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a b s t r a c t

The conventional Malmquist productivity index (MPI), which ignores the internal structure of a production
system when measuring changes in performance between two periods, may produce misleading results.
This paper thus takes the operations of the component processes into account in investigating the MPI of
parallel production systems. A relational data envelopment analysis (DEA) model is developed to measure
the biennial MPIs of the system and internal processes at the same time, and it is shown that the former is
a linear combination of the latter. This decomposition helps identify the processes that cause the decline in
performance of the system. An example of 39 branches of a commercial bank, with deposits, sales, and
services as the three major functions operating in parallel, is used to illustrate this approach.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

As competition in the global market is becoming ever more
intense, production processes need to become more efficient in
order to improve company performance, thus enabling firms to
survive. Data envelopment analysis (DEA), developed by Charnes
et al. [1], is perhaps the most effective approach for measuring the
relative efficiencies of a set of decision making units (DMUs) that
apply multiple inputs to produce multiple outputs. Based on the
results of this analysis, a DMU is able to identify the sources of
inefficiency, and thus work to make the necessary improvements.
Since every DMU aims to improve its performance, a measure that
shows the relative improvement of one DMU compared to the
others is desired, and one way to obtain this is the Malmquist
Productivity Index (MPI), which measures changes in the perfor-
mance of a DMU between two periods. Some typical examples
include Tunisian schools [2], Taiwanese scholars [3], and Iranian
steam power plants [4]. This is also important for examining the
effect of an act or policy over a period of time, such as the Sarbanes–
Oxley Act of the US [5], the reorganization of Taiwanese forests [6],
and the privatization of the Pakistani cement industry [7].

Conventionally, the DEA technique measures efficiency from
the viewpoint of a system, the whole DMU, in which only the
inputs consumed and the outputs produced by the system are
considered. In other words, the system is treated as a black box,

ignoring the operations of the component processes. As a result, a
DMU that performs better in all processes than another one may
still have a lower efficiency score [8]. If the efficiency measures are
incorrect, then the subsequent measure of changes in performance
will also be incorrect. For this reason, the operations of the com-
ponent processes must be considered when the data is available,
and this led to development of the network DEA method [9].

The network DEA approach takes the operations of the com-
ponent processes of a system into account. Many network DEA
models have been proposed [10], with most developed for two-
stage systems, where all the inputs are supplied in the first stage
to produce intermediate products for the second stage, which then
produces the final outputs. Kao and Hwang [11] proposed a model
to measure the MPI of this type of system, and showed that the
system MPI is the product of the individual process MPIs. This
property can be extended to multi-stage systems.

The purpose of this paper is to develop a model to measure the
MPI of parallel systems, as in practice many systems have this
structure. The most typical case is that an organization performs
several functions in parallel; for example, teaching and research at
universities [12], crime control and protection and maintenance of
order at police departments [13], banking, insurance, and securities
at financial holding companies [14], and sales and services at banks
[15] (see Kao [10] for a detailed review of the related literature).
Most of the models developed for parallel systems can only measure
the system efficiency, which makes it impossible to examine the
relationship between the system and process MPIs. However, the
relational model proposed by Kao [16] is able to measure the system
and process efficiencies at the same time. Moreover, in this model

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/omega

Omega

http://dx.doi.org/10.1016/j.omega.2016.04.001
0305-0483/& 2016 Elsevier Ltd. All rights reserved.

☆This manuscript was processed by Associate Editor Zhu.
E-mail address: ckao@mail.ncku.edu.tw
1 Tel.: þ886 6 2753396; fax: þ886 6 2362162.

Omega 67 (2017) 54–59

www.sciencedirect.com/science/journal/03050483
www.elsevier.com/locate/omega
http://dx.doi.org/10.1016/j.omega.2016.04.001
http://dx.doi.org/10.1016/j.omega.2016.04.001
http://dx.doi.org/10.1016/j.omega.2016.04.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omega.2016.04.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omega.2016.04.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omega.2016.04.001&domain=pdf
mailto:ckao@mail.ncku.edu.tw
http://dx.doi.org/10.1016/j.omega.2016.04.001


the system efficiency is a weighted average of the process effi-
ciencies. One benefit of this is that the relatively inefficient processes
can be identified. Since the MPI is a ratio of two efficiencies, the
relationship between the MPI of the system and those of the pro-
cesses can be explored based on this model.

This paper thus proposes a relational model to measure the
system and process MPIs at the same time for parallel systems,
and the relationship between them is also derived. To demonstrate
how the proposed model can be applied to real world problems,
the performance and changes in performance of 39 branches of a
commercial bank, with the data taken from Jahanshahloo et al.
[17], are measured.

2. Biennial Malmquist productivity index

Let Xij and Yrj denote the ith input, i¼1,…,m, and rth output,
r¼1,…,s, respectively, of the jth DMU, j¼1,…,n. The conventional
input-oriented CCR, or black-box, model for measuring the effi-
ciency of the kth DMU under constant returns to scale can be
formulated as follows [1]:

ECCRk ¼ max
Xs
r ¼ 1

urYrk

s:t:
Xm
i ¼ 1

viXik ¼ 1

Xs
r ¼ 1

urYrj�
Xm
i ¼ 1

viXijr0; j¼ 1; :::;n

ur ; viZε; r¼ 1; :::; s; i¼ 1; :::;m ð1Þ
where ur and vi are virtual multipliers, and ε is a small non-
Archimedean number [18] imposed to avoid ignoring any input or
output factor in calculating efficiencies. Although the input- and
output-oriented CCR models yield the same efficiency measure, this
paper adopts the input-oriented one for measuring the MPI. For cases
that some inputs are non-discretionary whose values cannot be
reduced, one may need to use the output-oriented model.

Suppose each DMU has q processes operating in parallel. Let
XðpÞ
ij and Y ðpÞ

rj denote the input and output of the pth process, such
that the total amount of all q processes is equal to that of the DMU,
i.e., Xij¼

Pq
p ¼ 1 X

ðpÞ
ij and Yrj¼

Pq
p ¼ 1 Y

ðpÞ
rj . Fig. 1 shows the structure

of a general parallel system. Theoretically, every process can
consume all m inputs and produce all s outputs. In reality, how-
ever, a process will consume only certain inputs and produce
certain outputs. Here the general notation of XðpÞ

ij , i¼1,…,m, and

Y ðpÞ
rj , r¼1,…,s, is used for simplicity of expression. In applications,

many XðpÞ
ij and Y ðpÞ

rj are zero. In order to obtain more meaningful
results, Kao [16] developed a relational model, which takes the
operations of the q processes into account, as follows:

EKaok ¼ max :
Xs
r ¼ 1

urYrk

s:t:
Xm
i ¼ 1

viXik ¼ 1

system constraints

Xs
r ¼ 1

urYrj�
Xm
i ¼ 1

viXijr0; j¼ 1; :::;n ð2Þ

process constraints

Xs
r ¼ 1

urY
ðpÞ
rj �

Xm
i ¼ 1

viX
ðpÞ
ij r0;p¼ 1; :::; q; j¼ 1; :::;n

ur ; viZε; r¼ 1; :::; s; i¼ 1; :::;m

There are two features to be noted in this model. One is that the
same factor has the same multiplier associated with it, no matter
which process they correspond to. The other is that each of the
system constraints corresponding to a DMU is the sum of its q
process constraints. They are thus redundant, and can be deleted
from the model. Since more constraints are involved in this par-
allel model, the corresponding efficiency, EKaok , is less than that
measured from the black-box model, ECCRk .

When an optimal solution (u�
r , v

�
i ) for Model (2) is obtained, the

system (or the DMU) and process efficiencies are calculated as
follows:

EKaok ¼
Xs
r ¼ 1

u�
r Yrk=

Xm
i ¼ 1

v�i Xik ¼
Xs
r ¼ 1

u�
r Yrk

EðpÞk ¼
Xs
r ¼ 1

u�
r Y

ðpÞ
rk =
Xm
i ¼ 1

v�i X
ðpÞ
ik ; p¼ 1; :::; q

If we define the weight for process p as wðpÞ ¼Pm
i ¼ 1 v

�
i X

ðpÞ
ik /Pm

i ¼ 1 v
�
i Xik, i.e., the proportion of the aggregate input of process p

in that of all processes, then we have
Pq

p ¼ 1 w
ðpÞ ¼1 and wðpÞZ0,

p¼1,…,q. The average of the q process efficiencies weighted by
wðpÞ is

Xq
p ¼ 1

wðpÞEðpÞk ¼
Xq
p ¼ 1

Pm
i ¼ 1 v

�
i X

ðpÞ
ikPm

i ¼ 1 v
�
i Xik

 ! Ps
r ¼ 1 u

�
r Y

ðpÞ
rkPm

i ¼ 1 v
�
i X

ðpÞ
ik

 !

¼
Xq
p ¼ 1

Ps
r ¼ 1 u

�
r Y

ðpÞ
rkPm

i ¼ 1 v
�
i Xik

 !
¼
Ps

r ¼ 1 u
�
r YrkPm

i ¼ 1 v
�
i Xik

¼ EKaok

A property that the system efficiency (EKaok ) is a weighted average
of the q process efficiencies (EðpÞk , p¼1,…,q) is obtained. By com-
paring the efficiencies of the processes of a DMU, the processes
that perform less satisfactorily than others are identified. When
there is more than one optimal solution to Model (2), the effi-
ciencies of a specific process of different DMUs are not compar-
able. In this case, the idea of prioritizing processes, as proposed by
Kao and Hwang [19], can be applied to address this issue. Suppose
the efficiencies of Process t of DMUs a and b are to be compared.
Model (2) is applied first to obtain the system efficiencies EKaoa and
EKaob . Then the following model is used to find the efficiency of
Process t for DMU a, given its system efficiency is EKaoa

EðtÞa ¼ max :
Xs
r ¼ 1

urY
ðtÞ
ra

s:t:
Xm
i ¼ 1

viX
ðtÞ
ia ¼ 1

Y
rj
(1)

Y
rj
(2)

Y
rj
(p)

Y
rj
(q)

l
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.
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Fig. 1. Parallel production system.
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Xs
r ¼ 1

urYra ¼ EKaoa

Xm
i ¼ 1

viXia

Xs
r ¼ 1

urYrj�
Xm
i ¼ 1

viXijr0; j¼ 1; :::;n

Xs
r ¼ 1

urY
ðpÞ
rj �

Xm
i ¼ 1

viX
ðpÞ
ij r0; p¼ 1; :::q; j¼ 1; :::;n

ur ; viZε; r¼ 1; :::; s; i¼ 1; :::;m ð3Þ
The efficiency of Process t for DMU b can be calculated similarly. If
the efficiencies of another process w are to be compared, then the
efficiency of Process w of DMU a is measured via the above model,
while additionally requiring the efficiency of Process t to be EðtÞa .
This process can be continued for all processes. The process con-
sidered the most important is the first to measure its efficiency,
the second important is measured next, and so forth.

The ratio of the efficiencies of a DMU in two different periods
serves as a measure of changes in performance. Caves et al. [20]
proposed using the technology of one of the two periods to calcu-
late the efficiency of both the earlier and later periods. If the ratio of
the efficiency of the later period to that of the earlier period for a
DMU is greater than unity, then the performance of this DMU has
improved; otherwise, it has declined. Since using different periods
as the base period may obtain inconsistent results [6], Färe et al.
[21] suggested using the geometric mean of the MPIs calculated
from the two base periods as the final MPI. Another approach is to
use data of the two periods to construct an aggregate technology.
Based on this, the efficiencies of the same DMU in the two periods
are calculated, and the ratio of that of the later period to that of the
earlier one is the MPI, referred to as the biennial MPI [22]. The
biennial MPI is a special case of the more general global MPI [23],
which involves more than two periods. In this paper, the biennial
MPI is used to measure changes in performance.

Denote Xij and Yrj as the data of the system of an earlier period,
and X̂ij and Ŷ rj as that of a later period. The conventional black-box
model for measuring the efficiency of DMU k of the earlier period
based on the aggregate technology of the two periods, which ignores
the operations of the component processes, can be formulated as:

EBBk ¼ max :
Xs
r ¼ 1

urYrk

s:t:
Xm
i ¼ 1

viXik ¼ 1

Xs
r ¼ 1

urYrj�
Xm
i ¼ 1

viXijr0; j¼ 1; :::;n

Xs
r ¼ 1

urŶrj�
Xm
i ¼ 1

viX̂ijr0; j¼ 1; :::;n

ur ; viZε; r¼ 1; :::s; i¼ 1; :::;m ð4Þ

The efficiency of the later period, Ê
BB
k , is measured by replacing Yrk

in the objective function and Xik in the first constraint with Ŷrk and

X̂ik, respectively. The biennial MPI of the system is the ratio of Ê
BB
k

toEBBk : MPIBBk ¼ Ê
BB
k /EBBk . In this model, only the system efficiency

can be measured.
When operations of the processes are also considered, a par-

allel model of the following form is obtained for measuring the
system efficiency

EParallelk ¼ max :
Xs
r ¼ 1

urYrk

s:t:
Xm
i ¼ 1

viXik ¼ 1

Xs
r ¼ 1

urY
ðpÞ
rj �

Xm
i ¼ 1

viX
ðpÞ
ij r0; p¼ 1; :::q; j¼ 1; :::;n

Xs
r ¼ 1

urŶ
ðpÞ
rj �

Xm
i ¼ 1

viX̂
ðpÞ
ij r0; p¼ 1; :::q; j¼ 1; :::;n

ur ; viZε; r¼ 1; :::s; i¼ 1; :::;m ð5Þ

where XðpÞ
ij and Y ðpÞ

rj are the data of the earlier period, and X̂
ðpÞ
ij and

Ŷ
ðpÞ
rj are that of the later period. Similar to the case of the black-box

model, the efficiencies of the later period, Ê
Parallel
k and Ê

ðpÞ
k , can be

measured by replacing Yrk and Xik with Ŷ rk and X̂ik, respectively. At
optimality, the system and process efficiencies of the two periods
are calculated as

EParallelk ¼
Xs
r ¼ 1

u�
r Yrk=

Xm
i ¼ 1

v�i Xik

EðpÞk ¼
Xs
r ¼ 1

u�
r Y

ðpÞ
rk =
Xm
i ¼ 1

v�i X
ðpÞ
ik ; p¼ 1; :::; q

Ê
Parallel
k ¼

Xs
r ¼ 1

u�
r Ŷ rk=

Xm
i ¼ 1

v�i X̂ ik

Ê
ðpÞ
k ¼

Xs
r ¼ 1

u�
r Ŷ

ðpÞ
rk =
Xm
i ¼ 1

v�i X̂
ðpÞ
ik ; p¼ 1; :::; q ð6Þ

Obviously, the system efficiency is still a weighted average of the
process efficiencies for both periods. That is,

EParallelk ¼
Xq
p ¼ 1

wðpÞEðpÞk ;where wðpÞ ¼
Xm
i ¼ 1

v�i X
ðpÞ
ik =
Xm
i ¼ 1

v�i Xik

Ê
Parallel
k ¼

Xq
p ¼ 1

ŵðpÞEðpÞk ; where ŵðpÞ ¼
Xm
i ¼ 1

v�i X̂
ðpÞ
ik =
Xm
i ¼ 1

v�i X̂ik

The biennial MPIs of the system and q processes for DMU k
between the two periods are

MPIParallelk ¼ Ê
Parallel
k =EParallelk

MPIðpÞk ¼ Ê
ðpÞ
k =EðpÞk ; p¼ 1; :::; q ð7Þ

Based on the above relationships between the system and
process efficiencies, the following derivation can be made for the
system MPI

MPIParallelk ¼ Ê
Parallel
k

EParallelk

¼
Pq

p ¼ 1 ŵ
ðpÞÊ

ðpÞ
k

EParallelk

¼
Xq
p ¼ 1

ŵ ðpÞðÊ ðpÞ
k =EðpÞk Þ

EParallelk =EðpÞk

0
@

1
A

¼
Xq
p ¼ 1

ŵ ðpÞ

EParallelk =EðpÞk

 !
MPIðpÞk ¼

Xq
p ¼ 1

ωðpÞMPIðpÞk ð8Þ

where ω pð Þ ¼ ŵðpÞ
= EParallelk =EðpÞk

� �
is the coefficient associated with

MPIðpÞk in the linear combination. This relationship shows that the
system MPI is a linear combination of the process MPIs. Since the
sum of all ω(p) need not be equal to one, the system MPI is not
necessarily a weighted average of the process MPIs. It is a
weighted average when all process efficiencies of the earlier per-
iod are the same.

In the next section we shall illustrate how to calculate the system
and process MPIs, and discuss the relationship between them, using
an example of 39 branches of an Iranian commercial bank.

3. An example

The example discussed in this section is taken from Jahanshahloo
et al. [17], with 39 branches of a commercial bank in Iran performing
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three major functions of deposits, sales, and services. The three
functions share the common inputs of employees (X1) and operating
expenses (X2) to produce five outputs, in that deposits collected (Y1),
loans (Y2) and profit (Y3), and service charges (Y4) are attributed to
deposits, sales, and services, respectively, and the output of customer
satisfaction (Y5) is a result of all three functions. Fig. 2 shows the
structure of this system, and Table 1 shows the mean and standard
deviation of each input-output factor of the 39 branches in the first
six months of 2000 and 2001. The complete data can be found in
Jahanshahloo et al. [17].

Since the two inputs are shared by the three functions, it is
assumed that the proportion of αi of input X1, i¼1, 2, 3 with
α1þα2þα3¼1, and the proportion of βi of input X2, i¼1, 2, 3 with
β1þβ2þβ3¼1, are used by the ith function. Similarly, the pro-
portion of γi of output Y5, with γ1þγ2þγ3¼1, are assumed to be
attributed to the ith function. These proportions are determined by
each branch such that the highest efficiency will be produced for
them. Specifically, the model for measuring the efficiency of the
kth branch, based on Model (5), is as follows:

EParallelk ¼ max :u1Y1kþu2Y2kþu3Y3kþu4Y4kþu5Y5k

s:t:v1X1kþv2X2k ¼ 1

u1Y1jþu5g1Y5j�ðv1α1X1jþv2β1X2jÞr0; j¼ 1;…;39

u2Y2jþu3Y3jþu5g2Y5j�ðv1α2X1jþv2β2X2jÞr0; j¼ 1;…;39

u4Y4jþu5g3Y5j�ðv1α3X1jþv2β3X2jÞr0; j¼ 1;…;39

u1Ŷ 1jþu5γ1Ŷ 5j�ðv1α1X̂1jþv2β1X̂2jÞr0; j¼ 1; :::;39

u2Ŷ 2jþu5γ3Ŷ 5j�ðv1α3X̂1jþv2β2X̂2jÞr0; j¼ 1; :::;39

u4Ŷ 4jþu5γ3Ŷ 5j�ðv1α3X̂1jþv2β3X̂2jÞr0; j¼ 1; :::;39

α1þα2þα3 ¼ 1;β1þβ2þβ3 ¼ 1; γ2þγ3 ¼ 1 ð9Þ
This model is nonlinear. However, it can be linearized by sub-
stituting the nonlinear terms of v1α1, v1α2, and v1α3, by a1, a2, and
a3, respectively, and replacing the constraint of α1þα2þα3¼1 with
a1þa2þa3¼v1 accordingly. The nonlinear terms corresponding to β
and γ are handled similarly. As what value of the non-Archimedean
number ε to use in computation, this paper follows the suggestion
of Charnes and Cooper [18] of 10�5, when the input and output data
are expressed in the range of 1–100. At optimality, the system and
process efficiencies are calculated based on Eq. (6), and the system
and process MPIs are calculated based on Eq. (7).

If the system is treated as a black box, ignoring the operations
of the three functions, then the model is as follows:

EBBk þ max :
X5
r ¼ 1

urYrk

s:t:
X2
i ¼ 1

viXik ¼ 1

X5
r ¼ 1

urYrj�
X2
i ¼ 1

viXijr0; j¼ 1;…;39

X5
r ¼ 1

urŶrj�
X2
i ¼ 1

viX̂ijr0; j¼ 1;…;39

ur ; viZε; r¼ 1; :::;5; i¼ 1;2 ð10Þ

where the constraints corresponding to the three functions in
Model (9) are aggregated.

Columns two to four of Table 2 show the results obtained from
the black-box model. There are five branches which are efficient in
the first period, and only one in the second. The MPIs indicate that
there are seven branches, Numbers 3, 9, 19, 20, 23, 25, and 28,
whose performances have improved, and one, Number 22, for
which it remains the same in the two periods. The performances
of the 39 branches in general have declined from 2000 to 2001.

When the operations of the three processes, i.e., functions, are
considered, only two branches remain efficient in the first period, and

none in the second, as indicated by the EParallelk and Ê
Parallel
k values in

columns eight and twelve. As expected, the system efficiencies mea-

sured from the parallel model, EParallelk and Ê
Parallel
k , are less than or

equal to those measured from the black-box model, EBBk and Ê
BB
k , for

the same branch. The averages in the last row show that the perfor-
mances of the three processes (columns five to seven) are similar in
the first period, and process one performs better than process two,
which in turn performs better than process three in the second period
(columns nine to eleven). The numbers in parentheses under each
efficiency score are the associated weights. Clearly, the weighted
average of the three process efficiencies is equal to the system effi-
ciency. Using branch Number 1 to illustrate this, we have
0.0039�0.2676þ0.9899�0.2744þ0.0062�
0.2721¼0.2744 for the first period and 0.9861�0.1227þ0.0130�
0.0054þ0.0009�0.0252¼0.1210 for the second.

The last four columns show the MPIs of the three processes and
the system calculated using Eq. (7). There are only five branches,
Numbers 3, 9, 19, 20, and 28, whose performances have improved.
The average of 0.7955 indicates that the performances of the 39
branches have in general declined. This finding is consistent with
that obtained from the black-box model. However, the black-box
model misjudges two branches, Numbers 23 and 25, as having
improved performance. The average MPIs shown in the last row
indicate that process two is in general the one whose performance
declines the most. The coefficients associated with the process
MPIs in expressing the system MPIs, as obtained from Eq. (8), are
shown in parentheses. The sum of the MPIs of the three processes
multiplied by their respective coefficients produce the system MPI,
as is clear, for example, from branch Number 1: 0.9619�0.4583þ
0.0130�0.0198þ0.0008�0.0926¼0.4412. Most of the total coef-
ficients associated with the three process MPIs have values close to

Fig. 2. Functional structure of an Iranian commercial bank.

Table 1
Some statistics for the illustrative example.

Employees (X1) Expenses (X2) Deposits (Y1) Loans (Y2) Profit (Y3) Charges (Y4) Satisfaction (Y5)

2000 Average S.D. 343.59 13.33 139208.47 86534.56 1,380,970,691 77630074.44 70047.18
253.20 3.73 149932.87 149827.94 3,066,843,165 171891394.32 72529.86

2001 Average S.D. 311.28 13.32 141257.85 80877.07 3,955,543,895 54448668.51 785.44
186.44 3.87 150912.27 125989.18 18,320,618,046 115625305.21 1429.85
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Table 2
Results for the 39 branches of a commercial bank calculated from the black-box and parallel models.

Branch EBBk Ê
BB
k

MPIBBk Eð1Þk Eð2Þk Eð3Þk EParallelk Ê
ð1Þ
k Ê

ð2Þ
k Ê

ð3Þ
k Ê

Parallel
k

MPIð1Þk MPIð2Þk MPIð3Þk MPIParallelk

(wð1Þ) (wð2Þ) (wð3Þ) (ŵð1Þ) (ŵð2Þ) (ŵð3Þ) (ωð1Þ) (ωð2Þ) (ωð3Þ) (Total)

1 0.2858 0.1378 0.4823 0.2676 0.2744 0.2721 0.2744 0.1227 0.0054 0.0252 0.1210 0.4583 0.0198 0.0926 0.4412
(0.0039) (0.9899) (0.0062) (0.9861) (0.0130) (0.0009) (0.9619) (0.0130) (0.0008) (0.9757)

2 0.2611 0.1464 0.5607 0.2502 0.2452 0.2515 0.2513 0.1423 0.0038 0.0370 0.1407 0.5687 0.0154 0.1472 0.5599
(0.0043) (0.0205) (0.9752) (0.9885) (0.0108) (0.0007) (0.9841) (0.0105) (0.0007) (0.9953)

3 0.4663 0.4784 1.0259 0.1697 0.4668 0.1104 0.4661 0.0930 0.4752 0.0143 0.4745 0.5477 1.0180 0.1292 1.0181
(0.0011) (0.9976) (0.0013) (0.0009) (0.9982) (0.0009) (0.0003) (0.9999) (0.0002) (1.0004)

4 0.3808 0.2224 0.5841 0.3466 0.3453 0.3054 0.3465 0.1712 0.0798 0.0194 0.1692 0.4941 0.2313 0.0634 0.4884
(0.9778) (0.0206) (0.0016) (0.9784) (0.0207) (0.0009) (0.9786) (0.0206) (0.0008) (1.0001)

5 0.0904 0.0743 0.8213 0.0749 0.0845 0.0748 0.0845 0.0412 0.0070 0.0561 0.0548 0.5498 0.0822 0.7497 0.6487
(0.0022) (0.9950) (0.0028) (0.0017) (0.0247) (0.9736) (0.0015) (0.0248) (0.8615) (0.8877)

6 0.8850 0.4113 0.4647 0.8612 0.8838 0.8435 0.8837 0.4119 0.0037 0.0020 0.4067 0.4782 0.0042 0.0024 0.4602
(0.0009) (0.9977) (0.0014) (0.9872) (0.0117) (0.0010) (0.9621) (0.0117) (0.0010) (0.9748)

7 0.1230 0.0630 0.5127 0.0938 0.1100 0.0981 0.1099 0.0531 0.0020 0.0301 0.0522 0.5662 0.0186 0.3066 0.4745
(0.0012) (0.9969) (0.0019) (0.9811) (0.0178) (0.0012) (0.8368) (0.0178) (0.0010) (0.8557)

8 0.3235 0.2988 0.9237 0.0643 0.3238 0.0189 0.3233 0.0439 0.2992 0.0755 0.2987 0.6825 0.9239 4.0014 0.9239
(0.0009) (0.9982) (0.0008) (0.0012) (0.9980) (0.0008) (0.0002) (0.9995) (0.0000) (0.9998)

9 0.2331 0.9127 3.9153 0.1330 0.2052 0.1978 0.2051 0.9120 0.0159 0.2781 0.8989 6.8594 0.0775 1.4062 4.3818
(0.0010) (0.9974) (0.0016) (0.9851) (0.0140) (0.0009) (0.6385) (0.0140) (0.0009) (0.6534)

10 0.4846 0.2293 0.4731 0.4283 0.4285 0.4522 0.4519 0.2273 0.0355 0.0118 0.2252 0.5307 0.0829 0.0260 0.4985
(0.0007) (0.0148) (0.9845) (0.9893) (0.0100) (0.0007) (0.9377) (0.0095) (0.0007) (0.9478)

11 1.0000 0.5662 0.5662 1.0000 0.6561 1.0000 0.9975 0.0633 0.5511 0.0004 0.5502 0.0633 0.8399 0.0004 0.5515
(0.9923) (0.0072) (0.0005) (0.0014) (0.9982) (0.0005) (0.0014) (0.6566) (0.0005) (0.6584)

12 0.2739 0.1648 0.6018 0.2614 0.2710 0.2623 0.2710 0.1595 0.0100 0.0130 0.1552 0.6103 0.0367 0.0496 0.5727
(0.0020) (0.9949) (0.0031) (0.9710) (0.0272) (0.0018) (0.9366) (0.0272) (0.0017) (0.9655)

13 0.1418 0.1151 0.8117 0.0987 0.1069 0.0643 0.1068 0.0632 0.0741 0.0191 0.0740 0.6399 0.6935 0.2966 0.6930
(0.0008) (0.9978) (0.0014) (0.0054) (0.9938) (0.0007) (0.0050) (0.9945) (0.0004) (0.9999)

14 0.0567 0.0546 0.9632 0.0466 0.0115 0.0086 0.0461 0.0458 0.0020 0.0067 0.0452 0.9833 0.1770 0.7757 0.9806
(0.9857) (0.0134) (0.0009) (0.9857) (0.0134) (0.0009) (0.9965) (0.0034) (0.0002) (1.0000)

15 0.1998 0.1042 0.5217 0.1950 0.1922 0.1786 0.1948 0.1044 0.0024 0.0020 0.1021 0.5356 0.0125 0.0113 0.5241
(0.9547) (0.0429) (0.0024) (0.9773) (0.0213) (0.0014) (0.9781) (0.0210) (0.0013) (1.0004)

16 0.1565 0.0884 0.5646 0.1550 0.1507 0.1507 0.1549 0.0885 0.0025 0.0087 0.0872 0.5708 0.0167 0.0576 0.5628
(0.9699) (0.0226) (0.0076) (0.9848) (0.0143) (0.0009) (0.9856) (0.0139) (0.0009) (1.0004)

17 0.6796 0.4855 0.7144 0.4969 0.1359 0.4871 0.4927 0.4545 0.0150 0.0512 0.4490 0.9147 0.1104 0.1051 0.9115
(0.9874) (0.0118) (0.0008) (0.9874) (0.0118) (0.0008) (0.9960) (0.0033) (0.0008) (1.0000)

18 0.1000 0.0320 0.3204 0.0334 0.0963 0.0110 0.0962 0.0297 0.0011 0.0089 0.0294 0.8901 0.0110 0.8049 0.3056
(0.0010) (0.9983) (0.0007) (0.9887) (0.0105) (0.0007) (0.3432) (0.0106) (0.0001) (0.3538)

19 0.0949 0.1489 1.5687 0.0644 0.0561 0.0044 0.0642 0.0669 0.1110 0.0128 0.1109 1.0382 1.9785 2.9397 1.7279
(0.9738) (0.0255) (0.0007) (0.0008) (0.9985) (0.0007) (0.0008) (0.8729) (0.0000) (0.8737)

20 0.1426 0.2395 1.6795 0.0927 0.1232 0.0677 0.1231 0.0624 0.0209 0.2225 0.2184 0.6724 0.1693 3.2857 1.7746
(0.0013) (0.9966) (0.0021) (0.0013) (0.0194) (0.9793) (0.0010) (0.0194) (0.5389) (0.5593)

21 0.3810 0.1194 0.3134 0.3773 0.3690 0.3628 0.3772 0.1131 0.0094 0.0041 0.1120 0.2997 0.0256 0.0113 0.2970
(0.9859) (0.0106) (0.0035) (0.9898) (0.0096) (0.0006) (0.9902) (0.0094) (0.0006) (1.0001)

22 1.0000 1.0000 1.0000 0.8242 1.0000 1.0000 0.9995 0.1529 1.0000 0.0110 0.9985 0.1855 1.0000 0.0110 0.9990
(0.0027) (0.0132) (0.9841) (0.0008) (0.9984) (0.0008) (0.0007) (0.9989) (0.0008) (1.0003)

23 0.5599 0.5669 1.0125 0.2527 0.5454 0.0058 0.5443 0.1052 0.5287 0.0108 0.5273 0.4163 0.9695 1.8832 0.9688
(0.0013) (0.9975) (0.0012) (0.0018) (0.9970) (0.0012) (0.0009) (0.9989) (0.0000) (0.9998)

24 0.0864 0.0674 0.7803 0.0731 0.0651 0.0472 0.0728 0.0496 0.0400 0.0113 0.0492 0.6785 0.6141 0.2398 0.6751
(0.9739) (0.0243) (0.0018) (0.9604) (0.0384) (0.0012) (0.9636) (0.0343) (0.0008) (0.9987)

25 0.0427 0.0458 1.0745 0.0382 0.0331 0.0168 0.0381 0.0375 0.0292 0.0279 0.0373 0.9807 0.8828 1.6590 0.9779
(0.9888) (0.0103) (0.0009) (0.9788) (0.0205) (0.0007) (0.9807) (0.0178) (0.0003) (0.9988)

26 0.2329 0.1054 0.4524 0.2179 0.1998 0.2207 0.2203 0.1056 0.0003 0.0399 0.1034 0.4844 0.0016 0.1807 0.4693
(0.0014) (0.0189) (0.9797) (0.9787) (0.0200) (0.0013) (0.9683) (0.0181) (0.0013) (0.9878)

27 1.0000 0.4341 0.4341 1.0000 1.0000 1.0000 1.0000 0.1883 0.0171 0.4283 0.4227 0.1883 0.0171 0.4283 0.4227
(0.9828) (0.0130) (0.0042) (0.0011) (0.0130) (0.9859) (0.0011) (0.0130) (0.9859) (1.0000)

28 0.4002 0.4337 1.0836 0.3169 0.3869 0.3077 0.3866 0.0562 0.4115 0.0095 0.4108 0.1774 1.0634 0.0310 1.0624
(0.0018) (0.9963) (0.0020) (0.0014) (0.9981) (0.0005) (0.0011) (0.9988) (0.0004) (1.0004)

29 1.0000 0.5931 0.5931 1.0000 1.0000 1.0000 1.0000 0.5938 0.0037 0.0054 0.5872 0.5938 0.0037 0.0054 0.5872
(0.9763) (0.0224) (0.0013) (0.9888) (0.0105) (0.0007) (0.9888) (0.0105) (0.0007) (1.0000)

30 0.1864 0.1133 0.6075 0.1866 0.1425 0.1378 0.1856 0.1135 0.0003 0.0060 0.1112 0.6086 0.0022 0.0435 0.5990
(0.9785) (0.0192) (0.0023) (0.9791) (0.0197) (0.0013) (0.9841) (0.0151) (0.0009) (1.0002)

31 0.1032 0.0655 0.6344 0.0979 0.0671 0.0695 0.0974 0.0633 0.0047 0.0158 0.0623 0.6462 0.0707 0.2268 0.6398
(0.9838) (0.0145) (0.0017) (0.9836) (0.0154) (0.0010) (0.9886) (0.0106) (0.0007) (0.9999)

32 1.0000 0.8158 0.8158 0.6238 0.6181 1.0000 0.9954 0.3010 0.0193 0.7454 0.7366 0.4825 0.0312 0.7454 0.7401
(0.0008) (0.0113) (0.9878) (0.0008) (0.0116) (0.9876) (0.0005) (0.0072) (0.9922) (0.9999)

33 0.2750 0.1499 0.5451 0.2660 0.2266 0.2225 0.2656 0.1448 0.0120 0.0617 0.1435 0.5445 0.0528 0.2771 0.5405
(0.9890) (0.0099) (0.0012) (0.9899) (0.0095) (0.0006) (0.9916) (0.0081) (0.0005) (1.0002)

34 0.3432 0.1180 0.3439 0.3369 0.3310 0.3252 0.3368 0.1006 0.0179 0.0064 0.0998 0.2986 0.0540 0.0198 0.2963
(0.9865) (0.0101) (0.0034) (0.9902) (0.0092) (0.0006) (0.9905) (0.0091) (0.0006) (1.0001)

35 0.1551 0.0884 0.5703 0.1312 0.1302 0.1383 0.1382 0.0755 0.0164 0.0433 0.0749 0.5753 0.1257 0.3133 0.5420
(0.0020) (0.0096) (0.9884) (0.9898) (0.0096) (0.0006) (0.9399) (0.0090) (0.0006) (0.9495)

36 0.1462 0.0842 0.5758 0.1284 0.0741 0.1017 0.1278 0.0824 0.0044 0.0701 0.0816 0.6419 0.0594 0.6889 0.6383
(0.9891) (0.0097) (0.0012) (0.9890) (0.0104) (0.0007) (0.9933) (0.0060) (0.0005) (0.9998)

37 0.0853 0.0653 0.7652 0.0000 0.0511 0.0507 0.0841 0.0652 0.0020 0.0052 0.0643 0.7700 0.0385 0.1018 0.7637
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one (except those for branches Numbers 9, 11, 18, and 20), indi-
cating that the system MPI is approximately equal to the weighted
average of the process MPIs.

4. Conclusion

The conventional DEA models for measuring efficiencies treat
the production system as a black box, ignoring the operations of
the component processes. As a result, the measured efficiencies
are misleading, and the subsequent measures of MPI are incorrect.
This paper thus develops a relational model to measure the MPIs
for parallel production systems in a more meaningful manner.

A merit of the relational model for parallel systems is that the
efficiency of the system can be decomposed into a weighted aver-
age of those of the component processes. The MPI used in this
paper is the biennial MPI (which is the global MPI involving only
two periods), based on which a number of properties are obtained.
The changes in performance between 2000 and 2001 for 39 bran-
ches of an Iranian commercial bank are presented to illustrate the
proposed method, and this work has several findings, as follows.

First, the MPIs measured from the conventional black-box model,
without taking the operations of the component processes into
account, may misjudge the changes in performance of a DMU in two
periods. Second, the systemMPI measured from the parallel model is
a linear combination of the process MPIs. The empirical results show
that this linear combination is quite close to a convex combination,
implying that the systemMPI is approximately a weighted average of
the process MPIs. Third, the decomposition of the system MPI into a
linear combination of the process MPIs helps identify the processes
that cause the decline in the performance of the system. Based on
these findings, a general conclusion is that the parallel model should
be used whenever the data is available.

In this paper the returns to scale are assumed to be constant.
Whether the system MPI can be decomposed into a linear com-
bination of the process MPIs under variable returns to scale or not
requires further study. This is a topic for future research.

While real world systems are more complicated than the par-
allel one discussed in this paper, they can usually be expressed as a
combination of the two basic network structures, series and par-
allel [24]. It is thus believed that the MPI of a general network
system can be expressed as a function of the MPIs of its compo-
nent processes based on the decompositions for series systems
discussed in Kao and Hwang [11] and for parallel systems in this
paper. This is a direction for future studies.
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Table 2 (continued )

Branch EBBk Ê
BB
k

MPIBBk Eð1Þk Eð2Þk Eð3Þk EParallelk Ê
ð1Þ
k Ê

ð2Þ
k Ê

ð3Þ
k Ê

Parallel
k

MPIð1Þk MPIð2Þk MPIð3Þk MPIParallelk

(wð1Þ) (wð2Þ) (wð3Þ) (ŵð1Þ) (ŵð2Þ) (ŵð3Þ) (ωð1Þ) (ωð2Þ) (ωð3Þ) (Total)

(0.9833) (0.0149) (0.0018) (0.9848) (0.0143) (0.0009) (0.9913) (0.0087) (0.0006) (1.0006)
38 0.0731 0.0585 0.8000 0.0730 0.0348 0.0455 0.0725 0.0577 0.0035 0.0230 0.0570 0.7905 0.1000 0.5049 0.7861

(0.9850) (0.0134) (0.0016) (0.9856) (0.0135) (0.0009) (0.9932) (0.0065) (0.0006) (1.0002)
39 0.1508 0.0796 0.5278 0.1510 0.1311 0.1225 0.1504 0.0792 0.0074 0.0052 0.0783 0.5248 0.0564 0.0423 0.5205

(0.9732) (0.0238) (0.0030) (0.9869) (0.0122) (0.0009) (0.9906) (0.0106) (0.0007) (1.0019)

Ave. 0.3487 0.2558 0.7950 0.2901 0.2967 0.2829 0.3343 0.1498 0.0986 0.0622 0.2416 0.7318 0.2997 0.5811 0.7955
(0.5038) (0.3431) (0.1530) (0.6817) (0.2169) (0.1015) (0.6488) (0.2034) (0.0872) (0.9395)
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