
Influence Maximization on Multi-Phased Multi-Layered Network

Yue Zhang yzhang91@stanford.edu

Department of Electrical Engineering
Shutong Zhang zhangst@stanford.edu

Department of Computer Science

Le Wang lewang2@stanford.edu

Department of Electrical Engineering, Stanford University

Abstract

With the development of social network, people start
to pay attention to its internal information diffusion and
propagation process. However, most state-of-the-art works
mainly analyzed single-phased and single-layered network.
In our project, we study the information spread on multi-
layered network. We focus on one specific event - the infor-
mation of the discovery of a new particle spreading in Twit-
ter. The participated users and their corresponding actions
have formed a multi-layered, multi-phased network. We
explored different methods to aggregate multi-layered net-
works. Using different influence maximization algorithms
and different methods to assign edge probability on the ag-
gregated network in different phases, we are able to analyze
the important nodes and layers in the given dataset. The ex-
periment results show the effectiveness of our aggregation
strategy on our multi-phased and multi-layered network.

1. Introduction
Information diffusion and propagation in social networks

have been widely studied in various domains, including
marketing strategies, promotion of new products, technol-
ogy innovation diffusion and rumor spreading. Research
has focused on two factors in the information diffusion pro-
cess:

1. Models of the influence process

2. Algorithms finding the set of most influential users and
their maximal influence

Finding the subset of nodes in such networks to trigger
future cascade of information adoptions is posed as influ-
ence maximization problem. The optimization problem of
selecting nodes with maximized influence is NP hard. To
analyze and solve this problem, various prior work has con-
ducted in mathematical modeling of the information prop-
agation process, and practical algorithms for discovering
such influential sets in efficient ways.

In our project, we target on analyzing this problem on a
real-life multi-phased multi-layered network, with an em-
phasis on the multi-layered aspect overlooked by previous
approaches. We evaluate the effectiveness of existing mod-
els and algorithms, and extend their approaches on real-
world multi-layered network. Furthermore, we investigate
the multi-layered network structure to provide insights on
how different layers could contribute in the influence maxi-
mization process.

2. Literature Review

Influence maximization problem is originally proposed
in [5] as finding the set of individuals who could trigger a
large cascade of further adoptions of a product in the net-
work. At early stage, nodes are selected based on their de-
gree and distance centrality. Later, [11] modeled the in-
formation diffusion process using Linear Threshold (LT)
model and Independent Cascade (IC) model. They also pro-
posed the first provable approximation guarantee for effi-
cient algorithms to solve the above problem, which is a NP-
hard optimization problem. By introducing the concept of
submodular function, the authors proved the performance-
guaranteed algorithms. Their experiment on real-world ci-
tation dataset have shown that LT Model and IC Model
outperformed other widely used node selection heuristics
based on centrality.

Traditionally, based on LT and IC models, most influ-
ential nodes could be selected by Monte Carlo simulations,
which is slow and computational expensive. Thus, various
algorithms are proposed to perform node selection task in
an efficient, effective, and scalable manner. [1] developed
an efficient algorithm for influence maximization which im-
proves the original greedy algorithm in [11] and reduces
in running time. Their method also involves a new de-
gree discount heuristics to improve influence spread. [13]
demonstrated the property of ’submodularity’ in outbreak
detection objective. Based on this finding, they exploited
submodularity to develop CELF algorithm that scales well
and achieved near optimal selection with efficient execu-



tion time. [8] optimized CELF and empirically showed it
is 35-55% faster than CELF. [2] proposed another scalable
algorithm on directed acyclic graphs (DAGs) for LT model,
based on their discovery that computing influence in DAGs
can be done in time linear to the size of the graphs.[9] ap-
plied vertex cover optimization and look ahead optimiza-
tion on greedy algorithm [11] of LT and developed SimPath
algorithm. They claimed that this algorithm consistently
outperforms the state of the art in running time, memory
consumption and the quality of the chosen seed set.

Since LT and IC are two most widely used models for
capturing the dynamics of information diffusion process
[11], they often serve as an assumption for traditional in-
fluence maximization analysis. However, neighbors of in-
fluential nodes may be more engaged to the topic, and have
the potential to influence the influential nodes. Also, the
network structure and influence probability may not known.
[15] applied adaptive seeding, a two-stage stochastic opti-
mization model designed to leverage the potential in neigh-
boring nodes. [10] proposed a scalable methods for adap-
tive seeding. [6] proposed methods to learn influence proba-
bilities using expectation maximization methods in [6], and
[7] utilized the learned probability to perform node selec-
tion for influence maximization based on Credit Distribu-
tion model. [12] proposes an online method of influence
maximization with feedback to update the diffusion influ-
ence information.

In terms of influence maximization in multi-layer net-
work, not much previous work was found. Rather, research
has been conducted to understand the layered structure, and
the diffusion process in such network. [14] investigates
about the information cascades on multi-layered network.
[3] proposed a contact-based information spreading model,
and showed that the critical layer can be identified as the
layer whose contact probability matrix has the largest eigen-
value.

Different from the previous work, our paper focuses on
influence maximization of the real-life multi-layered net-
work. The major contribution of our work has three folds:

1. Extending the existing influence maximization algo-
rithm to multi-layered network.

2. Providing insights on information aggregation among
layers.

3. Analyzing and comparing the importance of layers on
twitter social network.

3. Problem Formulation
Given a multi-phased multi-layered network graph G :=

(V,E, P, L) with |V | vertices, |E| edges, |P | = 3 phases
and |L| = 3 layers. For certain phase p, we construct a ag-
gregated multi-layered network Gp := (Vp, Ep) with |Vp|

nodes and |Ep| edges. Vp denotes the nodes that are in-
volved in phase p and Ep denotes directed edges which rep-
resent the actions in phase p.

In each phase p, we have three seperate networks - the
mention networkGMEp , the retweet networkGRTp and the
reply network GREp

. These three networks are considered
to be 3 different layers . Thus, we use the aggregation func-
tion Cp to construct the multi-layered network graph Gp.
The aggregation function Cp can be written as:

Cp(GMEp
, GRTp

, GREp
) = Gp

In the constructed multi-layered network graph Gp, our
objective is to find a initial set Sp to maximization the influ-
ence in Gp. The initial set Sp for different phase p is:

Sp = arg maxSp⊆Vp
(σ(Sp))

where σ(S) is the influence of Sp.

4. Data Description
4.1. Dataset

The dataset we will use is the same one used in [4]. This
dataset was built by monitoring the spreading processes on
Twitter before, during and after the announcement of the
discovery of a new particle with the features of the elusive
Higgs boson on 4th July 2012.

Only tweets about the dicovery of this new particle are
considered in the dataset, which means all the actions (men-
tion, retweet and reply) are relevant to the spreading of this
event on twitter.

4.2. Data Preprocessing

The authors in [4] split the whole dataset into four differ-
ent phases. In order to gain some insight on the information
flow before, during and after the announcement of the dis-
covery of a new particle, we on the other hand use three
different phases in our model.

Phase I: On 2nd July at 1 PM GMT, scientists from CDF
and D0 experiments presented results indicating expected
mass of the Higgs particle;

Phase II: After 2nd July and before the announcement
on 4th of July there were many rumors on twitter;

Phase III: The announcement of the new particle on 4th
July at 8 AM GMT. After 4th July, popular media covered
the event.

After splitting the dataset into different phases, we are
able to analyze different characteristics of these three phases
and find the optimal function Cp for each phase p.

4.3. Data Statistics

The whole dataset contains multiple layers of network:



1. retweet network

2. reply network (to existing tweets)

3. mention network

Table 1 includes some basic information about the dataset.

Table 1. Dataset statistics of multiple layers
Social Networks Retweet Reply Mention

Nodes 456626 256491 38918 116408
Edges 14855842 328132 32523 150818

The number of nodes and edges of Phase I, Phase II and
Phase III are listed below.

Table 2. Data statistics for seperate phases
Phase Number of nodes Number of edges

Phase I 6061 7712
Phase II 87457 169526
Phase III 247440 378243

The log-scale of number and cummulative number of mes-
sages sent per hour is shown in Figure 1.

Figure 1. number and cummulative number of messages sent per
hour

From Figure 1, we can see several peaks of informa-
tion exchange. Although the official announcement hap-
pened on 4th July at 8AM GMT, 4th July 3AM GMT is

actually the moment that the highest information exchanges
happened. Moreover, from the graph, we can clearly find
the differences between the trend in different phases.

In the following part, we will use Phase I as an example
to show the properties of each layer.

The data statistics of different layers in Phase I are listed
in Table 3.

Table 3. Data statistics for different layer
Layer Nodes Edges Diameter Average Path length

Retweet 4537 4040 5 1.477
Mention 3134 2966 6 1.666

Reply 896 563 4 1.118

The reply network is very sparse and less informative
with less than 1000 edges. The network only consists of
small discrete components. Most of these discrete compo-
nents only have 2 or 3 nodes. On the other hand, in the
mention and retweet network, several influential nodes ex-
ist in both the mention network and the retweet network,
which means that most of the users in the network knows
the information from these influential nodes. With a proper
aggregation function Cp, we should be able to find the nodes
that have the maximized influence in the aggregated graph.

5. Methods

5.1. Diffusion Models

In this work, we use the traditional LT and IC models to
simulate the information propagation process in the social
network. Their definition are described below:

1. Linear Threshold Model
For a node v, we have an monotone function f based
on v’s neighbors that are already active.
Thus, {

f(v) > θv v is active

f(v) ≤ θv v is inactive

Start from a set S, using the above inequalities, we
can determine whether a node v is active or not, thus
compute σ(S) - how many nodes can be activated from
the initial S.

2. Independent Cascade Model
Each node v has a probability pv(u, T ) to activate its
neighbor u, where T is u’s neighbors who has already
tried to activate u.
Note that for each node pair (v, u) ∈ G, there is only
one chance for v to activate u. Based on the previous
process, we can compute σ(S).



5.2. Information Maximization Algorithms

We apply SimPath [9] and CELF++ [8] for initial set se-
lection to achieve maximized influence. We define the in-
fluence as the cumulative number of activated nodes in the
information process starting with the initial set.

1. SimPath
SimPath algorithm is based on LT model. The spread
of a set S is the sum of the spread of each node u ∈ S
on subgraphs induced by V − S + u. That is,

σ(S) =
∑
u∈S

σV−S+u(u)

Different from the general LT model, the SimPath
model compute the spread of a set S by the sum of
the spread of each node in S and the spread of each
node can be computed by summing the weights (i.e.,
probabilities) of all simple paths originating from it.
That is,

ru =
∑
v∈G

ru,v

And
ru,v =

∑
P∈P(u,v)

Pr[P ]

Where Pr[P ] is the probability of a path P being live
and P(u, v) is the set of all paths from node u to v.
Take the above network as an example, if the initial set
is S = {x, y}, we have,

σ(S) = rx + ry

Where
rx = rx,x + rx,y + rx,z

rx,z = 0.3 · 0.2 + 0.4 = 0.46

2. CELF++
CELF used the greedy algorithm with the heuristic that
each node has unit cost. Start with empty placement
A0 = ∅, and iteratively, in step k, adds the location sk
which maximizes the marginal gain

sk = argmaxs∈V\Ak−1
R(Ak−1 ∪ {s})−R(Ak−1)

The algorithm stops, once it has selected B elements.

CELF++ optimizes CELF by exploiting submodular-
ity. The key improvement in CELF++ is that if the
node u.prev best is picked as a seed in the current iter-
ation, we don’t need to recompute the marginal gain of
u w.r.t (S ∪ {prev best}) in the next iteration. Thus,
CELF++ is more efficient compared to CELF.

5.3. Edge Probability Assignment

In LT and IC model, we have to assign each edge from
node i to node j a influential score pij , which measures
how likely information can flow from node i to node j. In
our project, we use two different methods to assign edge
probability.

1. Beta distribution
We use Beta distribution B(αij , βij) to generate influ-
ence score pij for each edge from node i to node j.
The hyperparameter αij is set to be a fixed value and
β is set to be propotional to the in-degree of node j.

αij = 19

βij ∝ InDegree(j)

2. Online Probability Learning

Algorithm 1 Online Probability Learning
1: procedure COMPUTE PROBABILITY
2: z← Bernoulli(e)
3: if z = 0 then
4: pij =

1
αij+βij

(αij +
√

αij+βij

αij+βij+1 )

5: S← IM(G, k, n)
6: else
7: pij =

αij

αij+βij

8: S← IM(G, k)

9: S← IM(G, k)

10: procedure UPDATE HYPERPARAMETERS α, β
11: α← 1
12: Using binary search to compute β for f(β) = 0,

where
13: f(β) =

∑
mij 6=0

1
β+mij

−
∑
hij 6=0

1
α+hij

14: pij ∼ B(α+ hij , β +mij)

Using the idea in [1], the given network can be seen as a
uncertain influence graph with uncertain influence score pij
between each pair of nodes. Then, we adopt the Explore-
Exploit strategy to update the influence score pij in the the
given network, which can select seed nodes using either the
current influence probability estimation or the confidence
bound on the estimation. Then any existing Influence Max-
imization Algorithms(IM) can be used to determine the ini-
tial set S and we use the simulation process to update the



Figure 2. Influence spread vs number of seeds by random probabilities. (From left to right: phase I, II, III)

Figure 3. Influence spread vs number of seeds by heuristic probabilities. (From left to right: phase I, II, III)

Figure 4. Influence spread vs number of seeds by Online Probability Learning. (From left to right: phase I, II, III)

hyperparameters α, β in beta distribution. The pseudo-code
are listed at Algorithm 1.

5.4. Multi-layered Network Aggregation

We focus on experimenting with different layer aggrega-
tion methods. Given the twitter dataset with retweet, men-
tion and reply layers of information spreading trace, we ex-
perimented with various ways of integrating those methods.
So far, we mainly explored possible ways to assign edge
probabilities in the aggregated network.

The baseline is to assign random edge probability to all
layers, and integrate all layers into a single network by over-
lapping them. In other words, we use this as a unified net-

work where there is no difference between different layers.

For the second probability assigning strategy, we first as-
sign the probability for each edge by applying Beta distri-
bution discussed above. Then we scale the edge probability
based on the weight of three types of communications in the
network. For example, the ratio of total number of edges in
mention, retweet and reply is 6:3:1, then we scale them to
make the mean of mention edge probability, the mean of
retweet edge probability and the mean of reply edge prob-
ability also as the ratio of 6:3:1. To fit in the LT model,
we also assign the probability to make the largest in-weight
in the network smaller than 1. This assignment is based
on the assumption that the larger number of communication



will result in larger influence in the information flow in the
network. To better simulate the uncertainty in the network,
among the same type of edge, we assign their probability
based on a normal distribution with expectation calculated
as mentioned above.

6. Experiments and Evaluation
6.1. Experiments

We first conducted experiments to compare, for each
phase, the performance of SimPath and CELF++ on both
networks with edge probabilities assigned randomly or by
our heuristics, in terms of influence spread.

Second, while running CELF++, we removed one type
of edges (i.e. one type of MT: mention, RE: reply and RT:
retweet) each at a time, and compare the resulting influence
spread during each phase. This experiment could illustrate
to what extent the removal of each type of edges would de-
teriorate the influence spread.

We also targeted the top influencer in each phase and
analyzed their actions in that phase. More specifically, we
analyzed the type and time of their actions.

6.2. Experiment Results

Table 4. Top Influencers Selected by SimPath and CELF++ using
Random Probabilities

Phase I Phase II Phase III
SIMPATH 250519 88 677 1988 88 14454 677
CELF++ 250519 88 1988 677 88 14454 677

Table 5. Top Influencers Selected by SimPath and CELF++ using
Heuristic Probabilities

Phase I Phase II Phase III
SIMPATH 250519 88 1988 677 88 14454 677
CELF++ 250519 88 1988 677 88 14454 677

Table 6. Top Influencers Selected by SimPath and CELF++ using
Online Probability Learning

Phase I Phase II Phase III
SIMPATH 250519 88 1988 677 88 14454 677
CELF++ 250519 88 1988 677 88 14454 677

Figure 2, Figure 3 and Figure 4 show the performance
of SimPath and CELF++ on different networks with edge
probabilities assigned randomly, by our beta distribution
heuristics and by online probability learning, during each
phase I, II and III. For all networks CELF++ outperformed
SimPath, during all phases. Comparing the influence spread
in different network during the same phase (e.g. the right
plot in Figure 2, Figure 3 and Figure 4), we could conclude
our heuristics to assign edge probabilities are more reason-
able than just randomly assign probabilities, since the in-
fluence spread faster. The spread of influence scores are in
Figure 4 is not as good as those in Figure 2 and 3. However,

Figure 5. Influence spread vs number of seeds by using differ-
ent combination of layers. (Where MT: Mention, RE: Reply, RT:
Retweet. From top to bottom: phase I, II, III)

this score is not comparable between algorithms, as we used
different methods to normalize them.

Figure 5 shows the effects of removing one type of ac-
tion to the influence spread. In all three phases, the removal



of RT: retweet edges will cause the most significant effects
on the influence spread, Which is consistent to our intuitive
mentioned in section 5.3. Figure 5 also illustrates the extent
of this effects, the removal of RT would dramatically dete-
riorate the influence spread, compared with the removal of
the other two types of actions, especially during phase II
and III.

Table 7. Top users’ actions in different phases
Phase I Phase II Phase III

ID 250519 88 1988 677 88 14454 677
Total 540 21059 6005 6005 14496 5493 5493

Mention 29 8841 1132 1132 6443 306 306
Reply 3 658 85 85 655 36 36

Retweet 505 11549 4784 4784 7393 5151 5151

Table 4, Table 5 and Table 6 show the top influencers
selected by SimPath and CELF++ in different networks dur-
ing each phase (only one top influencer is included in phase
I). Table 7 shows the actions the top influencers took in each
phases. In each phase, the top influencers not just partici-
pate a lot but more importantly, their tweets are retweeted
thousands of times and they are frequently mentioned by
other users. This is consistent with our analysis above that
the retweets play a more significant role in the spreading
of influence, the users with top influence are usually those
whose tweets are retweeted more.

Through dissecting the actions of those users, we also
got some interesting results: most influential user ’88’ in
phase II and III took his/her action very early in that phase.
In both phase, ’88’ tweeted almost at the beginning of
that phase and those tweets are repeatedly retweeted dur-
ing that phase. However, the most influential user ’250519’
in phase I did NOT take his/her actions very soon, his/her
first tweet appeared almost in the middle of phase I. But that
retweet still got massively retweeted through phase I. So we
could conclude the most influential nodes are not necessar-
ily those taking their actions very early.

7. Conclusion and Future Work
In our project, we focuse on a specific dataset - the

spread of discovery of a particle on Twitter, which is a
multi-phased, multi-layered network. We have explored
some aggregation model for multi-layered network, under
different assumptions. Using Information Maximization
algorithms we are able to determine the most influential
nodes in multi-layered network. The exprimental results
shows that our strategy of assigning edge probabilities
outperforms state-of-arts methods.

In the future, we would like to adopt online edge prob-
ability learning strategies to more general network, and ex-
plore the change of edge probabilities to measure the effec-
tiveness of the online learning methods.
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