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Abstract In this paper, the process of plane strain
backward extrusion process through arbitrarily curved
punches, by means of the upper bound method and
the finite element method is investigated. A general-
ized velocity field is developed and by calculating of
the internal, shear and frictional powers, the extrusion
force is estimated. Then, by using the developed an-
alytical model, optimum punch lengths which mini-
mize the required extrusion forces, are determined for
a wedge shaped punch and a streamlined punch shape.
The corresponding results for those two punch shapes
are also determined by using a finite element code and
compared with the upper bound results. This compari-
son shows that the upper bound predictions are in good
agreement with the FE results.

Keywords Backward extrusion · Plane strain · Upper
bound · FEM

1 Introduction

In backward extrusion, there is no relative movement
between the initial billet and the container and this
process is characterized by the absence of friction be-
tween the initial billet surface and the container. In this
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process, such as other metal forming processes, calcu-
lation and optimization of extrusion force are impor-
tant. Among various methods of solution, the upper
bound technique as an analytical method and the finite
element method have been widely used for the anal-
ysis of the extrusion process. Even though the finite
element gives detailed information, it takes consider-
able CPU time. Using the upper-bound technique has
the merits of saving computer’s CPU and it appears to
be a useful tool for analyzing metal forming problems
when the objective of such an analysis is limited to
prediction of deformation load and/or to study metal
flow during the process.

A number of people have used the upper bound
method to analyze the extrusion process through a
variety of die shapes. Avitzur [1–4] developed mod-
els for axisymmetric extrusion through conical dies
using the upper bound approach. Hillier and John-
son [5] used slip line field method to analysis of plane
strain forward extrusion through curved dies. Avitzur
[6] examined plane strain extrusion through a wedge
shaped die using upper bound method. D’Alia [7] pro-
posed approximate formulas for drawing and extrud-
ing processes. Chen and Ling [8] developed a velocity
field for axisymmetric extrusions through cosine, el-
liptic and hyperbolic dies. Zimmerman and Avitzur [9]
also modeled extrusion using the upper bound method
with generalized shear boundaries. Yang et al. [10] as
well as Yang and Han [11] developed upper bound
models with streamlined dies. Chen and Ling [12]
and Nagpal [13] were among the investigators who
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explored alternative die shapes, developing velocity
fields for axisymmetric extrusions through arbitrarily
shaped dies. Chen et al. [14] and Liu and Chung [15]
used finite element analysis to examine axisymmetric
extrusion through conical dies. Kim et al. [16] used
FEM to design an axisymmetric controlled strain rate
die. Weinberger [17] derived conditions which must be
satisfied by the steady flow of a rigid-plastic material
through an extrusion die which minimizes dissipation
power. Bakhshi et al. proposed an optimum punch pro-
file in axisymmetric backward rod extrusion [18]. Sa-
boori et al. studied the energy consumption in axisym-
metric forward and backward rod extrusion [19]. Gor-
don et al. developed the adaptable die design method
for axisymmetric extrusion and described it in details
in a series of papers [20–22]. Haghighat and Amja-
dian proposed two kinematically admissible velocity
fields based on assuming proportional angles and pro-
portional distances from the midline in the deforma-
tion zone in upper bound models for plane strain for-
ward extrusion through arbitrarily curved dies [23].

The purpose of this paper is to develop a velocity
field that is applicable to plane strain backward extru-
sion through arbitrarily curved punches. The proposed
velocity field is used to find out an optimal wedge
shaped die and a streamlined die shape and the cor-
responding extrusion forces for a given process con-
ditions. The investigation is also performed using the
finite element software, ABAQUS.

2 Upper bound analysis

Based on the upper bound theory, for a rigid-plastic
Von-Misses material and amongst all the kinemati-
cally admissible velocity fields, the actual one that
minimizes the power required for material deforma-
tion is expressed as

J ∗ = 2√
3
σ0

∫
v

√
1

2
ε̇ij ε̇ij dv + σ0√

3

∫
Sv

|�V |dS

+ m
σ0√

3

∫
Sf

|�V |dS −
∫

St

TiVidS (1)

where σ0 is the mean flow stress of the material, ε̇ij

the strain rate tensor, m the constant friction factor, v

the volume of plastic deformation zone, Sv and Sf the
area of velocity discontinuity and frictional surfaces
respectively, St the area where the tractions may oc-
cur, �V the amount of velocity discontinuity on the

frictional and discontinuity surfaces and Vi and Ti are
the velocity and tractions applied on St , respectively.

Figure 1 shows two types of the plane strain ex-
trusion process, type I and type II, and their parame-
ters in a schematic diagram. Taking into account the
symmetry of the problem, only half of the sections
are considered. The material starts as a strip of thick-
ness 2to and is extruded into a strip product of thick-
ness 2tf through an arbitrarily curved punch in ex-
trusion process type I and a U shape product in pro-
cess type II. To analyze the process by using the up-
per bound method, the material under deformation is
divided into three zones, as shown in Figs. 1a–1b. In
zone I, material is stationary and in zone III the mate-
rial moves rigidly with the velocity Vf . Zone II is the
deformation zone and is surrounded by two cylindrical
velocity discontinuity surfaces S1 and S2 as well as the
punch surface. In addition to these surfaces, there are
two frictional surfaces between material and container
for plane strain extrusion type II as shown in Fig. 1b.
The punch surface, which is labeled as ψ(r) in Fig. 1,
is given in the cylindrical coordinate system, (r, θ, z),
where ψ(r) is the angular position of the punch sur-
face as a function of the radial distance from the ori-
gin. The origin of cylindrical coordinate system is lo-
cated at point O which is defined by the intersection of
the strip midline with a line that goes through the point
where the punch begins and the exit point of the punch.
The cylindrical velocity discontinuity surface S1 is lo-
cated at distance ro from the origin and the cylindrical
velocity discontinuity surface S2 is located at distance
rf from the origin. The mathematical equations for ra-
dial positions of two velocity discontinuity surfaces S1

and S2 are given by

ro = to

sinα
, rf = tf

sinα
(2)

where α is the angle of the line connecting the ini-
tial point of the curved punch to the final point of the
punch and

tanα = (to − tf )/L (3)

where L denotes punch length.

2.1 Admissible velocity field

The first step in the upper bound analysis is to choose
an admissible velocity field. The velocity field that has
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Fig. 1 Schematic diagram of half-section of plane strain extru-
sion to show the derivation of the velocity field for: (a) type I
and (b) type II

been derived from incompressibility condition and sat-
isfies the velocity boundary conditions is a kinemati-
cally admissible velocity field. Volume constancy in
cylindrical coordinate system is defined as

ε̇rr + ε̇θθ + ε̇zz = 0 (4)

where ε̇ii is the normal strain rate component in the
i-direction. The strain rates components in cylindrical
coordinates are defined as

ε̇rr = ∂Vr

∂r

ε̇θθ = 1

r

∂Vθ

∂θ
+ Vr

r

ε̇zz = ∂Vz

∂z

ε̇rθ = 1

2

(
∂Vθ
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+ 1

r

∂Vr
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− Vθ

r

)

ε̇θz = 1

2

(
∂Vθ

∂z
+ 1

r

∂Vz

∂θ

)

ε̇zr = 1

2

(
∂Vr

∂z
+ ∂Vz

∂r

)

(5)

Then, the velocity components for plane strain extru-
sion, types I and II shown in Figs. 1a–1b, can be given
by

Vr = Vo

(
1 − ro

r

sinα

sinψ

)
cos θ

Vθ = −Vo

(
1 + ro

sinα

sinψ

∂ψ

∂r

1

tanψ

)
sin θ (6)

Vz = 0

The proposed velocity field satisfies volume con-
stancy, Eq. (4), and the boundary conditions on sur-
faces S1–S4, therefore it is a kinematically admissible
velocity field for deformation zone II.

Based on the established velocity field, the strain
rate field for deformation zone can be obtained by
Eq. (5) as

ε̇rr = −ε̇θθ = Vo
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(7)

With the strain rate field and the velocity field, the
standard upper bound method can be implemented.
This upper bound model involves calculating the inter-
nal power of deformation over the deformation zone
volume, calculating the shear power losses over the
surfaces of velocity discontinuity, and the frictional
power losses along frictional surfaces. Since, no defor-
mation occurs in zones I and III, therefore, the strain
rate components are zero.

2.2 Internal power of deformation

The internal power of deformation in an upper bound
model is

Ẇi = 2√
3
σ0

∫
v

√
1

2
ε̇ij ε̇ij dv (8)

Internal power of zones I, and III are zero and the
equation to calculate the internal power of deforma-
tion in zone II is

Ẇi = 2σ0√
3

b

∫ ro

rf

∫ ψ(r)

0

√
1

2
ε̇2
rr + 1

2
ε̇2
θθ + ε̇2

rθ rdθ dr

(9)
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where b is width of the strip and σ0 is the mean flow
stress of the strip material and is given by

σ0 =
∫ ε

0 σ dε

ε
, ε = ln

to

tf
(10)

2.3 Shear power losses

The equation for the power losses along a shear sur-
face of velocity discontinuity is

ẆS = σ0√
3

∫
Sv

|�V |dS (11)

The shear power losses along the velocity discontinu-
ity surfaces S1 and S2 can be given by

ẆS1 = σ0√
3
Vorob

×
∫ α
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ẆS2 = σ0√
3
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r=rf

)
sin θ dθ

(13)

2.4 Friction power losses

The general equation for the friction power losses for
a surface with a constant friction factor m is

Ẇf = m
σ0√

3

∫
Sf

|�V |dS (14)

For punch surface S3

dS3 = b

√
1 +

(
r
∂ψ

∂r

)2

dr (15)

|�V3| =
∣∣(Vr − Vo cosψ) cosη

+ (Vθ + Vo sinψ) sinη
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θ=ψ

(16)

where η is local angle of the punch surface with re-
spect to the local radial velocity component and

cosη = 1√
1 + (r

∂ψ
∂r

)2

sinη = r
∂ψ
∂r√

1 + (r
∂ψ
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(17)

The frictional power losses along the punch surface is
calculated as

Ẇf3 = m
σ0√

3
b

∫ ro

rf

|�V3|
√

1 +
(

r
∂ψ
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)2

dr (18)

Along the container surface, S4, we have

|�V4| = |Vr |θ=0| = −Vo

(
1 − ro

r

sinα

sinψ

)
(19)

dS4 = b dr (20)

Replacing Eqs. (19) and (20) into Eq. (14) and inte-
gration, the frictional power along surface S4 is given
by

Ẇf4 = m
σ0√

3
V0b

∫ ro

rf

(
ro

r

sinα

sinψ
− 1

)
dr (21)

Along the container surface, S5, we have

Ẇf5 = m
σ0√

3
Vf brf cosα (22)

Based on the upper bound model, the required total
power for a plane strain backward extrusion process
obtained by summing the internal power and the power
dissipated on all frictional and velocity discontinuity
surfaces. Therefore, the total upper bound solution for
extrusion force, for plane strain extrusion type I, is
given by

FI = Ẇi + ẆS1 + ẆS2 + Ẇf3

bV0
(23)

For plane strain extrusion type II, the extrusion force
is determined by

FII = Ẇi + ẆS1 + ẆS2 + Ẇf3 + Ẇf4 + Ẇf5

bV0
(24)

A MATLAB program has been implemented for the
previously derived equations and is used to study
the plane strain extrusion process for different punch
shapes and different process conditions. It includes
a parameter L, punch length, which should be opti-
mized.

3 Comparison of FEM and analytical results

The developed velocity field and the upper bound
model can be used for both types of plane strain ex-
trusion, types I and II shown in Figs. 1a–1b, through
punches of any possible shape if the punch profile is
expressed as equation ψ(r). To compare the upper
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bound results obtained for the types I and II with FEM
simulation data, two types of punch shapes are exam-
ined in the present investigation. The first punch shape
is a wedge shaped punch. This punch shape has a sin-
gle constant value, i.e. ψ(r) = α. The second punch
shape is from the work by Yang and Han [9, 10]. They
created a streamlined curved shape as a fourth-order
polynomial whose slope is parallel to the axis at both
entrance and exit. The equation describing the shape
of Yang and Han curve is [21]

r
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= 1 +

(
Cf

(1 − tf /to)2
− 3

1 − tf /to

)

×
(

− r

ro
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+ 1

)2

+
(

2
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− 2Cf
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)

×
(

− r
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cosψ

cosα
+ 1

)3

+ Cf

(1 − tf /to)4

(
− r

ro

cosψ

cosα
+ 1

)4

(25)

where

Cf = 3(1 − tf /to)(1 − 2Lf /L)

1 − 6Lf /L + 6(Lf /L)2
(26)

where Lf /L represents the position of the inflection
point for the sigmoid profile and can vary from 0 to 1
and L denotes punch length.

The initial strip was lead with the flow stress given
by tensile test as

σ = 38.97ε0.436 (MPa) (27)

The mean flow stress of the lead material is given by
Eq. (10) and is used in the analysis.

The extrusion force for plane strain backward ex-
trusion through a wedge shaped punch and the Yang
and Han punch shape obtained from the upper bound
model, for to/tf = 2, to = 10 mm and m = 0.2, are
compared with each other in Figs. 2a–2b. As it is
shown, the extrusion force of Yang and Han punch
shape is lower the wedge shaped punch.

The plane strain extrusion processes have been sim-
ulated using the finite element software, ABAQUS.
Due to the symmetry of the process, the finite ele-
ment meshes are generated on the half cross-section
of the strip. The type of the element used in the model
is a quadratic structured plane strain element, CAX4R

Fig. 2 Comparison between upper bound results for Yang and
Han die shape and the wedge shaped die for to/tf = 2 and
m = 0.2

element. Figure 3a illustrates the mesh used to ana-
lyze the deformation and Fig. 3c shows the geome-
try of the deformed mesh for type I. Figure 3b illus-
trates the mesh used to analyze the deformation and
Fig. 3d shows the geometry of the deformed mesh for
type II. Punch and container undergo elastic strains
only. Thus, it is not necessary to use a fine mesh in
these two pieces. However, sufficiently fine meshing is
essential in strip material which undergoes plastic de-
formation. The container is fixed by applying displace-
ment constraint on its nodes while the punch model is
loaded by specifying displacement in the θ = 0, direc-
tion. Deformed models are shown in Figs. 3b and 3c,
respectively.

Two punches are used in the simulations: (a) the
optimum wedge shaped punch and (b) the optimum
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Fig. 3 The finite element mesh and the deformed mesh for plane extrusion backward extrusion

Yang and Han punch shape. In Figs. 4a–4b, the ex-

trusion force of two punches obtained from the up-

per bound solution and the FEM simulation is com-

pared with each other. The results show a good agree-

ment between the analysis and FEM. As shown in

Fig. 4, the theoretically predicted force is higher than

the FEM results, which is due to the nature of the up-

per bound theory. The results also demonstrate that

extrusion force of an optimum streamlined punch is

less than the optimum wedge shaped punch. As shown



Meccanica

Fig. 4 Comparison of analytical and FEM force-displacement
curves for Yang and Han punch shape: (a) type I and (b) type II

in this figure, at the early stage of extrusion, unsteady
state deformation occurs, and the materials have not
yet filled up the cavity of the punch completely. Thus,
the extrusion force increases as the extrusion process
proceeds. After the materials have filled up the cavity
of the punch completely, the extrusion force is con-
stant.

The effect of friction factor upon extrusion force for
two types of plane strain extrusion process is shown in
Figs. 5a and 5b. As shown in these figures, at a punch
length that is called the optimum length, the extrusion
force is minimized. As shown in this figure, the extru-
sion force increases with increasing the friction factor.
Also, with increasing the friction factor, the optimum
length of punch is decreased.

Fig. 5 Effect of friction factor upon the extrusion force for
Yang and Han punch shape for: (a) type I and (b) type II

4 Conclusions

In this paper a generalized velocity field and power
terms for plane strain backward extrusion through
punches of any shape were presented and the follow-
ing results are extracted:

1. The theoretical predicted extrusion forces are in
good agreement with the FE results.

2. The developed upper bound solution can be used
for fast estimation of extrusion force in plane strain
backward extrusion and for a given process condi-
tions, it can be used for finding the optimum punch
length which minimizes the extrusion force.

3. The optimum length of punch decreases with in-
creasing the friction factor.
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