
ARTICLE IN PRESS
JID: EOR [m5G;December 22, 2015;6:59]

European Journal of Operational Research 000 (2015) 1–13

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

Order acceptance and scheduling problems in two-machine flow shops:

New mixed integer programming formulations

Rasul Esmaeilbeigi, Parisa Charkhgard∗, Hadi Charkhgard
School of Mathematical and Physical Sciences, The University of Newcastle, Australia

a r t i c l e i n f o

Article history:

Received 1 August 2014

Accepted 30 November 2015

Available online xxx

Keywords:

Order acceptance

Scheduling

Mixed integer programming

Preprocessing

Valid inequalities

a b s t r a c t

We present two new mixed integer programming formulations for the order acceptance and scheduling

problem in two machine flow shops. Solving this optimization problem is challenging because two types

of decisions must be made simultaneously: which orders to be accepted for processing and how to schedule

them. To speed up the solution procedure, we present several techniques such as preprocessing and valid in-

equalities. An extensive computational study, using different instances, demonstrates the efficacy of the new

formulations in comparison to some previous ones found in the relevant literature.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

Many manufacturing companies use Make-To-Order (MTO) pro-

duction systems. In MTO systems, planning for the manufacture of a

product will begin only when a customer order is received. The main

advantage of these systems is that they give rise to low finished goods

inventories. However, these systems have a significant disadvantage

in that the lead time for the fulfillment of orders may result in sig-

nificant financial loss for companies because of the loss of business

due to production limitations. As a consequence, to remain compet-

itive, companies employing these systems must decrease their order

delivery times. This can be achieved by employing an accurate pro-

duction plan that determines which orders should be accepted and

how they should be scheduled. The solution to the Order Acceptance

and Scheduling Problem (OASP) is an important step in the develop-

ment of such a plan.

OASPs have been studied extensively over the past 20 years and

a number of different versions of these problems exist. We refer in-

terested readers to the literature survey by Slotnick (2011) for details.

Versions of OASPs in which the objective functions maximize the to-

tal net revenue, i.e. the difference between sum of revenues and total

weighted tardiness or lateness, have been studied by many authors

in a single-machine environment. Slotnick andMorton (1996) are be-

lieved to be the first researchers who addressed this problem under

the assumption of static arrivals, meaning that all jobs are assumed

to be available at time zero. They proposed two heuristic algorithms

∗ Corresponding author. Tel.: +61 2 4926 1326.

E-mail address: parisa.charkhgard@uon.edu.au (P. Charkhgard).

and a Branch and Bound (B&B) technique to solve the problem in this

case.

Later, Ghosh (1997) proved that an OASP with lateness penal-

ties is NP-hard. He also presented two pseudo-polynomial time

dynamic programming algorithms, and a polynomial-time approx-

imation scheme in order to solve the problem. Slotnick and Mor-

ton (2007) considered tardiness related penalties instead of lateness

penalties. They developed a B&B algorithm and a number of heuris-

tics to solve this problem exactly with at most 10 jobs in about 6000

seconds on average. As far as we know, the largest instances of OASP

with tardiness related penalties in a single-machine environment

were solved by Nobibon and Leus (2011). They proposed two Mixed

Integer Linear Programming (MILP) formulations and could solve in-

stances of the problem with at most 50 jobs to optimality within two

hours using the IBM ILOG CPLEX Optimizer (see http://www-01.ibm.

com/software/info/ilog). In order to compute high quality solutions

for large size instances of the problem, Rom and Slotnick (2009) de-

veloped a genetic algorithm. They showed that while their proposed

approach is slower than the available heuristics appearing in the rel-

evant literature, it generates solutions of higher quality.

Oğuz, Salman, and Yalçın (2010) added more assumptions to the

OASP with tardiness related penalties in a single machine environ-

ment. They considered release dates for each job and sequence de-

pendent setup times. They gave a MILP formulation of the problem

and could solve instances of the problem with at most 15 jobs to op-

timality. To compute high quality solutions for larger size instances

of the problem, they also developed three heuristics. Later, Cesaret,

Oğuz, and Salman (2012) developed a tabu search algorithm for this

problem. They showed that their proposed algorithm is faster and can

provide solutions with higher quality when compared with previous

http://dx.doi.org/10.1016/j.ejor.2015.11.036

0377-2217/© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the International Federation of Operational Research Societies (IFORS).

All rights reserved.

Please cite this article as: R. Esmaeilbeigi et al., Order acceptance and scheduling problems in two-machine flow shops: New mixed integer

programming formulations, European Journal of Operational Research (2015), http://dx.doi.org/10.1016/j.ejor.2015.11.036

http://dx.doi.org/10.1016/j.ejor.2015.11.036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
mailto:parisa.charkhgard@uon.edu.au
http://www-01.ibm.com/software/info/ilog
http://dx.doi.org/10.1016/j.ejor.2015.11.036
http://dx.doi.org/10.1016/j.ejor.2015.11.036

2 R. Esmaeilbeigi et al. / European Journal of Operational Research 000 (2015) 1–13

ARTICLE IN PRESS
JID: EOR [m5G;December 22, 2015;6:59]

heuristics. Lin and Ying (2013) introduced a new artificial bee colony

based algorithm to solve this problem. Their experimental results in-

dicated that their proposed heuristic is competitive with the algo-

rithm by Cesaret et al. (2012).

There are also a few studies about the OASP with tardiness related

penalties in an m-machine permutation flow shop environment. For

example, Xiao, Zhang, Zhao, and Kaku (2012) developed a partial op-

timization based simulated annealing algorithm to solve instances of

the problem. Later, Lin and Ying (2015) presented a multi-initiator

simulated annealing algorithm, and showed that the new heuristic

outperforms the algorithm by Xiao et al. (2012). Recently, Lei and Guo

(2015) addressed the biobjective version of the problem where the

objectives are minimization of the makespan and maximization of

the total net revenue. To solve instances of the problem, they em-

ployed a parallel neighborhood search algorithm and compared it

with a tabu search and a variable neighborhood search algorithm.

In this paper, we consider the OASP in a 2-Machine Flow shop

environment (OASP-2MF) which is recently addressed by Wang, Xie,

and Cheng (2013a) and Wang, Xie, and Cheng (2013b). In Wang et al.

(2013b), the authors tried to generalize the work of Slotnick and

Morton (2007). They introduced two MILP formulations which could

solve instances of the problem with up to 13 jobs within a one hour

time limit using CPLEX. In addition, they proposed a B&B algorithm

which simultaneously took into account job selection and scheduling

and benefited from the use of some dominance rules in the prun-

ing procedure. They showed that their purpose-built solver can solve

larger sized instances of the problem with up to 20 jobs within an

hour. In Wang et al. (2013a), the authors developed a modified artifi-

cial bee colony algorithm to compute good solutions for even larger

instances of the problem.

The main contribution of our research is the development of two

new MILP formulations for the OASP-2MF. In addition, to speed up

the solution procedure, we present several enhancements (cuts and

preprocessing techniques) which can reduce the size of the problem

significantly and make the formulations stronger. Our new formula-

tions have the following three desirable characteristics:

• The number of variables and constraints in these formulations is

quadratically bounded by the number of jobs. Some previous re-

searchers have developed time-indexed formulations for single-

machine or 2-machine flow shop versions of the OASP, but the

size of these formulations can increase dramatically if processing

times are large.
• They outperform previous formulations even before applying the

enhancements.
• CPLEX can solve instances of the problem that are 5 times larger

than those solved by the purpose-built solver which is developed

in Wang et al. (2013b).

We compare our new formulations after applying the enhance-

ments and show that one of them performs far better than the other.

Using our best formulation, CPLEX can achieve an optimality gap of

less than 2 percent, on average, within 1800 seconds, even for in-

stances of OASP-2MF with as many as 100 jobs.

The rest of the paper is organized as follows. In Section 2, we re-

view some preliminary notation and results. In Section 3, we intro-

duce two new MILP formulations for OASP-2MF. In Section 4, we dis-

cuss enhancements to make the formulations stronger. In Section 5,

we report the results of a comprehensive computational study. Fi-

nally, in Section 6, we give some concluding remarks.

2. Preliminaries

In an OASP-2MF two decisions must be made at the same time:

which orders to be accepted for processing and how to schedule

them. We assume that the set of orders (jobs) is known in advance.

Due to the flow shop structure of the problem, each job can be pro-

cessed on machine 2 at some time after its processing on machine 1

has been completed.

We denote the set of jobs by N = {1,2, . . . ,n}. The revenue and

processing times of each job i ∈ N on machines 1 and 2 are denoted

by ui ∈ Z
+, p1

i
∈ Z

+ and p2
i

∈ Z
+ (where we use Z

+ to denote the set

of positive integers), respectively. We sometimes sort the processing

times on each machine from small to large. We use p1
[i]

and p2
[i]

to

denote the processing times in the ith position of the sorted lists, for

machines 1 and 2, respectively. We denote the completion time of job

i ∈ N by Ci. We assume that each job i ∈ N has a due date, denoted

by di ∈ Z
+, and that there is a delay penalty, denoted by wi ∈ Z

+,

for each unit of the completion time which exceeds di, i.e., Ci − di
(note that due dates are positive integers). Also, there is no reward or

penalty for early delivery.We sometimes refer to the delay time of the

job i ∈ N as its tardiness, and denote it by Ti, i.e., Ti = max{0,Ci − di}.
The net revenue, i.e., the difference between the revenue and the de-

lay cost, of each job i ∈ N is defined by πi := ui − wi · Ti. Furthermore,

we assume that the goal is to maximize the total net revenue in the

OASP-2MF.

Observe that, in an optimal solution, if job i ∈ N is accepted, then

π i ≥ 0. Moreover, πi = ui if job i ∈ N is accepted and fulfilled before

its due date, and π i < ui if job i ∈ N is accepted and fulfilled after its

due date. We sometimes refer to ui − πi (or equivalentlywi · Ti) as the
tardiness penalty for job i ∈ N, if it is accepted. The following proposi-

tions provide the basis for the development of the different MILP for-

mulations and enhancements in this paper. Note that Propositions 1

and 3 are straight forward to prove, and they are known results in

the literature of the classical 2-machine flow shop problem (see for

instance Baker, 1974; Kim, 1993). Therefore, we have omitted their

proofs. Moreover, it should be mentioned that Wang et al. (2013b)

used Proposition 1 to validate their MILP formulations.

Proposition 1. For accepted jobs, there is an optimal schedule in which

each job is processed on both machines in the same sequence.

Proposition 2. In an optimal schedule, CU
i
:= ui

wi
+ di is an upper bound

for the completion time of an accepted job i ∈ N.

Proof. Suppose that the assertion is not true. Therefore, there must

exist a job i ∈ N in an optimal schedule whose completion time Ci is

strictly larger than CU
i
. The net revenue of job i is

πi = ui − wi · max{0, (Ci − di)}.
Because CU

i
< Ci,

πi < ui − wi · max{0, (CU
i − di)}

= ui − wi · max

{
0, (

ui

wi

+ di − di)
}

= 0.

This contradicts our assumption that the schedule is optimal sincewe

can improve the total net revenue by simply rejecting job i. �

Note that Proposition 2 is independent of machine environment

and processing restrictions.

Proposition 3. Let S be the list of accepted jobs for a schedule and sup-

pose that the jobs will be processed in the same order as they appear in

the list. Let Jk ∈ S be the job which is allocated to position k in the list S

where 1 ≤ k ≤ |S| and |S| is the number of elements of S. Then

CL
Jk
:= max

{ ∑
1≤q≤k

p1Jq + p2Jk ,
∑

1≤q≤k

p2Jq + p1J1

}

is a lower bound for the completion time of job Jk.

3. New formulations

In this section, we describe two new MILP formulations for the

OASP-2MF. We then compare them with two Previous Formulations

Please cite this article as: R. Esmaeilbeigi et al., Order acceptance and scheduling problems in two-machine flow shops: New mixed integer

programming formulations, European Journal of Operational Research (2015), http://dx.doi.org/10.1016/j.ejor.2015.11.036

http://dx.doi.org/10.1016/j.ejor.2015.11.036

R. Esmaeilbeigi et al. / European Journal of Operational Research 000 (2015) 1–13 3

ARTICLE IN PRESS
JID: EOR [m5G;December 22, 2015;6:59]

(PF1 and PF2) proposed by Wang et al. (2013b) in terms of size com-

plexity and the number of disjunctive constraints (meaning those with

a big M parameter). The validity of both of these formulations is con-

firmed by Proposition 1.

New Formulation 1 (NF1): In order to describe themodel, we first

define some sets of decision variables. For each job i ∈ N, we use a

binary decision variable to indicate whether the job is accepted or

rejected,

yi :=
{
1 If job i is accepted,

0 Otherwise.

For each pair of jobs (i, j) ∈ N2 with i �= j, we define a binary deci-

sion variable to indicate which one is to proceed earlier,

zi j :=

⎧⎨
⎩
1 If jobs i and j are accepted, and job j

is processed after job i,

0 Otherwise.

We also use continuous decision variables Ci and Ti to represent

the completion time and tardiness, respectively, of each job i ∈ N. Us-

ing these decision variables, our first formulation of the OASP-2MF

can be expressed as follows:

max
∑
i∈N

(ui · yi − wi · Ti) (1)

subject to zi j + z ji ≤ yi ∀i, j ∈ N with i �= j (2)

zi j + z ji ≥ yi + yj − 1 ∀i, j ∈ N with i < j (3)

Ci + p2j + (zi j − 1) · M ≤ Cj ∀i, j ∈ N with i �= j (4)

∑
i∈N\{ j}

p1i · zi j + (p1j + p2j) · yj ≤ Cj ∀ j ∈ N (5)

Ti ≥ Ci − di ∀i ∈ N (6)

yi ∈ {0,1} ∀i ∈ N (7)

zi j ∈ {0,1} ∀i, j ∈ N with i �= j (8)

Ci, Ti ≥ 0 ∀i ∈ N. (9)

The objective function maximizes the total net revenue. Con-

straint (2) guarantees that each job i ∈ N is accepted if it is processed

before or after another job j ∈ N\{i}. Constraint (3) ensures that if jobs
i, j ∈ N are accepted, then either job i is processed after job j or vice

versa. Constraint (4) states that if job i ∈ N precedes job j ∈ N\{i}, then
the completion time of job j should be no shorter than the sum of the

completion time of job i and the processing time of job j on machine

2. In these constraints,M is a sufficiently large positive number. Con-

straint (5) implies that if job j ∈ N is accepted, then its completion

time is no shorter than the sum of the processing times of the jobs

which should be processed before job j on machine 1 plus the pro-

cessing times of job j on machines 1 and 2. Constraint (6) captures

the tardiness of each job i ∈ N. Finally, constraints (7)–(9) specify the

domains of each decision variable. Observe that in an optimal solu-

tion, if a job i ∈ N is rejected then Ti = 0, and so Ci ≤ di.

Before explaining the second formulation, we make some com-

ments about constraint (4). First, it is not difficult to see that con-

straint (4) implies that zi j + z ji ≤ 1 for all i, j ∈ Nwith i �= j. This is be-

cause, for i �= j, if jobs i, j ∈ N are accepted, then either Ci < Cj or Cj <

Ci (note that p2
j
∈ Z

+). This implies that the formulation is valid even

without constraint (2). However, we include constraint (2) because

they can be interpreted as a simple valid inequality for the model and

our computational results show that this can improve the run time

of CPLEX. Secondly, we can safely set M = ∑n
i=1(p

1
i

+ p2
i
). Later, we

show that it might be possible to find an even smaller positive value

forM.

Finally, constraint (4) plays an important role in enforcing a tran-

sitive relationship between the decision variables zij. Let a, b, c ∈ N

be three jobs such that a �= b �= c. It is easy to see that if zab = 1

and zbc = 1, then zac must also be equal to one. To enforce such a

relationship between binary decision variables, researchers usually

add some inequalities to their models. For instance, Dyer andWolsey

(1990); Nemhauser and Savelsbergh (1992); Unlu and Mason (2010),

and Reisi-Nafchi and Moslehi (2015) added the constraint

zab + zbc + zca ≤ 2

to their models while some other researchers, such as Chudak and

Hochbaum (1999), added the constraint

zab ≤ zac + zcb

to their models in order to ensure transitivity of their decision vari-

ables. Proposition 4 shows that we do not need to add any of the

above logical constraints to NF1 because constraints (3) and (4) im-

ply the existence of a transitive relationship between our decision

variables.

Proposition 4. Constraints (3) and (4) imply the existence of a transi-

tive relationship between the decision variables zij where i, j ∈ N and i �=
j.

Proof. Let a, b, c ∈ N be three accepted jobs such that a �= b �= c. Sup-

pose that zab = 1 and zbc = 1. We prove zac must be exactly one.

It is easy to see from constraint (4) that since p2
j
∈ Z

+ (that is,

p2
j
≥ 1) and zab = zbc = 1, we must have Ca + 1 ≤ Cb and Cb + 1 ≤ Cc.

Consequently,Ca + 2 ≤ Cc. Since a and c are accepted jobs, constraints

(3) and (4), or equivalently constraints (2) and (3), imply that exactly

one of zac and zca must be equal to one.

Suppose that zca is equal to one. Constraint (4) implies that Cc +
1 ≤ Ca which gives a contradiction. Therefore, zac must be equal to

one. �

New Formulation 2 (NF2): In order to describe themodel, we first

define some new sets of decision variables. Let Q := {1,2, . . . ,n} be

the set of positions (in the sequencing list) to which jobs can be as-

signed. For each job i ∈ N and for each position k ∈ Q, we define a bi-

nary decision variable xik which indicates whether the job is assigned

to that position, that is,

xik :=
{
1 If job i is accepted and assigned to position k,

0 Otherwise.

For each position k ∈ Q, we define a continuous decision variable

C′
k
which stores the completion time of the job allocated to position k.

Using these decision variables, our second formulation of the OASP-

2MF can be expressed as follows:

max
∑
i∈N

(ui · yi − wi · Ti) (1)

subject to
∑
k∈Q

xik = yi ∀i ∈ N (10)

∑
i∈N

xik ≤ 1 ∀k ∈ Q (11)

C′
k+1 ≥ C′

k +
∑
i∈N

p2i · xi,k+1 ∀k ∈ Q\{n} (12)

C′
k ≥

∑
i∈N

∑
k′∈Q,

k′≤k

p1i · xik′ +
∑
i∈N

p2i · xik ∀k ∈ Q (13)

Ti ≥ C′
k − di + M · (xik − 1) ∀i ∈ N and k ∈ Q (14)

yi ∈ {0,1} ∀i ∈ N (15)

Please cite this article as: R. Esmaeilbeigi et al., Order acceptance and scheduling problems in two-machine flow shops: New mixed integer

programming formulations, European Journal of Operational Research (2015), http://dx.doi.org/10.1016/j.ejor.2015.11.036

http://dx.doi.org/10.1016/j.ejor.2015.11.036

4 R. Esmaeilbeigi et al. / European Journal of Operational Research 000 (2015) 1–13

ARTICLE IN PRESS
JID: EOR [m5G;December 22, 2015;6:59]

xik ∈ {0,1} ∀i ∈ N and k ∈ Q (16)

C′
k ≥ 0 ∀k ∈ Q (17)

Ti ≥ 0 ∀i ∈ N. (18)

The objective function in this formulation also maximizes the to-

tal net revenue. Constraint (10) ensures that each accepted job is al-

located to exactly one position (evidently, the rejected jobs will not

be allocated to any position). Constraint (11) states that each position

cannot be assigned to more than one job. Constraint (12) guarantees

that the job in the (k+1)th position cannot be completed in a time

any shorter than the sum of the time it takes to complete the job in

position k and the processing time for the (k+1)th job on machine 2.

Constraint (13) implies that the job allocated to position k cannot be

completed in a shorter time than the sum of the processing times on

machine 1 of the jobs in the earlier positions added to the process-

ing times for the job in position k on machines 1 and 2. Constraint

(14) captures the tardiness of each job i ∈ N. Note that we can safely

set M = ∑n
i=1(p

1
i

+ p2
i
) in these constraints. Finally, constraints (15)–

(18) define the domains of each decision variable. Observe that in an

optimal solution, if a job i ∈ N is rejected then Ti = 0. Also, for position

k ∈ Q, C′
k

≥ C′
k′ for all k

′ ∈ {1, . . . , k − 1}.
It should be mentioned that in NF2, constraint (10) can be writ-

ten as �k ∈ Qxik ≤ 1 and hence the binary (auxiliary) variable yi for

i ∈ N can be removed from the model (we can substitute �k ∈ Qxik
for yi in the objective function). However, we have observed that the

presence of these variables increases the efficiency of our algorithm

during our computational experiments and so we have chosen to in-

clude these variables in the expression of our model. One reason for

this increased efficiency could be the new branching strategy which

is defined by introducing the new (auxiliary) variables yi for i ∈ N that

influence the value of �k ∈ Qxik in the B&B search tree.

In NF2, empty positions are allowed to appear between two con-

secutive jobs. This means that the formulation is symmetric. An in-

teger linear program is symmetric if its variables can be permuted

without changing the structure of the problem (Margot, 2010). In

Section 4.3 we break the symmetry of NF2 by using a set of valid in-

equalities.

Next, we compare NF1 and NF2 with PF1 and PF2 in terms of size

complexity. Interested readers may refer to Appendix to see PF1 and

PF2 in detail. Note that PF2 is a time-indexed formulation, and so

the number of binary variables and constraints of this formulation

is highly dependent on the processing times. As a consequence, to

evaluate the size complexity of PF2, we should know the number

of breakpoints in time defined for each job i ∈ N, because that in-

dicates how many time-indexed variables exist in the model. In PF2,

for each job i ∈ N, the number of breakpoints in time for job i ∈ N is

� − p1
i

− p2
i

+ 1, where the parameter � is an upper bound for the

number of breakpoints. Suppose that the processing times are gen-

erated randomly and independently from the discrete uniform distri-

bution on the interval [1, L] where L ∈ Z
+. If N̄ := {i ∈ N : p1

i
≥ p2

i
} be

the set of jobs whose processing times onmachine 1 are not less than

their processing times on machine 2, then � is defined by

� =
∑
i∈N̄

p1i +
∑
i∈N\N̄

p2i + L.

Proposition 5. If p1
i
, p2

i
∈ Z

+ for i ∈ N are generated randomly and in-

dependently from the discrete uniform distribution on [1, L], then the

expected value E[�] of � is given by

E[�] = n(4L − 1)(L + 1)

6L
+ L.

Proof. If Xi := max(p1
i
, p2

i
), then we certainly have � = ∑

i∈N Xi + L.

Consequently, because the processing times are generated randomly

Table 1

The comparison of the formulations.

Model NBVs NCVs NCs NDCs

PF1 2n2 2n n3 + 2n2 + 2n − 1 2n2 − 2n

PF2 n� ∗ 2n n2� + 2n� + 2n ∗ n2� + n� ∗

NF1 n2 2n 2.5n2 − 0.5n n2 − n

NF2 n2 + n 2n n2 + 4n − 1 n2

∗ Approximate quantities.

and independently,

E[�] = E

[∑
i∈N

Xi + L

]
= nE[X] + L.

Let FXi (x) be the cumulative distribution function of Xi for each i ∈ N,

where x ∈ [1, L] is an integer. Then

FXi
(x) = Pr(Xi ≤ x) = Pr(p1i ≤ x) · Pr(p2i ≤ x) =

(
x

L

)2

.

So,

Pr(Xi = x) = FXi
(x) − FXi

(x − 1) = 2x − 1

L2
.

Therefore,

E[X] = E[Xi] =
L∑

x=1

x · Pr(Xi = x) = (4L − 1)(L + 1)

6L

and our result follows. �

Table 1 summarizes the Number of Binary Variables (NBVs), the

Number of Continuous Variables (NCVs), the Number of Constraints

(NCs) and the Number of Disjunctive Constraints (NDCs) required by

each model to formulate an OASP-2MF with n jobs.

As can be seen from Table 1, the NBVs and NDCs of the PF1, NF1

and NF2 are bounded by O(n2). However, the NBVs and NDCs of PF2

are bounded by O(n�) and O(n2�), respectively. Moreover, for NF1

andNF2, the NCs is bounded byO(n2). By contrast, the NCs is bounded

by O(n3) and O(n2�) for the PF1 and PF2, respectively. The NCVs is

linearly bounded in the number of jobs for all formulations.

Tables 2 –4 give numerical values which show the differences be-

tween the formulations for different problem sizes when processing

times are generated randomly from the intervals [1, 10] and [1, 100].

Note that the value of � is problem dependent and we cannot com-

pute it without knowing the values of the processing times. How-

ever, Proposition 5 allows the expected value of � to be computed if

the processing times are generated randomly from a discrete uniform

distribution. So we have used E[�] instead of � in the tables. It is ev-

ident from the tables that the numbers of variables and constraints

for NF1 and NF2 are significantly smaller than the numbers of vari-

ables and constraints for PF1 and, especially, PF2. Note that PF2 is a

time-indexed formulation.

4. Enhancements

In this section, we provide some techniques which can possibly

make NF1 and NF2 stronger and reduce their size complexity dra-

matically. Some of these techniques can be applied to only one of the

formulations, but the others can be used with both formulations.

4.1. Moderating big-M coefficients

LP relaxation of a MILP formulation with disjunctive sets may be

improved significantly by moderating its big-M parameters. In NF1

and NF2, constraints (4) and (14) contain big-M parameters. As was

Please cite this article as: R. Esmaeilbeigi et al., Order acceptance and scheduling problems in two-machine flow shops: New mixed integer

programming formulations, European Journal of Operational Research (2015), http://dx.doi.org/10.1016/j.ejor.2015.11.036

http://dx.doi.org/10.1016/j.ejor.2015.11.036

R. Esmaeilbeigi et al. / European Journal of Operational Research 000 (2015) 1–13 5

ARTICLE IN PRESS
JID: EOR [m5G;December 22, 2015;6:59]

Table 2

The comparison of the formulations in terms of NBVs.

Example Problem size Formulations

n E[�] E[�] PF1 PF2 ∗ PF2 ∗ NF1 NF2

(p1
i
, p2

i
∈ [1,10]) (p1

i
, p2

i
∈ [1,100]) (p1

i
, p2

i
∈ [1,10]) (p1

i
, p2

i
∈ [1,100])

1 12 95.8 906.0 288 1150 10,872 144 156

2 25 188.8 1,779.1 1250 4719 44,478 625 650

3 50 367.5 3458.3 5000 18,375 172,913 2500 2550

4 100 725.0 6816.5 20,000 72,500 681,650 10,000 10,100

∗ Approximate averages of NBVs.

Table 3

The comparison of the formulations in terms of NCs.

Example Problem size Formulations

n E[�] E[�] PF1 PF2 ∗ PF2 ∗ NF1 NF2

(p1
i
, p2

i
∈ [1,10]) (p1

i
, p2

i
∈ [1,100]) (p1

i
, p2

i
∈ [1,10]) (p1

i
, p2

i
∈ [1,100])

1 12 95.8 906.0 2039 16,118 152,229 354 191

2 25 188.8 1779.1 16,924 127,456 1,200,959 1550 724

3 50 367.5 3458.3 130,099 955,600 8,991,550 6225 2699

4 100 725.0 6816.5 1,020,199 7,395,200 69,528,500 24,950 10,399

∗ Approximate averages of NCs.

Table 4

The comparison of the formulations in terms of NDCs.

Example Problem size Formulations

n E[�] E[�] PF1 PF2 ∗ PF2 ∗ NF1 NF2

(p1
i
, p2

i
∈ [1,10]) (p1

i
, p2

i
∈ [1,100]) (p1

i
, p2

i
∈ [1,10]) (p1

i
, p2

i
∈ [1,100])

1 12 95.8 906.0 264 14,945 141,333 132 144

2 25 188.8 1779.1 1200 122,688 1,156,431 600 625

3 50 367.5 3458.3 4900 937,125 8,818,538 2450 2500

4 100 725.0 6816.5 19,800 7,322,500 68,846,650 9900 10,000

∗ Approximate averages of NDCs.

discussed previously, one simple way to moderate the big-M param-

eters for these formulations is to set M = ∑n
i=1(p

1
i

+ p2
i
) in both for-

mulations. However, this is not the smallest trivial value that can be

assigned to M. Proposition 2 allows us to compute smaller values for

M. In NF1, we can use M̂i j := 	CU
i

 + p2

j
where i, j ∈ N and i �= j to

replaceM in constraint (4) and obtain the new constraints:

Ci + p2j + (zi j − 1) · M̂i j ≤ Cj ∀i, j ∈ N and i �= j.

It is easy to see that M̂i j is a suitable value for M because if zi j = 0,

the inequality Ci − 	CU
i

 ≤ Cj holds. Note that we use 	CU

i

 instead

of CU
i

because we have assumed that all parameters in the problem

are positive integers. So, the completion time of each accepted job

should also be a positive integer. In NF2, we can substitute M̌i :=
max j∈N	CU

j

 − di where i ∈ N for M in constraint (14). This yields the

new constraints:

Ti ≥ C′
k − di + M̌i · (xik − 1) ∀i ∈ N and k ∈ Q .

It is easy to see that M̌i is a suitable value to replace M because if

xik = 0, the inequality C′
k

− max j∈N 	CU
j

 ≤ Ti holds.

To illustrate the differences between M, M̂i j and M̌i, we compare

their expected values, i.e., respectively E(M̂i j), E(M̌i), and E(M), in an

example with n jobs. We assume that due dates are generated ran-

domly from a uniform distribution on the interval [2L, nL], but that

all the other parameters are generated uniformly from the interval

[1, L]. It is not hard to see that E(
ui
wi

) ≈ ln(
√
L), so E(M̂i j) ≈ L

2 (n +
3) + ln(

√
L). Moreover, because max j∈N	CU

j

 ≤ L(n + 1), we see that

E(M̌i) ≤ 1
2nL. However, E(M) = n(L + 1) which is much larger than

both of the calculated values for E(M̂i j) and E(M̌i).

4.2. Valid inequalities for NF1

Knapsack constraints have long been studied in operations re-

search (see, for instance, Atamtürk & Savelsbergh, 2005). If modern

commercial MIP solvers identify these inequalities in the model, they

can possibly make the formulation stronger by generating some ad-

ditional valid inequalities such as cover cuts (see, for instance, Avella,

Boccia, & Vasilyev, 2012; Kaparis & Letchford, 2010). To exploit this

ability of commercial solvers, we propose to add the following two

knapsack constraints to NF1:∑
i∈N\{ j}

p1i · zi j ≤
(CU

j
 − p1j − p2j
)

· yj ∀ j ∈ N. (19)

∑
i∈N\{ j}

p2i · zi j ≤
(CU

j
 − p1[1] − p2j
)

· yj ∀ j ∈ N. (20)

Note that the validity of these knapsack constraints for NF1 is en-

sured by Propositions 2 and 3. In other words, we may deduce from

Propositions 2 and 3 that if y j = 1 where j ∈ N, then

max

(∑
i∈N\{ j}

p1i · zi j + p1j + p2j ,
∑

i∈N\{ j}
p2i · zi j + p1[1] + p2j

)
≤ 	CU

j
.

This inequality is valid because the left hand side of each inequality

gives a lower bound for the completion time.

To see how cover cuts can be generated by commercial solvers,

consider constraint (19) and job j ∈ N. A set Kj⊆N\{j} is called a cover

if∑
i∈Kj

p1i >
(CU

j
 − p1j − p2j
)
.

Please cite this article as: R. Esmaeilbeigi et al., Order acceptance and scheduling problems in two-machine flow shops: New mixed integer

programming formulations, European Journal of Operational Research (2015), http://dx.doi.org/10.1016/j.ejor.2015.11.036

http://dx.doi.org/10.1016/j.ejor.2015.11.036

6 R. Esmaeilbeigi et al. / European Journal of Operational Research 000 (2015) 1–13

ARTICLE IN PRESS
JID: EOR [m5G;December 22, 2015;6:59]

For any cover Kj, the cover cut
∑

i∈Kj
zi j ≤ |Kj| − 1 is a valid inequality

for NF1 and can be added to the formulation.

Proposition 2 also allows us to add some valid bounding inequal-

ities for the completion time and tardiness of each job i ∈ N to the

formulation of NF1:

Ti ≤ 	CU
i
 − di ∀i ∈ N (21)

Ci ≤ 	CU
i
 ∀i ∈ N. (22)

Adding bounding inequalities is useful because they allow com-

mercialMIP solvers to eliminate some of the variables in their prepro-

cessing phase. For instance, in inequality (21), we may place bounds

on the tardiness values for each job. As a consequence, if 	CU
i

 = di,

commercial solvers can set Ti equal to zero and eliminate this variable

from the mathematical formulation.

4.3. Valid inequalities for NF2

We first discuss some valid inequalities which were introduced

by Nobibon and Leus (2011) to solve the OASP in a single-machine

environment, namely

n∑
i=1

xi,k+1 ≤
n∑

i=1

xik ∀k ∈ Q\{n}. (23)

These inequalities are useful because they break the symmetry in the

formulation by removing any empty positions that appear between

two consecutive jobs. In other words, these constraints ensure that

position k + 1 is empty if position k is empty. Interested readers may

refer to Sherali and Smith (2001) for the application of such hierar-

chical constraints in breaking the symmetry.

Valid inequality (23) can be implemented differently by introduc-

ing binary auxiliary variables vk for all k ∈ Q and adding the following

constraints:
n∑

i=1

xik = vk ∀k ∈ Q (24)

vk+1 ≤ vk ∀k ∈ Q\{n}. (25)

As will be shown in Section 5, this implementation results in a signif-

icant improvement in the runtime for two main reasons. First, the

number of nonzero elements in the coefficient matrix of the con-

straints is sharply reduced by 2n2 − 5n + 2. This is because constraint

(25) has simpler representation in comparison with constraint (23).

Moreover, the addition of constraint (24) to the formulation makes

constraint (11) redundant and allows their removal. Second, the in-

troduction of the auxiliary variables vk for all k ∈ Q provides a new

type of branching strategy which influences the value of
∑n

i=1 xik in

the B&B search tree. More precisely, by introducing an auxiliary vari-

able vk, we can branch on the position k, and decide whether it is

empty or not. It is evident from constraints (24) and (25) that branch-

ing on position k can be effective since if vk = 0 then xik′ = 0 for each

i ∈ {1, . . . ,n} and k′ ∈ {k, . . . ,n}.
Note that introducing auxiliary variables is quite common, both

in the contexts of constraint programming and of integer program-

ming, because they can guide branching schemes. However, as we

have shown, they can also be useful in decreasing the number of

nonzero elements in the matrix of coefficients.

Another type of valid inequalities which can be added to NF2 is

bounding inequalities such as

Ti ≤ 	CU
i
 − di ∀i ∈ N (26)

C′
k ≤

∑
i∈N

	CU
i
 · xik +CU

max · (1 − vk) ∀k ∈ Q (27)

where CUmax := maxi∈N	CU
i

. These inequalities are similar to the ones

we added to NF1. Evidently, for a position k, inequality (27) might be

active only if a job is assigned to position k, and it implies that the

completion time of the job allocated to position k cannot exceed its

upper bound. Note that we can also add similar knapsack inequalities

to the ones proposed for NF1 to NF2 as follows:∑
i∈N

∑
q∈Q,

q≤k

p1i · xiq +
∑
i∈N

p2i · xik ≤
∑
i∈N

	CU
i
 · xik +CU

max · (1 − vk)

∀k ∈ Q∑
i∈N

∑
q∈Q,

q≤k

p2i · xiq +
∑
i∈N

p1i · xi1 ≤
∑
i∈N

	CU
i
 · xik +CU

max · (1 − vk)

∀k ∈ Q .

However, these knapsack inequalities do not improve the runtime

of NF2 when used in conjunction with constraint (27). This is mainly

because constraint (27) is stronger than the knapsack inequalities.

Both the knapsack constraints and constraint (27) have the same right

hand sides, but the left hand sides of the knapsack inequalities give a

lower bound for C′
k
(see Proposition 3).

Note that constraint (27) imposes a relationship between the bi-

nary variables that are used in the knapsack inequalities (see the right

hand sides) for NF2. This is not the case for NF1, and so there is no re-

lationship between the knapsack inequalities for NF1 and constraint

(22). Thus, knapsack inequalities can improve efficiency for NF1, even

in the presence of the bounding constraint (22).

4.4. Preprocessing for NF2

Wewill now describe two preprocessing techniques which can be

applied to NF2. We also describe how these techniques can be used

in practice. The development of these techniques was based on the

fact that we are able to compute a lower bound, denoted by CL
iq

, for

the completion time of each job i ∈ N if it is located in position q ∈
Q. Consequently, if the obtained lower bound CL

iq
≥ CU

i
, we can safely

set xiq = 0. Since we have assumed that all parameters for the prob-

lem are positive integers, we can use �CL
iq
� ≥ CU

i
instead of CL

iq
≥ CU

i

as a condition to set xiq = 0. In other words, to reduce the size of the

problem, if �CL
iq
� ≥ CU

i
, then the variable xiq should not be generated

for NF2. Note that in general, we cannot use �CL
iq
� ≥ 	CU

i

 instead of

�CL
iq
� ≥ CU

i
as a condition to set xiq = 0.

Suppose thatCU
i

∈ Z. If �CL
iq
� = CU

i
, thenwe can safely set xiq = 0. If

job i is completed at time CU
i

, then its net revenue is zero, i.e., πi = 0.

Therefore, setting xiq = 0 does not make the objective value worse.

However, if CU
i

∈ R\Z and �CL
iq
� = 	CU

i

, we cannot set xiq = 0. This is

because if the job is completed at time 	CU
i

, then its net revenue is

strictly positive, π i > 0. Therefore, setting xiq = 0 may cut off global

optimal solutions of the OASP-2MF.

Next, we introduce some notation to facilitate the presentation

and discussion of our preprocessing techniques. Let Ai := {q ∈ Q :

�CL
iq
� ≥ CU

i
} be the set of impermissible positions for job i ∈ N. Sim-

ilarly, we denote the set of impermissible jobs for position q ∈ Q

by Bq := {i ∈ N : �CL
iq
� ≥ CU

i
}. Evidently, before beginning our prepro-

cessing procedure, these sets are empty. However, in each iteration of

the preprocessing procedure, we update them. Observe that the el-

ements of B1 cannot be assigned to any position. As a consequence,

they should be rejected straight away.

The First Preprocessing Technique (PRE1): By Proposition 3, re-

gardless of which job is allocated to position q ∈ Q, we are able to

compute a lower bound, denoted by CL
q, for its completion time. This

can be done simply by computing

CL
q = max

{
q∑

k=1

p1[k] + p2[q],

q∑
k=1

p2[k] + p1[1]

}
.

Please cite this article as: R. Esmaeilbeigi et al., Order acceptance and scheduling problems in two-machine flow shops: New mixed integer

programming formulations, European Journal of Operational Research (2015), http://dx.doi.org/10.1016/j.ejor.2015.11.036

http://dx.doi.org/10.1016/j.ejor.2015.11.036

R. Esmaeilbeigi et al. / European Journal of Operational Research 000 (2015) 1–13 7

ARTICLE IN PRESS
JID: EOR [m5G;December 22, 2015;6:59]

Consequently, we can setCL
iq

= CL
q for all i ∈N and update the elements

of sets Ai and Bq.

It is easy to see that a better lower bound may be computed if we

compute CL
iq
directly instead of CL

q . This can be done simply by fixing i

∈ N to position q ∈ Q. Let {p̃1
[1]

, . . . , p̃1
[n−1]

} := {p1
[1]

, . . . , p1
[n]

}\{p1
i
} and

{p̃2
[1]

, . . . , p̃2
[n−1]

} := {p2
[1]

, . . . , p2
[n]

}\{p2
i
} be the sets of sorted prepro-

cessing times (from small to large) when job i ∈ N is eliminated. The

value CL
iq
can be computed as follows:

CL
iq = p2i + max

{
q−1∑
k=1

p̃1[k] + p1i ,

q−1∑
k=1

p̃2[k] + p1[1]

}
.

Because computing CL
iq

provides us with a better lower bound than

CL
q, we use it in this paper. Note that the main advantage of using

processing technique PRE1 is its speed because its implementation

does not require any significant computational effort. We later show

in Section 5 that PRE1 works well and its quality is just a little bit

worse than the preprocessing technique that is introduced next.

The Second Preprocessing Technique (PRE2): Another way of

computing CL
q, regardless of which job is allocated to position q ∈ Q

is to modify NF2. Let Hq := {1, . . . , q} be the set of positions in Q, up

to and including q ∈ Q. To compute CL
q, we assume that for all k ∈

Hq\{q}, CL
k
has been previously computed and that the sets Ai and Bk

have been updated at each step. The lower bound CL
q can be obtained

by solving the following optimization problem:

CL
q = min C′

q (28)

subject to
∑

i∈N\Bk

xik = 1 ∀k ∈ Hq (29)

∑
k∈Hq\Ai

xik ≤ 1 ∀i ∈ N\B1 (30)

C′
k+1 ≥ C′

k +
∑

i∈N\Bk+1

p2i · xi,k+1 ∀k ∈ Hq\{q} (31)

C′
k ≥

∑
i∈N\B1

∑
k′∈Hq\Ai,

k′≤k

p1i · xik′ +
∑

i∈N\Bk

p2i · xik ∀k ∈ Hq (32)

C′
k ≤

∑
i∈N\Bk

	CU
i
 · xik ∀k ∈ Hq (33)

xik ∈ {0,1} ∀i ∈ N\B1 and k ∈ Hq (34)

C′
k ≥ 0 ∀k ∈ Hq. (35)

The objective is to minimize C′
q, the completion time of the job

which should be assigned to position q ∈ Q. Constraint (29) ensures

that all positions are filled. Constraint (30) guarantees that each job is

allocated to at most one position. Constraints (31) and (32) are equiv-

alent to constraints (12) and (13) in NF2, respectively. Constraint (33)

ensures that the completion time of the job allocated to a position

is not more than its upper bound. Finally, constraints (34) and (35)

determine the domains of the variables.

Note that the presented optimization problem minimizes the

make span of all allocated jobs in Hq. Therefore, the objective value

gives a lower bound on the completion time of the job that has been

allocated to position q ∈ Q.

As was discussed for PRE1, after computing CL
q, we can set CL

iq
= CL

q

for all i ∈ N and update the elements of sets Ai and Bq. It is easy to see

that, if the optimization problem is infeasible for CL
q, then we can set

Bk = {1, . . . ,n} for all k ∈ {q, q + 1, . . . ,n} and add the elements of the

set {q, q + 1, . . . ,n} to Ai for all i ∈ N.

Observe that the number of optimization problems that need to be

solved is at most n. Unfortunately, this is too time consuming because

Table 5

The data for the example.

Job 1 2 3 4 5

ui 2 5 6 3 2

wi 5 10 9 2 8

p1
i

6 10 7 3 7

p2
i

1 4 5 7 6

di 24 23 14 15 35

CU
i

24.40 23.50 14.67 16.50 35.25

each of these problems is, itself, a MILP. Consequently, to speed up the

procedure, we solve the LP-relaxation of these optimization problems

in this paper.

Note that, in a similar way to the one discussed for PRE1, we can

computeCL
iq
directly rather thanCL

q . This can be done simply by adding

the constraint xiq = 1 to the optimization problem. However, in this

situation, the number of optimization problems thatwould then need

to be solved is bounded above by n2. Unfortunately, this is not a prac-

tical approach because it is too time consuming even if we solve only

the LP-relaxations.

An example: In order to illustrate how the preprocessing tech-

niques work, we consider a simple example which was introduced

by Wang et al. (2013b). The parameters for the problem are given in

Table 5. The upper bound on the completion time of each job is given

in the last row of the table.

The output of algorithms PRE1 and PRE2 for the given example is

shown in Table 6 where column EV(percent) gives the percentage of

eliminated xik variables, i.e., EV =
∑

i∈N |Ai|
n2

×100. As can be seen from the

table, both preprocessing techniques have roughly the same effect.

Technique PRE1 could remove 44 percent and PRE2 could omit 40

percent of variables. The difference between PRE1 and PRE2 is only

because of Position 2. Here PRE1 could recognize that Job 3 was un-

able to be allocated to it, but PRE2 could not.

Note that because CL
iq

is directly computed in PRE1, rather than

computing CL
q as in PRE2, PRE1 could eliminate more variables in this

particular example. However, as we will show in our later compu-

tational experiments, PRE2 performs better for larger size instances

because it considers processing times on both machines simultane-

ously (in the optimization problem) to compute a lower bound.

5. Computational results

To evaluate the performance of the proposed formulations and

improvement techniques, we conducted an extensive computational

study. We used the C++ programming language to code the formu-

lations and preprocessing techniques and used CPLEX 12.4 to solve

the formulations. All the experiments were run on a computer with a

single-core 2.5 gigahertz Intel processor and 4.0 gigabyte RAM.

We generated 7 classes of instances denoted by CLn (where n is the

number of jobs) including CL10, CL20, CL40, CL60, CL80, CL100 and

CL150. The largest class was only used to compare the performance

of the preprocessing techniques for NF2. Each class contained 9 sub-

classes and each subclass had 10 randomly generated instances. Sub-

classes were defined in such away that they contained instanceswith

different characteristics. Each subclass was characterized by param-

eters τ (average tardiness factor) and R (relative range factor) which

controlled the due dates. Each of these parameters could take values

from the set {0.3, 0.6, 0.9}. Processing times and delay penalties were

generated from a discrete uniform distribution on the interval [1, 10].

Moreover, revenues were drawn from a log-normal distribution with

mean 0 and standard deviation 1 (all numbers were rounded up to

the smallest following integer). The due date for job i ∈ N was gener-

ated randomly from a discrete uniform distribution on the interval[
max{P(1 − τ − R/2), p1i + p2i },max{P(1 − τ + R/2), p1i + p2i }

]
.

Please cite this article as: R. Esmaeilbeigi et al., Order acceptance and scheduling problems in two-machine flow shops: New mixed integer

programming formulations, European Journal of Operational Research (2015), http://dx.doi.org/10.1016/j.ejor.2015.11.036

http://dx.doi.org/10.1016/j.ejor.2015.11.036

8 R. Esmaeilbeigi et al. / European Journal of Operational Research 000 (2015) 1–13

ARTICLE IN PRESS
JID: EOR [m5G;December 22, 2015;6:59]

Table 6

The output of preprocessing methods PRE1 and PRE2 for the example.

Preprocessing Position q EV (percent)

1 2 3 4 5

PRE1 CL
1q 7 10 17 24 34 44

CL
2q 14 17 23 30 37

CL
3q 12 15 21 28 38

CL
4q 10 16 23 30 40

CL
5q 13 16 22 29 39

Bq φ {3} {3, 4} {2, 3, 4} {1, 2, 3, 4, 5}

PRE2 CL
q 7 11 17 24 ∞∗ 40

Bq φ φ {3, 4} {2, 3, 4} {1, 2, 3, 4, 5}

∗ No feasible solution found and the position is always empty.

where P = ∑n
i=1 p1

i
+ p2

[1]
. As is mentioned by Nobibon and Leus

(2011) and Wang et al. (2013b), generating due dates from this in-

terval guarantees that no jobs are consistently tardy.

To show the effectiveness of the proposed enhancements, we

added them to the formulations in stages. We considered three dif-

ferent levels of improvements for NF1:

• NF1I: The original formulation of NF1;
• NF1II: NF1 when big-M coefficients were moderated;
• NF1III: NF1II with all valid inequalities incorporated.

Six different levels of improvements were considered for NF2:

• NF2I: The original formulation (NF2).
• NF2II: NF2 with valid inequality (23).
• NF2III: NF2 with valid inequalities (24) and (25).
• NF2IV: NF2III when big-M coefficients were moderated.
• NF2V: NF2IV with preprocessing and valid inequality (26).
• NF2VI: NF2V with valid inequality (27).

To quantify the performance of each level of the improved for-

mulation, we report the average computational time in seconds

(Avg.Time). Note that we imposed a time limit of 1800 seconds for

CPLEX. For cases in which some instances could not be solved to op-

timality within the time limit, the average optimality gap (Avg.Gap) is

reported.Where suitable, the average objective value of LP-relaxation

(Avg.LP Obj) and the average number of searched nodes (Avg.#Node)

are also reported. To demonstrate the performance of the prepro-

cessing techniques, we report the average percentage of eliminated

xik variables (Avg.EV) as well as the average computational time in

seconds.

5.1. Performance of the new formulations without enhancements

We now compareNF1I andNF2I with PF1 and PF2 to show that the

new formulations perform better than the previous ones even with-

out using any enhancements. To do the comparison, we only use class

CL10. This is because PF1 and PF2 perform poorly on larger classes.

For instance, we generated some instances with 15 jobs, but PF1 and

PF2 were unable to solve most of them within the time limit. Table 7

reports the average solution times and LP-relaxation values of all for-

mulations, to enable their comparison. Using the data in this table,

we make the following comments and observations.

(1) Instances with τ = 0.3 are harder to solve than others for PF1,

PF2 and NF1I. One reason for this is that when τ is smaller,

fewer jobs are expected to be rejected.

(2) NF1I has the best LP-relaxation values. Evidently, the LP-

relaxation value of NF1I gets better as τ increases. Note that

PF2 is a time-indexed formulation. Among the different for-

mulations of scheduling problems presented in the litera-

ture, time-indexed formulations are well known for their

high quality LP-relaxation objective values (see, for instance,

van den Akker, Hurkens, & Savelsbergh, 2000). However, PF2

is around 16.1 percent weaker than NF1I on average. This is

mainly because PF2 contains more disjunctive constraints (see

Section 3).

(3) There is a significant difference in solution times between the

new and the previous formulations. Of course, this is not sur-

prising since the number of constraints and binary variables

associated with the new formulations is far smaller. Because

NF1I is stronger than the other formulations, it could solve all

instances more quickly, taking less than one second on aver-

age in this experiment. It can be seen that, on average, NF1I

is around 7, 70 and 128 times faster than NF2I, PF1, and PF2,

respectively.

Note that we only tested the formulations with problem instances

in which the processing times of the jobs were drawn from [1,10].

However, it is worth mentioning that by increasing the processing

times, time-indexed formulation performance is expected to get even

worse. The reason for this is that the numbers of variables and con-

straints in the time-indexed formulation are dependent on the pro-

cessing times. However, this does not have a considerable effect on

the performance of the other formulations. Note that because the

due dates were generated in terms of processing times, the param-

eter characteristics did not change dramatically for the other formu-

lations when the processing times increased. This phenomenon was

also observed by Wang et al. (2013b). They mentioned that PF1 is ro-

bust with respect to the distribution range of the processing times,

but that is not the case for PF2 (which is a time-indexed formulation),

meaning that it can only solve instanceswith fewer jobs as processing

times increase. They reported that when processing times are gener-

ated from the interval [1,100], PF2 can only solve problem instances

with up to six jobs within one hour.

5.2. Effect of enhancements on NF1

We now compare NF1I, NF1II, and NF1III on class CL20 to show the

importance of the proposed enhancements. The results are reported

in Table 8. Based on the data in this table, wemake some observations

and comments.

(1) All formulations display similar behavior for different values

of τ and R. In other words, instances with larger values of τ
are more easily solved by NF1. Note that τ affects the mean

of the due dates, but R mainly affects their variance. So, when

τ increases, it is expected that more orders will be rejected.

Consequently, the NF1 formulation shows better performance

for those instances. Evidently, when τ = 0.3, the instances in-

crease in ease of solution as R increases. However, the oppo-

site occurs when τ = 0.9. Following this pattern, the instances

with a medium value of R (e.g. R = 0.6) are easier to be solved

when τ = 0.6.

Please cite this article as: R. Esmaeilbeigi et al., Order acceptance and scheduling problems in two-machine flow shops: New mixed integer

programming formulations, European Journal of Operational Research (2015), http://dx.doi.org/10.1016/j.ejor.2015.11.036

http://dx.doi.org/10.1016/j.ejor.2015.11.036

R. Esmaeilbeigi et al. / European Journal of Operational Research 000 (2015) 1–13 9

ARTICLE IN PRESS
JID: EOR [m5G;December 22, 2015;6:59]

Table 7

Performance of the formulations on CL10.

τ R PF1 PF2 NF1I NF2I

Avg. time Avg. LP Avg. time Avg. LP Avg. time Avg. LP Avg. time Avg. LP

(seconds) Obj (seconds) Obj (seconds) Obj (seconds) Obj

0.3 0.3 62.1 22.3 152.9 22.3 0.9 22.2 1.5 22.3

0.6 22.3 21.1 57.9 21.1 0.4 21.0 1.6 21.1

0.9 20.5 22.4 22.9 22.4 0.2 22.3 1.0 22.4

AVG 35.0 21.9 77.9 21.9 0.5 21.8 1.4 21.9

0.6 0.3 20.6 21.3 16.2 21.3 0.3 17.2 3.5 21.3

0.6 16.7 26.5 26.7 26.5 0.3 23.9 2.3 26.5

0.9 13.9 20.6 17.0 20.6 0.2 19.2 1.9 20.6

AVG 17.1 22.8 20.0 22.8 0.3 20.1 2.6 22.8

0.9 0.3 3.9 22.4 15.8 22.3 0.1 13.0 1.8 22.4

0.6 10.9 20.9 13.4 20.9 0.2 14.7 2.6 20.9

0.9 17.6 23.7 22.4 23.7 0.3 19.6 3.5 23.7

AVG 10.8 22.3 17.2 22.3 0.2 15.8 2.6 22.3

Total AVG 20.9 22.4 38.4 22.3 0.3 19.2 2.2 22.4

Table 8

Comparing variants of the first formulation on CL20.

τ R NF1I NF1II NF1III

Avg. time Avg. gap Avg. time Avg. gap Avg. time Avg. gap

(seconds) (percent) (seconds) (percent) (seconds) (percent)

0.3 0.3 1800.0 9.735 1800.0 9.400 1707.7 8.850

0.6 614.1 1.097 614.0 1.097 976.3 0.963

0.9 248.0 0.313 247.6 0.313 65.6 0.000

AVG 887.4 3.715 887.2 3.603 916.5 3.271

0.6 0.3 430.6 0.256 430.6 0.256 198.9 0.000

0.6 33.1 0.000 33.0 0.000 14.4 0.000

0.9 272.9 0.256 273.0 0.256 90.0 0.000

AVG 245.6 0.171 245.5 0.171 101.1 0.000

0.9 0.3 1.2 0.000 1.2 0.000 1.3 0.000

0.6 5.3 0.000 5.3 0.000 3.1 0.000

0.9 63.0 0.000 63.0 0.000 56.5 0.000

AVG 23.1 0.000 23.1 0.000 20.3 0.000

Total AVG 385.4 1.295 385.3 1.258 346.0 1.090

(2) There is no significant difference between the runtimes of NF1I

and NF1II on average. So, moderating big-M values is not very

effective for NF1.

(3) NF1III outperforms NF1I and NF1II in terms of runtime and the

average gap in the time limit. It should be mentioned that 15

out of the 90 instances could not be solved to optimality by

NF1I and NF1II. However, using valid inequalities reduced the

number of unsolved problems from 15 to 11.

5.3. Preprocessing techniques

Before comparing different variants of NF2, we discuss the perfor-

mance of preprocessing methods PRE1 and PRE2 on the CL20, CL80

and CL150 instances. The experimental results for these cases are re-

ported in Table 9. From the table, we make some observations and

comments.

(1) In general, for both techniques, the average number of elimi-

nated variables is larger when τ is larger. That is because when

τ increases, the time window of the due dates shifts forward.

As a result, more orders will be rejected.

(2) In general, for both techniques, when τ = 0.3, the average EV

becomes larger as R increases. However, when τ = 0.9, it is the

other way around.

(3) The average computational time of PRE2 is smaller for larger

τ -values. This is again a consequence of the fact that more or-

ders will be rejected when τ increases. So, a smaller number

of optimization problems will need to be solved for PRE2. Note

that it is not surprising that the average computational time of

PRE2 is increased for larger classes of instances because more

optimization problems need to be solved.

(4) As the number of jobs increases, PRE2 performs better than

PRE1 in terms of eliminated variables. In class CL20, the aver-

age EVs for both techniques is 47.4 percent. However, for class

CL150, PRE2 is around 4 percent better than PRE1 on average.

Of course this is costly in terms of efficiency and, on average,

we need to spend around 270 seconds of valuable computa-

tional time eliminating variables.

For the remainder of this paper, we only use PRE2 in our compu-

tational experiments because it eliminates more variables on aver-

age. However, PRE1 is faster, so, it may be useful in heuristic or meta-

heuristic approaches.

5.4. Effect of enhancements on NF2

We first compare NF2I, NF2II, NF2III and NF2IV on CL20 instances.

The results are given in Table 10.We do not show the values of the av-

erage optimality gap for NF2II, NF2III and NF2IV since they could solve

all the instances to optimality. Based on the data in the table, wemake

the following observations and comments.

(1) The average optimality gap and runtime of NF2I increase as pa-

rameter τ increases. This is completely the opposite of what

we observed for NF1. So, unlike the NF1, larger τ -values make

problem instances harder to solve using NF2.

Please cite this article as: R. Esmaeilbeigi et al., Order acceptance and scheduling problems in two-machine flow shops: New mixed integer

programming formulations, European Journal of Operational Research (2015), http://dx.doi.org/10.1016/j.ejor.2015.11.036

http://dx.doi.org/10.1016/j.ejor.2015.11.036

10 R. Esmaeilbeigi et al. / European Journal of Operational Research 000 (2015) 1–13

ARTICLE IN PRESS
JID: EOR [m5G;December 22, 2015;6:59]

Table 9

Performance of preprocessing techniques.

τ R CL20 CL80 CL150

PRE1 PRE2 PRE1 PRE2 PRE1 PRE2

Avg. EV Avg. time Avg. EV Avg. EV Avg. time Avg. EV Avg. EV Avg. time Avg. EV

(percent) (seconds) (percent) (percent) (seconds) (percent) (percent) (seconds) (percent)

0.3 0.3 26.7 0.6 26.3 20.3 15.9 21.1 19.3 409.9 20.9

0.6 24.8 0.5 24.3 20.1 21.8 21.1 19.9 560.1 21.7

0.9 31.0 0.5 30.6 22.7 21.0 24.1 21.8 587.9 23.8

AVG 27.5 0.5 27.0 21.0 19.6 22.1 20.3 519.3 22.1

0.6 0.3 48.9 0.5 50.6 42.4 5.1 46.3 41.7 128.3 47.2

0.6 52.0 0.6 53.1 42.8 7.9 45.8 42.3 228.1 46.1

0.9 43.2 0.7 42.5 41.2 11.7 43.9 41.2 349.2 44.9

AVG 48.0 0.6 48.7 42.1 8.2 45.3 41.7 235.2 46.0

0.9 0.3 76.3 0.3 74.8 71.8 0.8 75.4 71.3 13.5 76.3

0.6 66.5 0.5 66.0 63.1 2.4 67.3 61.2 47.8 66.9

0.9 57.7 0.5 58.2 54.4 4.9 58.2 54.3 108.3 59.4

AVG 66.8 0.4 66.3 63.1 2.7 67.0 62.3 56.5 67.5

Total AVG 47.4 0.5 47.4 42.1 10.2 44.8 41.4 270.4 45.2

Table 10

Comparing four different variants of NF2 on CL20.

τ R NF2I NF2II NF2III NF2IV

Avg. time Avg. gap Avg. node Avg. time Avg. node Avg. time Avg. node Avg. time Avg. node

(seconds) (percent) No (seconds) No (seconds) No (seconds) No

0.3 0.3 27.0 0.000 16103.0 7.2 4250.5 4.7 2357.7 3.4 737.6

0.6 37.8 0.000 14366.9 7.0 3514.5 5.2 2565.9 3.0 846.7

0.9 479.0 0.667 140209.6 44.5 16742.6 23.3 18098.3 33.3 18486.4

AVG 181.3 0.222 56893.2 19.6 8169.2 11.1 7674.0 13.2 6690.2

0.6 0.3 1518.9 7.451 952840.3 112.8 38247.0 34.5 38179.5 6.2 1716.5

0.6 1353.1 7.845 624096.7 80.3 27009.6 33.4 35802.8 14.9 7306.8

0.9 660.9 1.485 141140.6 43.5 26779.9 25.2 26935.1 12.7 5451.8

AVG 1177.6 5.594 572692.5 78.9 30678.8 31.1 33639.1 11.3 4825.0

0.9 0.3 1498.3 44.788 1423641.0 56.6 24873.2 46.0 51191.7 1.8 722.3

0.6 1707.9 30.565 1210049.0 68.1 21304.3 57.4 73761.6 5.4 1539.6

0.9 1479.3 8.008 814708.2 82.5 22825.6 47.9 50420.5 7.7 1008.6

AVG 1561.9 27.787 1149466.1 69.1 23001.0 50.4 58457.9 4.9 1090.2

Total AVG 973.6 11.201 593017.3 55.8 20616.4 30.8 33257.0 9.8 4201.8

(2) The main issue with NF2I is symmetry. Consequently, many

nodes in the B&B tree needed to be investigated by CPLEX. The

result was that 38 out of 90 instances could not be solved to op-

timality by NF2I within the time limit. However, after breaking

symmetry in NF2II by adding constraint (23) to NF2, the num-

ber of investigated nodes was decreased by about 96.5 percent.

This resulted in a significant improvement in the runtime so

that we were able to solve all instances to optimality in less

than one minute, on average.

(3) The number of nodes which are solved by NF2III is around 60

percent more than the number solved by NF2II. However, its

runtime is around half of the runtime of NF2I on average. As

mentioned previously, when we include constraints (24) and

(25) in place of constraint (23), constraint (11) should be re-

moved from the NF2. Moreover, constraint (25) have much

simpler structure in comparison with constraint (23). Conse-

quently, the number nonzero elements in the matrix of coeffi-

cients decreases sharply. So, it is not surprising that, on aver-

age, NF2II explores 369 nodes per second, but NF2III explores

1080 nodes per second;

(4) By contrast to our observation for NF1, moderating big-M val-

ues has a significant impact on NF2. The number of explored

nodes and runtime are decreased by about 87.4 percent and

68.2 percent, on average, respectively, when NF2IV is imple-

mented rather than NF2III.

Before showing that NF2 can be improved even further, we now

compare NF1 and NF2. From the data in Tables 8 and 10, it is evi-

dent that if we compare the basic models of NF1 and NF2, i.e., NF1I

and NF2I, then NF1 outperforms NF2. On average, NF1I solves all in-

stances in around 385.4 seconds (with an average gap of 1.295 per-

cent), but NF2I solves them in about 973.6 seconds (with an average

gap of 11.201 percent). However, the situation is completely different

for the improved version of these formulations, i.e., NF1III and NF2IV.

On average, NF1III solves all instances in about 346.0 seconds (with

an average gap of 1.090 percent), but NF2IV solves them in around 9.8

seconds (with an average gap of 0.000 percent). As a result, the dif-

ference between NF2IV and NF1III is significant enough to say that the

improved NF2 is a better formulation.

Next we show that NF2 can be improved even further by using

preprocessing and adding valid bounding inequalities. Table 11 shows

the data for the implementation of NF2IV, NF2V and NF2VI on CL40.

NF2IV could solve all instances of class CL20 in less than 10 seconds

on average. However, when we doubled the number of jobs, its run-

time increased by a factor of more than 62, on average, and it could

not solve all instances to optimality within the time limit. Results for

NF2V showed that preprocessing can reduce the runtime by a factor

of 6 on average. It can also decrease the average optimality gap from

0.949 percent to 0.099 percent.

Note that, as we discussed previously, preprocessing of commer-

cial solvers can eliminate some of the variables if we add valid

Please cite this article as: R. Esmaeilbeigi et al., Order acceptance and scheduling problems in two-machine flow shops: New mixed integer

programming formulations, European Journal of Operational Research (2015), http://dx.doi.org/10.1016/j.ejor.2015.11.036

http://dx.doi.org/10.1016/j.ejor.2015.11.036

R. Esmaeilbeigi et al. / European Journal of Operational Research 000 (2015) 1–13 11

ARTICLE IN PRESS
JID: EOR [m5G;December 22, 2015;6:59]

Table 11

Comparing NF2IV , NF2V and NF2VI on CL40.

τ R NF2IV NF2V NF2VI

Avg. time Avg. gap Avg. time Avg. gap Avg. time Avg. gap

(seconds) (percent) (seconds) (percent) (seconds) (percent)

0.3 0.3 24.5 0.000 5.4 0.000 2.0 0.000

0.6 240.5 0.163 11.8 0.000 8.7 0.000

0.9 189.4 0.000 16.1 0.000 18.3 0.000

AVG 151.4 0.054 11.1 0.000 9.7 0.000

0.6 0.3 159.9 0.000 15.3 0.000 7.5 0.000

0.6 1585.0 1.699 264.3 0.000 109.7 0.000

0.9 1231.5 3.150 449.3 0.889 446.9 0.508

AVG 992.1 1.616 243.0 0.296 188.0 0.169

0.9 0.3 108.9 0.000 7.8 0.000 4.1 0.000

0.6 985.2 0.874 31.7 0.000 19.2 0.000

0.9 1137.2 2.659 189.7 0.000 108.5 0.000

AVG 743.7 1.178 76.4 0.000 43.9 0.000

Total AVG 629.1 0.949 110.2 0.099 80.5 0.056

Table 12

Performance of NF2VI .

τ R 10 20 30 60 80 100

Avg. time Avg. time Avg. time Avg. time Avg. gap Avg. time Avg. gap Avg. time Avg. gap

(seconds) (seconds) (seconds) (seconds) (percent) (seconds) (percent) (seconds) (percent)

0.3 0.3 0.1 0.4 2.2 13.5 0.000 76.9 0.000 432.2 0.044

0.6 0.2 0.6 2.4 217.3 0.082 423.6 0.000 1479.0 0.431

0.9 0.2 3.9 4.1 338.0 0.066 939.8 0.360 1714.7 0.891

AVG 0.2 1.6 2.9 189.6 0.049 480.1 0.120 1208.6 0.455

0.6 0.3 0.1 1.4 5.3 166.3 0.000 278.3 0.000 1205.3 0.271

0.6 0.1 2.0 13.7 926.8 0.419 1630.0 0.964 1632.4 1.466

0.9 0.2 2.1 62.4 1475.3 2.166 1800.0 2.344 1800.0 5.145

AVG 0.1 1.8 27.1 856.1 0.862 1236.1 1.103 1545.9 2.294

0.9 0.3 0.1 0.3 1.0 430.0 0.273 1050.7 0.864 1626.7 2.916

0.6 0.1 0.6 3.4 824.2 1.597 1800.0 4.082 1676.6 2.854

0.9 0.1 0.9 7.3 1119.1 0.572 1712.1 2.664 1800.0 3.717

AVG 0.1 0.6 3.9 791.1 0.814 1520.9 2.536 1701.1 3.163

Total AVG 0.1 1.3 11.3 612.3 0.575 1079.1 1.253 1485.2 1.971

inequality (26). Therefore, the role of these valid inequalities is the

same as for PRE2, meaning that they are developed for eliminating

variables. That is why we add PRE2 and valid inequality (26) at the

same time to NF2IV to obtain NF2V for the model. The results can

be improved even further by using NF2VI. Evidently, when compared

with NF2V, the runtime is improved by around 26.9 percent and the

optimality gap is decreased from 0.099 percent to 0.056 percent, on

average, by using NF2VI.

5.5. Overall performance of the best formulation

In Table 12, we report the results of the implementation of the

best formulation , i.e., NF2VI, on different classes of instances. It can

be seen that instances of small size are solved easily without any dif-

ficulty, and larger instances are solved with a reasonable optimality

gap within a half-hour time limit by using this model. On average,

instances of class CL100 are solved with a 1.971 percent optimality

gap within the time limit. As is evident from the data in the table,

the subclass with τ = 0.6 and R = 0.9 contains the most difficult in-

stances which have been solved. When τ = 0.6 and R = 0.9, none of

the instances of classes CL80 and CL100 could be solved to optimal-

ity within the time limit. However, the average optimality gap never

exceeded 5.2 percent even in these instances.

It is also interesting to compare the results of NF2VI and the B&B

proposed by Wang et al. (2013b). Wang et al. (2013b) showed that

their proposed B&B algorithm can solve instances with 20 jobs in

253.5 seconds, on average. However, CPLEX can use NF2VI to solve

such instances easily in no more than 1.3 seconds with a computer

that has similar characteristics to the one used byWang et al. (2013b).

As a result, we can almost improve the runtime by a factor of 200 for

instances with n=20.

6. Conclusion

In this study, we developed two different mathematical formu-

lations for the order acceptance and scheduling problem in two-

machine flow shops. The complexity sizes of the new formulations

are significantly smaller than previous models proposed by Wang

et al. (2013b).We developed several techniques such as preprocessing

and valid inequalities to improve each of these formulations.

It was shown that the new formulations performmuch better than

the previous ones even without using any enhancement techniques.

Comparing the basic versions of our proposed formulationswith each

other shows that the first formulation is better than the second one.

However, after the addition of various enhancements, the second for-

mulation performs far better than the first one. Wang et al. (2013b)

were able to solve instances up to 20 jobs with their purpose-built

algorithm within an hour. However, we were able to solve instances

up to five times larger than their investigated instances on a similar

computer within half an hour using CPLEX and the improved version

of our second formulation.

We hope that the simplicity and performance of our new mathe-

matical formulations encourage (more) researchers to consider de-

veloping new MILP formulations or enhancement techniques for

Please cite this article as: R. Esmaeilbeigi et al., Order acceptance and scheduling problems in two-machine flow shops: New mixed integer

programming formulations, European Journal of Operational Research (2015), http://dx.doi.org/10.1016/j.ejor.2015.11.036

http://dx.doi.org/10.1016/j.ejor.2015.11.036

12 R. Esmaeilbeigi et al. / European Journal of Operational Research 000 (2015) 1–13

ARTICLE IN PRESS
JID: EOR [m5G;December 22, 2015;6:59]

the order acceptance and scheduling problem (in two-machine flow

shops). It is worth mentioning that in this study, we only tried to

improve our new MILP formulations. However, in regard to future

research, it may be interesting to explore the MILP formulations by

Wang et al. (2013b) (especially PF2 since it is a time-indexed formu-

lation), and trying to improve them by reformulating the constraints

or developing big-M moderation, valid inequalities, and preprocess-

ing techniques for them.

Appendix

Previous Formulation 1 (PF1):

Let N := {1,2, . . . ,n} be the set of jobs, and Q := {1,2, . . . ,n} be

the set of positions (in the sequencing list) to which jobs can be as-

signed. To describe PF1, Wang et al. (2013b) define 5 sets of decision

variables:

• For each job i ∈ N, they introduce a binary decision variable to

indicate whether the job is accepted or rejected,

yi :=
{
1 If job i is accepted,

0 Otherwise;

• For each job i ∈ N and for each position k ∈ Q, they define a binary

decision variable xik to indicate whether the job is assigned to that

position, that is,

xik :=
{
1 If job i is accepted and assigned to position k,

0 Otherwise;

• For each pair of jobs (i, j) ∈ N2 with i �= j, they introduce a binary

decision variable to indicate which one is processed immediately

after the other,

z′i j :=

⎧⎨
⎩
1 If jobs i and j are accepted, and job j is processed

immediately after job i,

0 Otherwise;

• For each job i ∈ N, they introduce a continuous decision variable

Ci to indicate its completion time.
• For each job i ∈ N, they introduce a continuous decision variable

Ti to indicate its tardiness.

Using these decision variables, PF1 can be expressed as follows:

max
∑
i∈N

(ui · yi − wi · Ti) (A.1)

subject to:∑
k∈Q

xik = yi ∀i ∈ N (A.2)

∑
i∈N

xik ≤ 1 ∀k ∈ Q (A.3)

z′i j ≤ yi, z′i j ≤ yj ∀i, j ∈ N with i �= j (A.4)

xik + x j,k+1 ≤ z′i j + 1 ∀i, j ∈ N, i �= j, and k ∈ Q\{n} (A.5)

Ci + p2j · yj + (z′i j − 1) · M ≤ Cj ∀i, j ∈ N with i �= j (A.6)

(p1j + p2j) · x j1 ≤ Cj ∀ j ∈ N (A.7)

∑
k′∈Q,

k′≤k

∑
i∈N p1

i
· xik′ + p1

j
· x j,k+1 + p2

j
· yj

+ (yj − 1) · M ≤ Cj + M · ∑
k′∈Q,

k′≤k

x jk′
∀ j ∈ N, and k ∈ Q\{n}

(A.8)

Ti ≥ Ci − di ∀i ∈ N (A.9)

∑
i∈N

xi,k+1 ≤
∑
i∈N

xik ∀k ∈ Q\{n} (A.10)

yi ∈ {0,1} ∀i ∈ N (A.11)

z′i j ∈ {0,1} ∀i, j ∈ N with i �= j (A.12)

xik ∈ {0,1} ∀i ∈ N and k ∈ Q (A.13)

Ci, Ti ≥ 0 ∀i ∈ N. (A.14)

In PF1, the objective function maximizes the total net revenue.

Constraint (A.2) ensures that each accepted job is allocated to exactly

one position (evidently, the rejected jobs will not be allocated to any

position). Constraint (A.3) implies that a given position can accom-

modate at most one job. Constraint (A.4) states that both jobs i and

j must be accepted when z′
i j

= 1. Constraint (A.5) states that if jobs i

and j are accepted and job j is immediately processed after job i, then

z′
i j

= 1. Constraint (A.6) implies that if job j is preceded by job i, then

the completion time of job j should be no earlier than the sum of the

completion time of job i and the processing time of job j on machine

2. Constraint (A.7) dictates that if job j is accepted and processed in

the first position of a schedule, then the completion time of job j is

no earlier than the sum of its processing times on machines 1 and

2. Constraint (A.8) dictates that if job j is accepted and processed in

the kth position (where 2 ≤ k ≤ n) of a schedule, then the completion

time of job j is no earlier than the sum of the processing times of the

jobs processed before job j on machine 1 and the processing times of

job j on machines 1 and 2. Constraint (A.9) captures the tardiness of

each job i ∈ N. Inequality (A.10) removes any empty positions that ap-

pear between two consecutive jobs. Constraints (A.11)–(A.14) specify

the domains of each decision variable. In (A.6) and (A.8), M is a large

positive number, e.g.,M = ∑
i∈N(p1

i
+ p2

i
).

Previous Formulation 2 (PF2)

PF2 is a time-indexed formulation and to describe it, Wang et al.

(2013b) define three sets of variables. The first two sets include only

continuous decision variables to indicate the completion time and

tardiness of each job, i.e., {C1, . . . ,Cn} and {T1, . . . , Tn}. The last set in-

cludes (binary) time-indexed variables:

x′
it :=

⎧⎨
⎩
1 If job i ∈ N is accepted and begin to be processed

at time t ∈ T on machine 2,

0 Otherwise;

where T := {p1
i
, . . . , � − p2

i
}, � := ∑

i∈N̄ p1
i

+ ∑
i∈N\N̄ p2

i
+ L, N̄ :=

{i ∈ N : p1
i

≥ p2
i
}, and L is the length of the interval from which the

processing times of the problem instance are randomly generated.

Using these decision variables, PF2 can be expressed as follows:

max
∑
i∈N

[(∑
t∈T

x′
it

)
· ui − wi · Ti

]
(A.15)

subject to:∑
t∈T

x′
it ≤ 1 ∀i ∈ N (A.16)

(x′
it − 1) · M +

t+p2
i
−1∑

t ′=t+1

x′
it ′ +

∑
j �=i

t+p2
i
−1∑

t ′=t

x′
jt ′ ≤ 0 ∀i ∈ N and ∀t ∈ T

(A.17)

(x′
it − 1) · M +

∑
j∈N

t∑
t ′=p1

j

x′
jt ′ p

1
j ≤ t ∀i ∈ N and ∀t ∈ T (A.18)

Please cite this article as: R. Esmaeilbeigi et al., Order acceptance and scheduling problems in two-machine flow shops: New mixed integer

programming formulations, European Journal of Operational Research (2015), http://dx.doi.org/10.1016/j.ejor.2015.11.036

http://dx.doi.org/10.1016/j.ejor.2015.11.036

R. Esmaeilbeigi et al. / European Journal of Operational Research 000 (2015) 1–13 13

ARTICLE IN PRESS
JID: EOR [m5G;December 22, 2015;6:59]

Ci ≥
�−p2

i∑
t ′=t

x′
it ′ · (t ′ + p2i) ∀i ∈ N and ∀t ∈ T (A.19)

Ti ≥ Ci − di ∀i ∈ N (A.20)⎛
⎝ ∑

p1
j
≤t ′≤t

x′
jt ′ − 1

⎞
⎠ · M +Cj + x′

it · p2i ≤ (1 − x′
it) · M +Ci

∀ i, j ∈ N, i �= j, and ∀t ∈ T (A.21)

x′
it ∈ {0,1} ∀i ∈ N and ∀t ∈ T (A.22)

Ci, Ti ≥ 0 ∀i ∈ N. (A.23)

In PF2, the objective function maximizes the total net revenue.

Constraint (A.16) states that an accepted job is processed exactly once

on machine 2. Constrain (A.17) implies that if processing of job i be-

gins at time t on machine 2 then the other jobs cannot be processed

within the time window [t, t + p2
i
) on machine 2 . Constraint (A.18)

states that processing of job i on machine 2 can begin at time t only if

processing of all the preceding jobs onmachine 1 finish before time t.

Constraint (A.19) implies that the completion time of job i is no earlier

than t′ + p2
i
(where (t ≤ t ′ ≤ � − p2

i
)) if it begins to be processed at

time t′ on machine 2. Constraint (A.20) captures the tardiness of each

job i ∈ N. Inequality (A.21) implies that if job i is accepted and be-

gins to be processed at time t, then the completion time of job i is no

earlier than the sum of its processing time onmachine 2 and the com-

pletion time of its preceding job j on machine 2. Constraints (A.22)–

(A.23) specify the domains of each decision variable. In (A.17), (A.18),

and (A.21),M is a large positive number, e.g., M = ∑
i∈N(p1

i
+ p2

i
).

References

Atamtürk, A., & Savelsbergh, M. (2005). Integer-programming software systems. Annals
of Operations Research, 140(1), 67–124.

Avella, P., Boccia, M., & Vasilyev, I. (2012). Computational testing of a separation pro-
cedure for the knapsack set with a single continuous variable. INFORMS Journal on

Computing, 24(1), 165–171.

Baker, K. R. (1974). Introduction to sequencing and scheduling. John Wiley & Sons.
Cesaret, B., Oğuz, C., & Salman, F. S. (2012). A tabu search algorithm for order acceptance

and scheduling. Computers & Operations Research, 39(6), 1197–1205.
Chudak, F. A., & Hochbaum, D. S. (1999). A half-integral linear programming relaxation

for scheduling precedence-constrained jobs on a single machine. Operations Re-
search Letters, 25(5), 199–204.

Dyer, M. E., & Wolsey, L. A. (1990). Formulating the single machine sequencing prob-
lem with release dates as a mixed integer program. Discrete Applied Mathematics,

26(23), 255–270.

Ghosh, J. B. (1997). Job selection in a heavily loaded shop. Computers & Operations Re-
search, 24(2), 141–145.

Kaparis, K., & Letchford, A. (2010). Separation algorithms for 0–1 knapsack polytopes.
Mathematical Programming, 124(1–2), 69–91.

Kim, Y.-D. (1993). A new branch and bound algorithm for minimizing mean tardiness
in two-machine flowshops. Computers & Operations Research, 20(4), 391–401. http:

//dx.doi.org/10.1016/0305-0548(93)90083-U.
Lei, D., & Guo, X. (2015). A parallel neighborhood search for order acceptance and

scheduling in flow shop environment. International Journal of Production Eco-

nomics, 165(0), 12–18. http://dx.doi.org/10.1016/j.ijpe.2015.03.013.
Lin, S.-W., & Ying, K.-C. (2013). Increasing the total net revenue for single machine or-

der acceptance and scheduling problems using an artificial bee colony algorithm.
Journal of Operational Research Society, 64(2), 293–311.

Lin, S.-W., & Ying, K.-C. (2015). Order acceptance and scheduling to maximize total net
revenue in permutation flowshops with weighted tardiness. Applied Soft Comput-

ing, 30(0), 462–474. http://dx.doi.org/10.1016/j.asoc.2015.01.069.

Margot, F. (2010). Symmetry in integer linear programming. In M. Jnger, T. M. Liebling,
D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, & L. A. Wolsey

(Eds.), 50 years of integer programming 1958–2008 (pp. 647–686). Springer Berlin
Heidelberg. doi:10.1007/978-3-540-68279-0_17.

Nemhauser, G., & Savelsbergh, M. (1992). A cutting plane algorithm for the single ma-
chine scheduling problemwith release times. InM. Akgül, H. Hamacher, & S. Tüfeki

(Eds.), Combinatorial optimization: vol. 82 (pp. 63–83). Springer Berlin Heidelberg.

NATO ASI Series.
Nobibon, F. T., & Leus, R. (2011). Exact algorithms for a generalization of the order ac-

ceptance and scheduling problem in a single-machine environment. Computers &
Operations Research, 38(1), 367–378.

Oğuz, C., Salman, F. S., & Yalçın, Z. B. (2010). Order acceptance and scheduling decisions
in make-to-order systems. International Journal of Production Economics, 125(1),

200–211.

Reisi-Nafchi, M., & Moslehi, G. (2015). A hybrid genetic and linear programming algo-
rithm for two-agent order acceptance and scheduling problem. Applied Soft Com-

puting, 33(0), 37–47. http://dx.doi.org/10.1016/j.asoc.2015.04.027.
Rom, W. O., & Slotnick, S. A. (2009). Order acceptance using genetic algorithms. Com-

puters & Operations Research, 36(6), 1758–1767.
Sherali, H. D., & Smith, J. C. (2001). Improving discrete model representations via sym-

metry considerations. Management Science, 47(10), 1396–1407. doi:10.1287/mnsc.

47.10.1396.10265.
Slotnick, S. A. (2011). Order acceptance and scheduling: A taxonomy and review. Euro-

pean Journal of Operational Research, 212(1), 1–11.
Slotnick, S. A., & Morton, T. E. (1996). Selecting jobs for a heavily loaded shop with

lateness penalties. Computers & Operations Research, 23(2), 131–140.
Slotnick, S. A., & Morton, T. E. (2007). Order acceptance with weighted tardiness. Com-

puters & Operations Research, 34(10), 3029–3042.

Unlu, Y., & Mason, S. J. (2010). Evaluation of mixed integer programming formulations
for non-preemptive parallel machine scheduling problems. Computers & Industrial

Engineering, 58(4), 785–800.
van den Akker, J., Hurkens, C., & Savelsbergh, M. (2000). Time-indexed formulations for

machine scheduling problems: Column generation. INFORMS Journal on Computing,
12(2), 111–124.

Wang, X., Xie, X., & Cheng, T. (2013a). A modified artificial bee colony algorithm for
order acceptance in two-machine flow shops. International Journal of Production

Economics, 141(1), 14–23.

Wang, X., Xie, X., & Cheng, T. (2013b). Order acceptance and scheduling in a
two-machine flowshop. International Journal of Production Economics, 141(1), 366–

376.
Xiao, Y.-Y., Zhang, R.-Q., Zhao, Q.-H., & Kaku, I. (2012). Permutation flow shop schedul-

ing with order acceptance and weighted tardiness. Applied Mathematics and Com-
putation, 218(15), 7911–7926. http://dx.doi.org/10.1016/j.amc.2012.01.073.

Please cite this article as: R. Esmaeilbeigi et al., Order acceptance and scheduling problems in two-machine flow shops: New mixed integer

programming formulations, European Journal of Operational Research (2015), http://dx.doi.org/10.1016/j.ejor.2015.11.036

http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0001
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0001
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0001
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0001
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0002
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0002
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0002
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0002
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0002
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0003
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0003
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0004
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0004
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0004
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0004
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0004
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0005
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0005
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0005
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0005
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0006
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0006
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0006
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0006
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0007
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0007
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0008
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0008
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0008
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0008
http://dx.doi.org/10.1016/0305-0548(93)90083-U
http://dx.doi.org/10.1016/j.ijpe.2015.03.013
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0011
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0011
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0011
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0011
http://dx.doi.org/10.1016/j.asoc.2015.01.069
http://dx.doi.org/10.1007/978-3-540-68279-0_17
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0014
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0014
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0014
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0014
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0015
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0015
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0015
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0015
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0016
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0016
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0016
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0016
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0016
http://dx.doi.org/10.1016/j.asoc.2015.04.027
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0018
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0018
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0018
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0018
http://dx.doi.org/10.1287/mnsc.47.10.1396.10265
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0020
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0020
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0021
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0021
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0021
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0021
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0022
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0022
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0022
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0022
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0023
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0023
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0023
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0023
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0024
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0024
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0024
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0024
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0024
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0025
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0025
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0025
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0025
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0025
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0026
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0026
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0026
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0026
http://refhub.elsevier.com/S0377-2217(15)01085-1/sbref0026
http://dx.doi.org/10.1016/j.amc.2012.01.073
http://dx.doi.org/10.1016/j.ejor.2015.11.036

	Order acceptance and scheduling problems in two-machine flow shops: New mixed integer programming formulations
	1 Introduction
	2 Preliminaries
	3 New formulations
	4 Enhancements
	4.1 Moderating big-M coefficients
	4.2 Valid inequalities for NF1
	4.3 Valid inequalities for NF2
	4.4 Preprocessing for NF2

	5 Computational results
	5.1 Performance of the new formulations without enhancements
	5.2 Effect of enhancements on NF1
	5.3 Preprocessing techniques
	5.4 Effect of enhancements on NF2
	5.5 Overall performance of the best formulation

	6 Conclusion
	 Appendix
	 Previous Formulation 1 (PF1):
	 Previous Formulation 2 (PF2)

	 References

