corresponding production code. This test describes a desired
improvement or new feature and thereby is both a formal
specification that can be automatically checked for confor-
mance and a human readable description of a test case. In a
second step only does the developer write production code to
pass the test, and then the test should run successfully [19].

In the development of our Pocket Paint app, we wrote
an automated test that defines the text direction in BiDi-
language. Since there was no code yet to make the test pass,
this test should initially have failed. However, unexpectedly,
the test case passed! Howwas this possible?The reason in this
case was that the test case itself was incorrect as it checked
the directionality of text incorrectly with the help of a locale
configuration, as shown below.

4 Mobile Information Systems

Hence, an immediate feedback was given to the programmer
to use a different configuration for BiDi text direction, as
shown below. Had the test been written after the production
code already existed, the test would also have succeeded, but
for the wrong reason!

The automated tests are written to document software effec-
tively for the developers, whereas the test cases describe the
specifications that are defined by the customers, and also to
avoid any ambiguity or miscommunication between users
and developers. However, if the developer wants to write a
test about any subject, he should first understand the subject
under test.

One of the best ways for developers to understand
the requirements is by translating them into tests. Several
advantages for writing the test in advance of the code are as
follows:

(i) If the tests are written in the last phase (when all
coding has been done) it is highly probable that they
will not be written.

(ii) Developers take more responsibility to produce high
quality products.

(iii) If the tests are written early, they will be extremely
helpful because more of the customer team’s needs
and expectations are clearly communicated to the
developers, and thus there is less possibility for mis-
communications.

5. Pocket Paint: A Brief Introduction

Pocket Paint is a paint editor and image manipulation
Android app which allows setting parts of pictures to trans-
parent and zooming up to pixel level. It is integrated into
Pocket Code, but it can also be used on its own [20].

The Pocket Paint app has functions such as a stamp to
copy-paste and resize parts of images, a pipette to pick an
RGBa (red green blue alpha = transparency) colors, regular
shapes (rectangle, circle/ellipse), or filling.

Pocket Paint is used for simple image editing such as
rotating, flipping, zooming in/out, and cropping. The user
can draw lines with different end shapes (circle or rectangle),
and it also possible to thicken or thin the line by using the line
width and style settings.

In the Pocket Paint color chooser, you can choose colors
either from a palette of predefined colors or through an RGBa
dialog.

Images are saved as PNG (with alpha channel) in the
“Pocket Paint” folder and can be found via the Gallery and
Photo apps. Pocket Paint is developed by the free and open
source nonprofit Catrobat project [20].

6. Considerations for Localizing
Bidirectional Apps

App sales should not be limited to just onemarket;mobile app
stores are global, and so the app should be too. The app store

Figure 2: Example of a localized BiDi version.

is available in over 150 several countries, and the first step to
reach this global market is to internationalize the app. A user
who tries to download the app could be located anywhere.
Today, customizing the app to be localized is a must.

In practice, localization requires complex and technical
jobs accomplished by a variety of specialists, including engi-
neers, translators, graphics designers, testers, programmers,
and project managers. The following are some best practices
to consider for app BiDi localization.

Resources. A critical issue is that none of the UI element’s text,
colors, images, or styles should be hard-coded in the source
code of software (i.e., separating them fromcode). All of them
should be stored in resource files; the content of resource files
can be retrieved by the software at run time to supply these
elements to the users in their local language.

Externalize Resources. All noncode assets related to an appli-
cation are considered as resources, such as content, images,
and videos. The localization process requires developers to
add appropriate resources to a mobile app to ensure that a
given country, locale, language, or culture is supported.
Therefore, all resources are placed into external files. After
that, localization can become a simpler process when creating
new versions of the resources files for each supported lan-
guage.

User Interface Mirroring. The UI of a BiDi-language is
generally mirrored and right aligned. Naturally, the common
reading order for the speakers of BiDi-languages is from
RTL. That is because those languages are written on a form
known as RTL and strings flows in that direction as shown in
Figure 2.

In general all UI elements should be mirrored, which
includes lists, scroll bars, progress bars, pop-up boxes, grids,
and galleries. The UI will be automatically mirrored when
the user changes the system language to a RTL language. The
direction of text is also changed to RTL with the exception of
phone numbers, country codes, and similar numbers which
are by default LTR also in RTL languages. Note that the
direction of some views and widgets in the UI layout may not
change automatically.

In addition, content like images, video, and maps are
not mirrored. Nevertheless, some directional images such as

Mobile Information Systems 5

(a) (b)

Figure 3: Snapshot of a direction-sensitive arrow that changes meaning when mirrored. (a) UI in English. (b) RTL UI.

(a) (b)

Figure 4: Snapshots of (a) next and (b) back for BiDi-languages.

(a) (b)

Figure 5: Snapshots of (a) undo and (b) redo for RTL languages.

Figure 6: The ldrtl qualifier for drawable resources.

arrows need to be mirrored.The types of controls that should
not be mirrored in BiDi-language are as follows:

(i) Video controls and timeline icons since they represent
the direction of the tape.

(ii) Images (except if they indicate direction or order).
(iii) Clocks.
(iv) Graphs (𝑥- and𝑦-axes in RTL are the same as in LTR).
(v) Music notes.

Icons. Even though about 90% of the UI needs to bemirrored,
not many of the icons in fact are affected. It is difficult to

say which icons require mirroring and which do not because
that depends on the icon’s semantics. Therefore, coopera-
tion between designers, developers, and language specialists
(e.g., translators) should be considered. Graphics which are
direction-sensitive introduce another challenge with regard
to mirroring. These graphics can get an incorrect meaning
when mirrored.

Within a LTR layout in a navigator, an arrow head that
points to the left means that the navigation goes back to the
previous page; an arrow head that points to the right means
that it goes forward to the next page. When the layout is
mirrored for a BiDi, the meaning will be just the opposite
because a mirroring just reorders the UI elements of a layout
without mirroring the actual icons as shown in Figure 3.

Therefore, special attention should be given to direction-
sensitive graphics such as icons that have a specific directional
orientation (back, next, undo, and redo), help balloons, or
toast messages. Figures 4 and 5 show the back, next, undo,
and redo icons for an RTL language.

The solution for handling direction-sensitive graphics is
to have different directories of graphics in your resources to
be used when the drawing destination is a RTL direction, in
other words, never hard-code images or layouts. Moreover, a
complete optimization for RTL layouts is provided by adding
entirely separate layout files using the ldrtl resource qualifier

6 Mobile Information Systems

(a) (b)

Figure 7: Snapshot of a partial mirroring. (a) English version. (b) Arabic version.

(a) (b)

Figure 8: Snapshot of a complete mirroring. (a) English version. (b) Arabic version.

(ldrtl stands for layout-direction-right-to-left), as shown in
Figure 6.

Further, for RTL languages the UI icons layout should
naturally follow the RTL direction. A mirroring effect just
replaces icons of a dialog box without mirroring the icons’
images.This partial solution did not solve the layout problem
in Pocket Paint’s case for some icons such as the line and flip
icons. It only gave them new positions within the mirrored
dialog as shown in Figure 7.

In this case the feature itself is mirrored to address the
problem of UI layout as shown in Figure 8.
Check Boxes. Check boxes and UI elements with check
boxes are mirrored and right aligned, but the actual “check”
symbols shall not be mirrored.
Localizing Strings. The user-facing text needs to be localized.
Thus, text needs to be translated to a specific language before
it is displayed to the user. More specifically, all the strings
should be stored in values resource files; the text can be
retrieved by the software at run time to supply these ele-
ments to the users in Arabic language. Hence, an alternative
strings.xml must be created as shown in Figure 9.

In Pocket Paint’s case the translation to Arabic is per-
formed by volunteers using a community-based translation
tool (Crowdin). The string file that must be translated is
uploaded to a web environment in order to be accessible to
our translators. Practically, in Android the UI elements are
defined and stored in an XML file, and for every need-to-
translate element a string item is added in the string.xml
file in the values directory [21]. The Arabic translation folder

Figure 9: String file for Arabic language.

is created and named values-ar (“ar” represents the Arabic
language according to ISO 639-1) [22].

Many tools for translating strings have been introduced;
some are integratedwith the development environmentwhile
others are platform-independent. Actually, translating strings
automatically is not as succinct, complete, and correct as
when a native speaker translates it. However, some words in
the original languagemay have several meanings in the target
language. For example, in some applications, there was a
single-word text “kill,” used tomean “stop the application.” In
Arabic, the literal translation of “kill”means “kill a person/kill
an animal”; therefore skilled linguistic experts that also are
domain experts for the app are needed for being able to
correctly translate all strings. A translator must be qualified
and have a base knowledge related to the project domain in
order to translate this term as “stop” instead of “kill.”

In real life, the miscommunication between developers
and translators may produce many defects. In practice, the
strings might be manipulated in the application without a
translator’s knowledge, and the translated string could then
remain in an old state.Therefore, the developers must inform
the translators about any changes in the string file and keep
them up-to date.

Mobile Information Systems 7

Figure 10: An example for regional variants: English (UK) versus
English (USA).

If developers need to distinguish between different
regions that use, for example, the English language, they can
add English regional variants for theUnited States, theUnited
Kingdom, Australia, New Zealand, Canada, Hong Kong, and
so forth to the app, and only the strings that are written
in a different way would need to be included in the string
file in order to be translated later; for example, “Colour” is
favored in the UK, and “Color” is favored in USA as shown
in Figure 10.

Default Resources. The default resources of app are those
that are not marked with any language or locale qualifiers.
If there is no default to fall back on, then the app will stop
becauseAndroid looks for a resource and cannot find one that
matches the configuration of the device.

Screen Size Variations and Limitations. One of the most
important challenges presented by mobile phones is the
limited screen size. However, if the app is designed to be used
in different countries, both I18n and L10n test cases are espe-
cially essential under the constraint imposed by the different
screen sizes. While developers may have designed their app
to look fine in English, it may not look as well in German
language or other languages where the character count will
consume more space. On the other hand, some languages
like Chinese contain a lot of information in each character
and thus often need much less space, but this may not be
true for other similar languages such as Japanese, since there
characters include both Kanji that are of Chinese origin and
purely phonetic Hiragana and Katakana characters, the latter
two taking up comparativelymore space. An additional prob-
lem with some of these Asian languages is that automatic line
breaking can be very difficult as there are no space characters
between words, and line breaks are not possible at all places,
with additional complex rules to correctly break up lines.

Flexible Layout. Flexible layout is used to allow views relative
to each other without fixed origins, widths, and heights.
Any UI elements that contain text must be designed to be
flexible. More space is allocated than necessary for English
to accommodate most other languages (up to 30% more is
normal). Practically, if fixed width constraints are used, local-
ized text may appear truncated in some languages.Therefore,
the constraints are removed and a “wrap content” attribute is
used to allow limiting the width of each UI element.

Obviously, widgets and dialogs must be set to be expand-
able, both horizontally and vertically, in order to accommo-
date variations in texts width and height. The fonts in Arabic
language can expand horizontally and vertically more than in
English language. The result may be a truncated text because
the space provided by the UI widget is not enough.

Figure 11: An example of a layout problem English > Arabic.

Arabic characters aremore differentiated in structure and
display than Latin characters. Sometimes translators may
need two words or more in Arabic to describe one word in
English. For example, in Pocket Paint there is a single-word
string “Zoom.” In Arabic, the literal translation of “Zoom”
consists of two words and clearly does not fit on the text view
that was reserved for the English “Zoom,” but there is no
shorter word with the same meaning in Arabic. The same is
true for “Ellipse” icon as shown, as also shown in Figure 11.

Font Style for Mobile Applications. Font styles for text are dis-
couraged in layout design such as special fonts, italic, or bold,
because they may affect the readability of complex characters
in some languages.

System-Provided Formatting Methods for Dates, Times, Num-
ber, and Currencies. The system formats are used to specify
dates, times, numbers, currencies, and other values that can
be changed by the so-called “locale,” thus ensuring the correct
formatting of data according to the locale. If there is a specific
format that is based on assumptions about the locale of users,
the problem will arise when the user changes to another
locale. Typical problems are “../../....” date formats between
the US and European date formats, where it is unclear
whether 10/2/2016 is the 2nd of October (US) or the 10th of
February (most European countries) 2016.

Importance of Textual Contents. Because of the small screen
size of mobile phones, a lot of short phrases and words are
suggested which lack content as well as words with multiple
meaning, for example, “set.” This can cause ambiguity and
errors during the localization process. Therefore, to localize
an app, the whole localization team should be very familiar
with the application domain.

7. Continuous Integration

Continuous integration is one of the most vital practices in
modern software development. The key idea behind contin-
uous integration is to execute a predefined group of steps
which are based on a specific trigger; the trigger could be
a new pull request in the version control system, or trigger
of time, for example, for automatically creating a nightly
build and running all test cases on it, then creating a report
that can be inspected via a web interface by all interested
parties, and possibly reporting the main points of the test
run to a developers’ irc channel of the project. In short,
continuous integration refers to the process of integrating all

8 Mobile Information Systems

development work at predefined times or events in order to
be tested and built automatically. The idea is that this allows
identifying the development errors early in the process [23].

We use Jenkins for continuous integration; it is an open
source tool that allows controlling the execution of arbitrary
automation steps. Jenkins has the ability to inform users
about the success or failure of builds. It can be executed via
the command line or can be run in a web application server.
Jenkins is easy to install and has an intuitive and robust user
interface [23].

Automated testing is an important part of any continuous
integration environment; it allows team members to receive
feedback about the state of the development in a dashboard
view (not only one’s own) and ensures through documen-
tation of results that the tests succeed and are regularly
executed, together with all kinds of other mechanisms and
collections of statistics, for example, for automatic code
quality evaluations or test coverage metrics.

8. Why Is Localization Testing for
BiDi-Languages So Important?

Localization testing is a type of quality assurance testing; it
mainly focuses on the evaluation of the product’s functional-
ity, cosmetics, and quality of the localization. The main goals
of automatic app localization testing for BiDi-languages are
as follows:

(i) To document the attributes of different localization
issues for those developers who do not know about
them from their own cultural background.

(ii) Tomake sure that bugs and deficiencies that are intro-
duced at a later stage do not break the localization
aspects of the product.

(iii) To detect and report app’s localization defects.

9. Localization Testing Approach

After the product localization, localization testing is per-
formed.Theobjective is to ensure that the localized product is
fully functional, cosmetically correct, linguistically accurate,
and culturally appropriate and that no issues have been
produced during the localization process.

Figure 12 illustrates the architecture of the proposed auto-
mated localization testing approach. The proposed approach
combines best-practice GUI testing tools for Android
(Robotium and Espresso) and invokes them via a continuous
integration server in order to execute all automatic GUI
tests from a central place. This section provides substantial,
complete development and user satisfaction testing methods
for the localization aspects of the app.

9.1. Localized Resources Testing. This test verifies that all the
required localized resources (files and folders) are present in
the BiDi language version.

Localization test
framework

RobotiumEspresso

BiDi
localization
issues

Success or
failure
notification

Continuous
integration
server

Execution

Ap
pl

ic
at

io
n

un
de

r t
es

t

Figure 12: Localization testing architecture.

9.1.1. Fallback Language. After the app is tested in all BiDi-
languages and locales, additionally the fallback language of
the app is checked. To test this, the device language is changed
to one that is not supported and it is checked that the app uses
the implemented fallback language.This test suite makes sure
that the app runs properly and reverts to default resources.
In the snippet of code below, the language configuration is
changed to modern Chinese, which is not supported in the
mobile app, and in that case the fallback language is checked
to ensure that the app reverts to US English. In addition, the
method setLocale() is implemented to ensure the complete-
ness of testing.

9.1.2. Localized Media and Default Resources. It is tested
whether alternative graphics of locale-specific resources,
which are provided for the RTL mode, are retrieved correctly
by the app at run timewhen the locale of the device is changed
to the RTL language. Also, the test case is written tomake sure
that a full set of default resources regardless of language or
locale is included in the app’s structure as shown below.

Mobile Information Systems 9

(a) (b)

Figure 13: Snapshots of (a) original UI and (b) Arabic UI.

9.1.3. Overtranslation. If the default texts are displayed
instead of the translated texts in any part of the interface, then
these texts may be overlooked or checked by reviewers. Such
texts should not be translated and remain unmodified. In
practice, the overtranslation testing is difficult to implement.
However, the test should check that the textwhich is displayed
in the text view is the same as the expected text defined in the
strings.xml file. Hence, it might be impractical to check all
elements’ text in the app.

Actually, in some situations an untranslated string is
not to be considered as a software defect. For example, the
untranslated text might belong to a new feature added to the
app that has not yet been translated, or to a UI element that
should remain in the source language and is the same for
all languages, such as a hyperlink or trademarked product
names. Overtranslation issues are the responsibility of
reviewers.

9.2. Linguistic Testing. Linguistic verification, or verifying the
translation of all text on the localized product, is another very
important task. In the proposed method, skilled linguistic
experts can verify the linguistic content using screenshots of
all the product screens to check the semantic correctness of
the translations.

9.3. Cosmetic Testing. Translation has an enormous effect on
the cosmetic quality of an app. The target of cosmetic testing
is to verify that the localization phase did not introduce any
visual defect and ensures that the UI has a consistent appear-
ance throughout all supported BiDi-language versions, and
a product contains no defects such as truncated strings,
overlapping widgets, misaligned widgets, introduced during
the localization process.

An important issue that needs to be addressed is the
UI which contains layout, pop-up boxes, lists, and widgets.

Figure 14: Snapshot of horizontal layout direction for RTL.

All UI elements need to support RTL direction as shown in
Figure 13.

9.3.1. Views Swiping Direction. Most widgets such as seek
bars, progress bars, spinner, and outline views appear flipped.
Each seek bar view is tested. The testing method could
be performed by sliding the cursor of the seek bar to a
new position. The horizontal layout direction of these views
should be fromRTL; otherwise, the viewneeds to be adjusted.
The assert method is used to compare the expected layout
direction results from the test to the actual layout direction
as shown in Figure 14.

The following code snippet illustrates the details of the
test case and how the horizontal layout direction of a seek
bar is tested. The test case detects in which direction the user
moved his or her finger when touching seek bar, whether
the direction is to the left or right. Obviously, the test case
simulates user behaviors and interactions. The two variables
downXValue and upXValue are defined to store the 𝑥 values
when the user’s finger presses down and up, respectively.
When the direction of the layout drawing is RTL, the test
passes successfully.

10 Mobile Information Systems

9.3.2. Direction-Sensitive Graphics. Naturally, in the RTL
interface the time moves from right to left, and thus any
“back” type arrow has to point to the right and the forward
arrow to the left. However, the localization process changes
the directions of the undo and redo icons to be easily
understood by Arabic speakers. Equally important, the undo
and redo icons should correctly express the direction of time
in all languages. A new test case is proposed to check themir-
roring awareness in localized product for direction-sensitive
graphics using some image processing techniques. However,
the LTR image features aftermirroring shouldmatch the BiDi
features; otherwise, the test fails (see Figure 15).

A corresponding test case is implemented to check the
mirroring awareness in the localized version. However, the
undo feature in RTL language is the same as a mirrored one
in the original version. So, the following code shows how the
mirroring awareness is tested.

The two methods imageAreEquals() and doMirroring()
are implemented to ensure the completeness of testing.

9.3.3. Auto Layout in Views. The proposed method needs to
check that all fixed origins, widths, and heights are eliminated
in the app’s views so that the localized text can reflow auto-
matically when the language or locale is changed as shown in
Figure 16 (compared to Figure 11).The test code below asserts
that the “wrap content” property is used, which means that

LTR-digital data

Preprocessing

Feature extraction

Mirroring RTL-digital data

Matched
digital data?

Yes No

Test passes Test fails

Test case

Figure 15: Flow chart for mirroring test case.

the view can grow to become big enough to fit its own internal
content.

9.3.4. Overlapping. After the translation is done, the localized
tool can check the overlapping of widgets with other UI wid-
gets. Mainly, the noOverlaps() method is used to ensure that
the app you publish is devoid of overlapping in its UI. A bug
report is generated if widgets are overlapping. For instance,
in Figure 14, the RedView on the right side, the RedSeekBar
in the center, and the RedValue on the left can be tested in
this way. The code snippet below shows how the overlapping
is tested.

9.3.5. Elements’ Positions. The localization process changes
the UI layout due to the translation, and the translated text
may affect the size of the UI elements.Therefore, some views’
width and height usually increase from their original size.
This size stretching may cause missing views. For this reason,
the localized process should ensure that all the layout views
are located on the screen as the UI design dictates. For this

Mobile Information Systems 11

(a) (b)

Figure 16: Snapshot of auto layout in Arabic version views.

issue, the testOnScreen method is used, and an origin view is
specified to start looking for the requested views.

In addition, the isLeftOf and isRightOf methods are used
to check the positions of UI elements according to the locale
direction and expose defects in the interface after mirroring.
In practices, to localize the Brush tool button Figure 17(a)
to Arabic, the icon should be on the right side of text as
shown in Figure 17(c), not to the left as incorrectly shown in
Figure 17(b).

The code snippet below illustrates the using of the
isRightOf method to verify whether the icon is placed in the
right of the text or not.

9.3.6. Misalignment. This test compares the alignment of
views in the RTL dialog to the original one. It checks to ensure
that if a set of views are aligned on a specific axis in the orig-
inal dialog, they are all aligned on the same axis. To examine
the misalignment, the following test methods are proposed.

The test case asserts that views are right aligned, that is,
that their right edges are on the same 𝑥 location. In order to
verify that the views are aligned in the layout as we expect,
the L10n tool should implement an assertRightAligned()
method. For left alignment testing, the L10n tool needs to
implement a test case to assert that views are left aligned.

It is also necessary for the localized tool to examine
the correct positions for views before and after mirroring.
Accordingly, the assertBottomAligned() method is intro-
duced to assert that two views are bottom aligned, and their
bottom edges are on the same 𝑦 location before and aftermir-
roring. In addition, a test case is introduced to verify that all
views that are top aligned before mirroring are not adjusted
after mirroring. Figure 18 illustrates the misalignment for the
tools dialog.

If anything is found unsatisfactory, that UI element
should be adjusted.Then these test cases should examine each
activity, dialog, and other user interface layouts.

9.3.7. Text Direction. The direction of text becomes a critical
issue when the app has Arabic texts, which are written and

(a) (b)

(c)

Figure 17: Snapshots for elements’ positions in the tools dialog: (a)
original version; (b) incorrect position; (c) correct position.

(a)

(b)

Figure 18: Snapshots for misalignment in the tools dialog: (a)
English. (b) Arabic.

read from RTL. Hence, all user interface elements should
support Arabic language; the text alignment and text reading
order go from RTL.

The text direction of each view such as text view, edit text,
button, and pop-upmenu is tested.The testing method could
be performed by supplying each user view with a text string
from Arabic language. The assert method is used to compare
the expected text direction results from the test to the actual
text direction after running with it throwing an exception if
the condition is not met as shown in the code snippet below.

12 Mobile Information Systems

9.3.8. String Truncation Validation. To test whether the UI is
flexible enough to accommodate several language fonts and
strings lengths, the following method is used to verify that a
view is displayed correctly as it is defined in its XML layout
file and that it fits into theUIwithout truncation.The test case
checks the ellipsis count per line in a text view, not just for
last line. If the ellipsis count is greater than zero, the method
returns true. Figure 19 shows a tools dialog with truncated
text because the space provided by the UI widget is not large
enough.

9.3.9. Keyboard Layout. A keyboard enables users to enter
text. It is not a GUI aspect; rather, it is an operating system
aspect. Some operating systems offer a keyboard framework
that lets users create on-screen input methods such as virtual
keyboards.However, the symbol input grid for RTL languages
again must be mirrored and right aligned. And in an RTL UI,
the cursor always has to be placed to the very right as a default.
The testing is done by using keyboard keys to enter data into
UI views, such as an edit text or text view. The input values
are stored into data stores, and then they are displayed into
the UI widgets or compared with actual text as shown below.

Figure 19: Snapshots for tools dialog with truncated text.

The following requirements must be considered for the
testing methods:

(i) Arabic language package.
(ii) Font files supported by Arabic language.
(iii) Friendly encoding of strings (UTF-8).

9.4. Functional Testing. Localization functional testing
focuses on whether the localization phase introduced any
problems and verifies that all features work as expected
after the localization. Hence, all the functional test cases are
executed after the localization process and the snippet of code
below is one of the functional test cases. This test case is used
to check the color picker dialog and check the functionality
of changing the colors.

10. Conclusion

In this paper, an automation approach for L10n testing is
introduced to localize an Android app with a rich GUI for the
Arabic language and culture. The Arabic version of the origi-
nal product looks as if it had been developed in the Arabic
user’s home country. Traditional testing approaches can be

Mobile Information Systems 13

applied to localize any software from English to other Latin-
based languages. On the other hand, localization of mobile
apps for BiDi-languages are particularly challenging to test.
BiDi-language software requires savvier testing methods and
efforts to ensure efficient testing. Arabic language requires
mirroring awareness to suit the RTL reading order and to pro-
vide a perfect right-to-left look and feel to the app. Localiza-
tion to BiDi-languages affects not only the layout of text and
UI elements but also iconography. The proposed methods
make sure theUI elements and icons that communicate direc-
tion are mirrored correctly in RTL locales. Furthermore, the
proposed approach fully and completely considers all BiDi-
languages issues in order to effectively reveal all common
localization issues in the app’s design. The methods ensure
that the localized softwaremeets a local user’s expectations in
terms of language, features, and user experience in the tradi-
tional sense. In essence, the automation approach saves time
and effort and increases accuracy and repeatability for local-
ization testing and maintains the usability and portability of
the app. Moreover, it leads to a significant decrease in effort
and time spent for regression testing. Finally, the approach’s
principles can easily be applied to any smartphone platform.

Competing Interests

The authors declare that they have no competing interests.

References

[1] I. K. Villanes, E. A. B. Costa, and A. C. Dias-Neto, “Automated
mobile testing as a service (AM-TaaS),” in Proceedings of the
IEEE World Congress on Services (SERVICES ’15), pp. 79–86,
New York, NY, USA, June-July 2015.

[2] IDC, Smartphones, IDC, 2015, http://www.idc.com/getdoc.jsp
?containerId=prUS25988815.

[3] X. Xia, D. Lo, F. Zhu, X. Wang, and B. Zhou, “Software
internationalization and localization: an industrial experience,”
in Proceedings of the 18th International Conference on Engineer-
ing of Complex Computer Systems (ICECCS ’13), pp. 222–231,
Singapore, July 2013.

[4] App Annie Support, Languages supported in Google Play
reviews, 2015, https://support.appannie.com/hc/en-us/articles/
204207814-Languages-supported-in-Google-Play-reviews.

[5] H. Dhingra and T. Roy, “Localization testing in mobile world,”
in Proceedings of the Software Testing Conference, 2013.

[6] C. Kopsch, “Localization testing one-year status report for a
localization project,” Testing Experience, no. 27, 2014.

[7] N. S. Cavalleri, “Localization testing is more than testing the
translation,” Testing Experience, no. 27, 2014.

[8] J. Gao, X. Bai, W.-T. Tsai, and T. Uehara, “Mobile application
testing: a tutorial,” IEEE Journals &Magazines, vol. 47, no. 2, pp.
46–55, 2014.

[9] S. Abufardeh and K. Magel, “Software internationalization:
testingmethods for bidirectional software,” in Proceedings of the
5th International Joint Conference on INC, IMS and IDC (NCM
’09), pp. 226–231, Seoul, Republic of Korea, August 2009.

[10] S. Abufardeh andK.Magel, “Software localization: the challeng-
ing aspects of Arabic to the localization process (arabization),”
in Proceedings of the IASTED International Conference on

Software Engineering (SE ’08), pp. 275–279, Innsbruck, Austria,
February 2008.

[11] C. A. Sakhr, “Web-based Arabic-English MT engine,” in Pro-
ceedings of the Arabic NLP Workshop at ACL/EACL, Toulouse,
France, July 2001.

[12] N. Kotze, “Internationalization and localization testing,” Testing
Experience, no. 27, 2014.

[13] C. Zhao, Z. He, and W. Zeng, “Study on international software
localization testing,” in Proceedings of the 2ndWorld Congress on
Software Engineering (WCSE ’10), pp. 257–260, Wuhan, China,
December 2010.

[14] Microsoft, Globalization Step-by-Step, 2015, https://msdn.mic-
rosoft.com/en us/goglobal/bb688110.aspx.

[15] Net-Translators, Localization for Mobile Apps, 2015, https://
www.net-translators.com/blog/localization-for-mobile-apps.

[16] Android ByCode, Pseudo-localization testing inAndroid, 2015,
https://androidbycode.wordpress.com/tag/rtl/.

[17] R. Selvam and V. Karthikeyani, “Mobile software testing—
automated test case design strategies,” International Journal on
Computer Science and Engineering, vol. 3, no. 4, pp. 1450–1461,
2011.

[18] M. Geogy and A. Dharani, “Customising android automated
testing framework to enable native hardware and software
support,” International Journal of Engineering Research & Tech-
nology, vol. 2, no. 2, pp. 1–4, 2013.

[19] K. Beck, Extreme Programming Explained, Addison-Wesley,
Boston, Mass, USA, 2nd edition, 2004.

[20] Wolfgang Slany. 2010–2016. Catrobat, http://www.catrobat.org.
[21] R. Meier, Professional Android, John Wiley & Sons, New York,

NY, USA, 4th edition, 2015.
[22] Android Developers, Locale, 2016, http://developer.android

.com/reference/java/util/Locale.html.
[23] M. Soni, Jenkins Essentials, Packt Publishing, 2015.

