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a b s t r a c t 

In multi-output settings, different types of inputs are simultaneously used in the production process. On 

the one hand, some inputs are jointly used to produce all (or a subset of) the outputs. These inputs give 

rise to economies of scope, which constitutes a prime economic motivation to produce multiple out- 

puts. On the other hand, some inputs are allocated to specific output productions. Using nonparametric 

output-specific modeling of the production process, we propose a new productivity index for cost min- 

imizing producers in these multi-output settings. The new index takes the form of a cost Malmquist 

productivity index. The output-specific modeling of the production process naturally allows us to define 

output-specific cost Malmquist productivity indexes and to disaggregate the cost Malmquist productivity 

index in terms of output-specific cost efficiency measurements. We also tackle the issue of input price 

availability and explain how to extend the cost Malmquist productivity index with partial input price in- 

formation or without assuming observation of the input prices. In the latter case, we establish a duality 

with a technical productivity index that takes the form of a Malmquist productivity index. The new in- 

dexes can be used to evaluate cost-productivity and productivity changes or can be fairly easily combined 

with existing extensions. We propose an application to the electricity plants. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Nonparametric efficiency analysis of production activities is a 

technique used to evaluate a decision making unit (DMU) by com- 

paring its input-output performance to that of other DMUs oper- 

ating in a similar technological environment. Nonparametric effi- 

ciency analysis does not require any parametric/functional speci- 

fications of the production technology but rather reconstructs the 

production possibilities using the observed inputs and outputs and 

by imposing some technology Axioms (such as monotonicity, con- 

vexity, returns-to-scale). Efficiency is therefore measured in tech- 

nical terms, i.e. as the distance to the reconstructed production 

possibilities. From an economic perspective, the nonparametric ef- 

ficiency analysis methodology is rooted in the structural approach 

to modeling efficient production behavior that was initiated by 

[1,20,35,65] . This approach starts from a structural model of ef- 

ficient production behavior (such as a cost minimization, a profit 
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maximization) and characterizes inefficiency in terms of deviation 

from this economic model. Refer to [14–16,22,33] for reviews. 

While standard nonparametric efficiency models have demon- 

strated their usefulness in detecting the inefficiency behaviors of 

DMUs leading to potential cost reductions/profit improvements, 

these models suffer from a lack of realism in multi-output settings. 

Indeed, standard nonparametric efficiency models consider that all 

the inputs simultaneously produce all the outputs (i.e. “black box”

modeling) while in multi-output settings different types of inputs 

are simultaneously used to produce the outputs. On the one hand, 

some inputs are jointly used to produce all (or a subset of) the out- 

puts (see [10,19,55] ). These inputs give rise to economies of scope 

that constitute a prime economic motivation to produce multi- 

ple outputs. Economies of scope, a term popularized by [49] , are 

present when it is less costly to produce multiple outputs within a 

firm rather than in several firms. On the other hand, some inputs 

are allocated to specific output productions (see [21,27,63] ). 

All of above mentioned approaches try to enhance the realism 

of the nonparametric efficiency analysis by integrating information 

on the internal production structure. As a consequence, these ap- 

proaches have more discriminatory power (i.e. a greater ability to 

detect inefficiency behavior) than standard techniques that do not 

use this information. [8,9,11,12] provide a unifying framework that 

is consistent with all these approaches. They suggest a new non- 
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parametric model that takes the links between inputs and outputs 

into account. In particular, they model each output separately by 

its own production technology, while allowing for interdependence 

between the output-specific technologies. [8,9,11,12] consider both 

technical and economic efficiency measurements. 

The Malmquist productivity index (MPI) proposed by [3] , who 

named it after [43] , measures productivity changes between two 

or more periods. The MPI has several desirable features. On the 

one hand, the MPI is completely nonparametric since it is based 

on the distances to the reconstructed production possibilities ob- 

tained with the nonparametric efficiency analysis. It implies that 

only the input-output data are required. On the other hand, the 

MPI can be decomposed into different sources to better under- 

stand the causes of productivity change. Several decompositions 

have been suggested by [23,24] and [54] . 

Since the initial definition of the MPI, several theoretical ex- 

tensions have been proposed: [6] introduced a non-radial MPI; 

[7] provided a further discussion on its second component; 

[50] proposed a global MPI; [4] suggested using the MPI to com- 

pare groups; [73] and [46] developed aggregate indexes to compare 

groups; [72] provided a new decomposition of the MPI that mea- 

sures capacity productivity change and variable input productivity 

change; [39] proposed a common-weight DEA model for the global 

MPI; [48] introduced a metafrontier approach of the MPI when the 

technologies of the DMUs are not the same; [53] explained how 

to use MPI with negative data; [51] introduced a biennial MPI; 

[68] suggested a double frontier MPI; [40] defined a multi-period 

MPI to capture the productivity change for a large period; [45] sug- 

gested an aggregate Malmquist productivity index measure that 

allows inputs to be reallocated within the group; and [70] intro- 

duced a factor-specific MPI based on common weights DEA. 

All of the above mentioned theoretical extensions and the large 

numbers of applications clearly reveal the usefulness of the MPI 

both as a theoretical and a practical instrument. Nevertheless, 

the MPI is based on the technical formulation of efficiency (i.e. 

based on the distance to the reconstructed production possibili- 

ties) and therefore neglects the economic objective of the DMUs 

(such as cost minimization behavior or profit maximization behav- 

ior). [44] filled this gap by proposing a cost Malmquist productiv- 

ity index (CMPI) which has the same feature as the initial MPI (i.e. 

nonparametric in nature, a decomposition of the cost-productivity 

into different sources) but has the extra advantage of taking the 

cost minimization behavior of the DMUs into account. However, 

the CMPI, contrary to the MPI, requires the observation of the in- 

put prices, which could be difficult to observe or to rely on in 

practice. Several extensions of the CMPI have also been proposed: 

[71] incorporated variable returns to scale into the decomposition 

of the CMPI; [61] extended the global MPI of [50] to the cost set- 

ting; [60] explained how to extend the method of [4] , i.e. using the 

MPI to compare groups, in the cost setting; and [37] extended the 

metafrontier MPI approach of [48] to the cost setting. 

Building on the output-specific modeling of the production pro- 

cess suggested by [8,9,11,12] , we propose a new productivity in- 

dex for cost minimizing producers in multi-output settings. The 

new index takes the form of a CMPI. The output-specific model- 

ing of the production process naturally allows us to define output- 

specific CMPI and to disaggregate the CMPI in terms of output- 

specific cost efficiency measurements. The disaggregation proce- 

dure also fits with the aggregation procedure introduced by [28–

31] , [46] and [73] , which they developed to compare groups. 

We also tackle the input price availability issue and explain how 

to define the CMPI with partial input price information or with- 

out assuming observation of the input prices. In the latter case, 

we establish a duality with a technical productivity index that 

takes the form of an MPI. The new CMPI and MPI can be used 

to evaluate cost-productivity and productivity changes or can be 

fairly easily combined with the extensions of those indexes cited 

above. 

We use the new CMPI technique to study the cost-productivity 

change of US electricity plants that produce two types of electricity 

(non-renewable and renewable) using nameplate capacity (used as 

a proxy for total assets) and the quantity of fuel. It can be reason- 

ably assumed that the electricity generated is exogenously defined, 

which means that the size of the electricity market (or number of 

consumers) falls beyond control of the electricity utilities, but the 

plants can still minimize their costs for a given output production. 

The new CMPI technique offers several advantages in this con- 

text. Firstly, the two inputs are differently linked to the outputs. 

Nameplate capacity is used to produce both types of electricity 

while the quantity of fuel is only used to produce fossil electric- 

ity. As such, the new CMPI technique is particularly useful in this 

context since it recognizes the links between inputs and outputs. 

Secondly, the new CMPI technique provides cost-productivity re- 

sults on each output. We believe that it is of particular interest as 

plants have been producing non-renewable electricity for decades 

while the production of renewable electricity has started quite 

recently. Consequently, one can expect different cost-productivity 

changes for each type of electricity. Moreover, it allows to bet- 

ter understand the changes in cost-productivity at the aggregate 

level. Finally, the price data for nameplate capacity are not avail- 

able. Thus, the new CMPI technique that works with/without par- 

tial input price data is very attractive for that reason. All in all, it 

means that the new CMPI model better uses the available informa- 

tion contained in the data and provides more results than standard 

CMPI techniques (without making extra assumptions on any aspect 

of the production process). 

The rest of the paper is structured as follows. In Section 2 , we 

define the CMPI in the multi-output context, show its duality with 

a MPI when the prices are not observed, and explain how to com- 

pute the indexes in practice. In Section 3 , we present the applica- 

tion to the US electricity plants. In Section 4 , we conclude. 

2. Methodology 

We start by giving some necessary notations. We then define 

the CMPI in the multi-output context. Next, we establish a duality 

with a technical productivity index, which takes the form of a MPI, 

and finally, we explain how to compute the indexes in practice. 

2.1. Preliminaries 

We assume that DMUs use, at time t, P inputs, captured by 

the vector x t ∈ R 

P + , to produce Q outputs, captured by the vector 

y t ∈ R 

Q 
+ . We assume that the input vector x t can be allocated to 

each individual output y 
q 
t (notation for the q th entry of y t ) by dis- 

tinguishing between three categories of inputs. The input alloca- 

tion to outputs naturally allows us to characterize each output q by 

its own technology and to define output-specific cost minimization 

criterion. 

2.1.1. Allocation of inputs 

We consider three ways to allocate the input vector x t to each 

individual output y 
q 
t . Firstly, Output-specific inputs, introduced by 

[10] , that are allocated to individual outputs. Let (αq 
t ) p ∈ [0 , 1] , 

with 
∑ Q 

q =1 
(αq 

t ) p = 1 , represents the fraction of the p th output- 

specific input quantity that is allocated to output q at period t . 

Next, Joint inputs, introduced by [9] , are simultaneously used in 

the production process of all the outputs. Consequently, these in- 

puts give rise to economies of scope which constitute a prime eco- 

nomic motivation for DMUs to produce more than one output. Fi- 

nally, Sub-joint inputs, introduced by [11] , also figure as joint inputs 
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but only for a subset of outputs. The sub-joint inputs also give rise, 

to a more limited extent, to economies of scope. 

Following [11] , we use A 

q 
t ∈ R 

P + to denote the information vector 

that contains the links between output q and the inputs at time t . 

Specifically, A 

q 
t is defined as 

(A 

q 
t ) p = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 if input p is joint or sub-joint 
and use d to produce output q, 

(αq 
t ) p if input p is output-specific and used to 

produce output q, 
0 otherwise. 

(1) 

Interestingly, the information vector A 

q 
t allows us to define the 

input vector allocated to output y 
q 
t , denoted x 

q 
t ∈ R 

Q 
+ . We directly 

obtain x 
q 
t = A 

q 
t � x t (The symbol � stands for the element-by- 

element, or Hadamard, product). 

2.1.2. Input requirement sets 

We define the technology of period t by means of input require- 

ment sets. Attractively, the previous definition of the input vector 

x 
q 
t allows us to characterize each output q by its own input re- 

quirement set I 
q 
t (y 

q 
t ) , defined as follows 

I q t (y 
q 
t ) = { x q t ∈ R 

P 
+ | x q t can produce y q t } . (2) 

For each q , the set I 
q 
t (y 

q 
t ) contains all the combinations of output- 

specific, joint and sub-joint inputs (in x 
q 
t ) that can produce the 

output quantity y 
q 
t . 

We assume that the sets I 
q 
t (y 

q 
t ) are consistent with the follow- 

ing technology Axioms. 

Axiom T1 (observability means feasibility) : 

(y t , x 
1 
t . . . , x 

Q 
t ) is observed ⇒ ∀ q : x 

q 
t ∈ I 

q 
t (y 

q 
t ) . 

Axiom T2 (nested input sets) : y 
q 
t ≥ y 

q ′ 
t ⇒ I 

q 
t (y 

q 
t ) ⊆ I 

q 
t (y 

q ′ 
t ) . 

Axiom T3 (monotone input sets) : x 
q 
t ∈ I 

q 
t (y 

q 
t ) and x 

q ′ 
t ≥ x 

q 
t ⇒ x 

q ′ 
t ∈ 

I 
q 
t (y 

q 
t ) . 

Axiom T4 (convex input sets) : x 
q 
t ∈ I 

q 
t (y 

q 
t ) and x 

q ′ 
t ∈ I 

q 
t (y 

q 
t ) ⇒ ∀ λ ∈ 

[0 , 1] : λx q t + (1 − λ) x q 
′ 

t ∈ I 
q 
t (y 

q 
t ) . 

Axiom T5 (constant returns-to-scale technologies) : ∀ k ∈ R 

+ 
0 
: x 

q 
t ∈ 

I 
q 
t (y 

q 
t ) ⇒ k × x 

q 
t ∈ I 

q 
t (k × y 

q 
t ) . 

These five axioms are common to many popular nonparametric 

efficiency models and form an empirically attractive minimal set of 

assumptions. It is important to note that the CMPI could be defined 

without assuming Axioms T3 and T4 since imposing monotonicity 

and convexity does not alter the cost evaluation (see, for exam- 

ple, [65] and [64] for discussion). We impose these extra technol- 

ogy Axioms since they are required to establish the duality with 

the technical counterpart (i.e. the MPI). We refer to Section 2.2 for 

more details. 

We consider a constant returns-to-scale setting since the CMPI 

(and the MPI) measures productivity correctly under this returns- 

to-scale assumption, even if the true technology does not exhibit 

constant returns-to-scale (see [23,24] for the MPI and [44] for the 

CMPI). 1 Also, under constant returns-to-scale, the indexes could be 

interpreted as a total factor productivity and decomposed into dif- 

ferent sources. 2 

At this point, it is important to note that in some cases the 

CMPI and the MPI cannot always be interpreted as a measure of 

1 See also [54] and [71] which extends the works of [23,24] and [44] by con- 

sidering variable returns-to-scale in their decomposition. At this point, it should be 

clear that [54] extend [23,24] by considering a different decomposition for the tech- 

nical change using variable returns-to-scale, and a scale efficiency change, but the 

Malmquist index is still computed under constant returns-to-scale. 
2 The decomposition has also been popularized by the papers of [38,42] , and 

[66,67] to study the growth and the convergence of countries. 

total factor productivity. On the one hand, it requires that the tech- 

nology is inversely homothetic (intuitively, it implies separability 

between inputs and outputs, see [25] for details) which could be 

a stringent condition. On the other hand, the CMPI and the MPI 

are not complete (intuitively, it means that they could not be writ- 

ten as a function of aggregate inputs and outputs). We refer to 

[47] that highlights this issue and suggests indexes that satisfy this 

property. We point out that it is fairly easy to adapt the indexes of 

his paper to the output-specific setting. 

Finally, we note that the new indexes suggested in this paper 

do not crucially depend on the constant returns-to-scale assump- 

tion. Indeed, any other returns-to-scale assumption could easily be 

assumed. In practice, it suffices to restrict the set of the function 

βq 

kb 
(y q c ) . We refer to Section 2.4 for more details. 

2.1.3. Input prices 

We use w t ∈ R 

P + to denote the prices of the inputs x t . In the 
same vein, we use w 

q 
t ∈ R 

P + to denote the prices of the output- 
specific inputs x 

q 
t . Some important comments must be made about 

these prices. Firstly, these prices coincide with the aggregate prices 

for every output-specific inputs. Next, for joint (and sub-joint) in- 

puts these prices must add up to the aggregate DMU-level prices. 

As explained in detail by [10] , these output-specific prices have a 

similar interpretation as Lindahl prices for public goods. Specif- 

ically, Pareto efficient provision of public goods equally requires 

these Lindahl prices to sum up to the aggregate prices. Taking to- 

gether, we obtain 

(w 

q 
t ) p = (w t ) p for p an output-specific input, (3) 

Q ∑ 

q =1 

(w 

q 
t ) p = (w t ) p for p a joint (or sub-joint) input. (4) 

2.1.4. Costs 

We have now all the necessary notations to define the actual 

costs at time t . The output-specific costs are given for each output 

q at time t by w 

q ′ 
t x 

q 
t . By summing these output-specific costs, we 

obtain the (overall) cost at time t : 
∑ Q 

q =1 
w 

q ′ 
t x 

q 
t = w 

′ 
t x t . 

2.2. Cost Malmquist productivity index 

Using the output-specific modeling of the production process, 

we naturally start by defining the CMPI for each output q individu- 

ally. Next, we define the CMPI for the aggregate output production. 

After, we show how to disaggregate the CMPI in terms of output- 

specific cost efficiency measurements. Finally, we tackle the input 

price availability issue. 

In the following, we assume that, for each DMU at time t , the 

output and input vectors y t and x t are observed. Also, we as- 

sume that the allocation of the inputs to the outputs, captured by 

the vectors A 

1 
t , . . . , A 

Q 
t , are observed. Therefore, using our previ- 

ous notation, we observe the input vectors allocated to the outputs 

x 1 t , . . . , x 
Q 
t . Firstly, we will assume that all the prices are observed, 

i.e. the input prices w t and the output-specific prices w 

1 
t , . . . , w 

Q 
t . 

This assumption will be relaxed afterwards. 

2.2.1. Output-specific cost Malmquist productivity index 

The starting point of the CMPI is the minimal cost for each out- 

put q . The minimal cost at time t for a specific output q is defined 

as follows 

C q t (y 
q 
t , w t , w 

q 
t ) = min 

x q ∈ I q t (y q t ) 
w 

q ′ 
t x 

q . (5) 

C 
q 
t (y 

q 
t , w t , w 

q 
t ) gives the minimal cost to produce the output quan- 

tity y 
q 
t given the input prices w t , the output-specific input prices 
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w 

q 
t and the technology at time t (as such the subscript t on C q 

refer to the time period of the technology). Clearly, for each q : 

C 
q 
t (y 

q 
t , w t , w 

q 
t ) ≤ w 

q ′ 
t x 

q 
t . If C 

q 
t (y 

q 
t , w t , w 

q 
t ) = w 

q ′ 
t x 

q 
t , output q is pro- 

duced with minimal costs. C 
q 
t (y 

q 
t , w t , w 

q 
t ) < w 

q ′ 
t x 

q 
t reflects poten- 

tial cost savings on output q . The output-specific minimal costs 

C 
q 
t (y 

q 
t , w t , w 

q 
t ) are independent since, at this stage, we assume that 

all the prices, i.e. the input prices w t and the output-specific prices 

w 

1 
t , . . . , w 

Q 
t , are observed. This assumption will be relaxed after- 

wards making the output-specific minimal costs interdependent. 

A natural index of cost efficiency, suggested by [32] , is the ratio 

of the minimal to the actual cost. Adapting his definition to our 

multi-output setting, we obtain for each q : 

CE q t (y 
q 
t , x 

q 
t , w t , w 

q 
t ) = 

C q t (y 
q 
t , w t , w 

q 
t ) 

w 

q ′ 
t x 

q 
t 

. (6) 

The output-specific cost efficiency CE 
q 
t (y 

q 
t , x 

q 
t , w t , w 

q 
t ) is situated 

between 0 and 1 with 1 meaning that output y 
q 
t is produced ef- 

ficiently, i.e. with the minimal cost, at time t . Lower values re- 

flect greater cost inefficiency and thus potential cost savings. Also, 

the output-specific cost efficiencies CE 
q 
t (y 

q 
t , x 

q 
t , w t , w 

q 
t ) are inde- 

pendent. As explained previously, this property comes from the 

assumption of observing all the prices. As such, these output- 

specific cost efficiencies could be evaluated independently. See 

Section 2.4 for more details. 

The output-specific CMPI at time t to compare (y q 
t+1 

, x 
q 
t+1 

) and 

(y q t , x 
q 
t ) is defined as the inverse of the ratio of cost efficiencies 

taking period t as the reference year for the technology 

CMP I q t (y 
q 
t , y 

q 
t+1 

, x q t , x 
q 
t+1 

, w t , w 

1 
t , . . . , w 

Q 
t ) 

= 

(
CE q t (y 

q 
t+1 

, x q 
t+1 

, w t , w 

q 
t ) 

CE q t (y 
q 
t , x 

q 
t , w t , w 

q 
t ) 

)−1 

= 

w 

q ′ 
t x 

q 
t+1 

/C q t (y 
q 
t+1 

, w t , w 

q 
t ) 

w 

q ′ 
t x 

q 
t /C 

q 
t (y 

q 
t , w t , w 

q 
t ) 

. (7) 

Similarly, the output-specific CMPI at period t + 1 to compare 

(y q 
t+1 

, x 
q 
t+1 

) and (y q t , x 
q 
t ) is defined by taking period t + 1 as the 

reference year for technology 

CMP I q 
t+1 

(y q t , y 
q 
t+1 

, x q t , x 
q 
t+1 

, w t+1 , w 

1 
t+1 , . . . , w 

Q 
t+1 

) 

= 

(
CE q 

t+1 
(y q 

t+1 
, x q 

t+1 
, w t+1 , w 

q 
t+1 

) 

CE q 
t+1 

(y q t , x 
q 
t , w t+1 , w 

q 
t+1 

) 

)−1 

= 

w 

q ′ 
t+1 

x q 
t+1 

/C q 
t+1 

(y q 
t+1 

, w t+1 , w 

q 
t+1 

) 

w 

q ′ 
t+1 

x q t /C 
q 
t+1 

(y q t , w t+1 , w 

q 
t+1 

) 
. (8) 

To avoid an arbitrary choice of the reference period for technol- 

ogy, the output-specific CMPI is defined as the geometric mean of 

the cost indexes taking t and t + 1 as reference years for the tech- 

nology (see [23] ): 

CMP I q (y q t , y 
q 
t+1 

, x q t , x 
q 
t+1 

, w t , w t+1 , w 

1 
t , . . . , w 

Q 
t , w 

1 
t+1 , . . . , w 

Q 
t+1 

) 

= 

[ (
CE q t (y 

q 
t+1 

, x q 
t+1 

, w t , w 

q 
t ) 

CE q t (y 
q 
t , x 

q 
t , w t , w 

q 
t ) 

×CE q 
t+1 

(y q 
t+1 

, x q 
t+1 

, w t+1 , w 

q 
t+1 

) 

CE q 
t+1 

(y q t , x 
q 
t , w t+1 , w 

q 
t+1 

) 

)−1 
] 1 / 2 

. 

(9) 

The benchmark value for the output-specific CMPI is 1. An in- 

dex value less than 1 implies a cost-productivity progress for out- 

put q , a value greater than 1 implies a cost-productivity regress for 

output q and a value of 1 indicates constant cost-productivity for 

output q . 

2.2.2. Cost Malmquist productivity index 

The output-specific CMPI provides cost-productivity informa- 

tion for each output q individually. In multi-output settings, it is 

also important to provide such information at the aggregate pro- 

duction level y t . As done previously for the output-specific CMPI, 

we start by defining the minimal costs. Attractively, as explained 

before, the minimal costs can be obtained by summing the output- 

specific minimal cost C 
q 
t (y 

q 
t , w t , w 

q 
t ) over the Q outputs: 

C t (y t , w t , w 

1 
t , . . . , w 

Q 
t ) = 

Q ∑ 

q =1 

C q t (y 
q 
t , w t , w 

q 
t ) . (10) 

If each output is produced with the minimal costs, i.e. 

C 
q 
t (y 

q 
t , w t , w 

q 
t ) = w 

q ′ 
t x 

q 
t for all q then C t (y t , w t , w 

1 
t , . . . , w 

Q 
t ) = ∑ Q 

q =1 
w 

q ′ 
t x 

q 
t = w 

′ 
t x t . That is, the minimal cost corresponds to the 

actual costs. Using the actual and minimal costs, we obtain the 

[32] index of cost efficiency at the aggregate level y t defined as 

follows: 

CE t (y t , x t , w t , w 

1 
t , . . . , w 

Q 
t ) = 

C t (y t , w t , w 

1 
t , . . . , w 

Q 
t ) 

w 

′ 
t x t 

= 

∑ Q 
q =1 C 

q 
t (y 

q 
t , w t , w 

q 
t ) ∑ Q 

q =1 w 

q ′ 
t x 

q 
t 

. (11) 

The interpretation of the cost efficiency CE t (y t , x t , w t , w 

1 
t , . . . , w 

Q 
t ) 

is analogous to the output-specific efficiency CE t (y 
q 
t , x 

q 
t , w t , w 

q 
t ) . 

That is, the cost efficiency is situated between 0 and 1 with 

1 meaning that each output y t is produced efficiently at 

time t . Also, it is important to note that the cost efficiency 

CE t (y t , x t , w t , w 

1 
t , . . . , w 

Q 
t ) is completely defined with the output- 

specific minimal and actual costs (see (11) ). 

The CMPI comparing (y t+1 , x t+1 ) and (y t , x t ) taking period t as 

the reference year for the technology is defined as follows: 

CMP I t (y t , y t+1 , x t , x t+1 , w t , w 

1 
t , . . . , w 

Q 
t ) 

= 

(
CE t (y t+1 , x t+1 , w t , w 

1 
t , . . . , w 

Q 
t ) 

CE t (y t , x t , w t , w 

1 
t , . . . , w 

Q 
t ) 

)−1 

= 

w 

′ 
t x t+1 /C t (y t+1 , w t , w 

1 
t , . . . , w 

Q 
t ) 

w 

′ 
t x t /C t (y t , w t , w 

1 
t , . . . , w 

Q 
t ) 

. (12) 

and taking period t + 1 as the reference year for the technology is 

defined as: 

CMP I t+1 (y t , y t+1 , x t , x t+1 , w t+1 , w 

1 
t+1 , . . . , w 

Q 
t+1 

) 

= 

(
CE t+1 (y t+1 , x t+1 , w t+1 , w 

1 
t+1 , . . . , w 

Q 
t+1 

) 

CE t+1 (y t , x t , w t+1 , w 

1 
t+1 

, . . . , w 

Q 
t+1 

) 

)−1 

= 

w 

′ 
t+1 x t+1 /C t+1 (y t+1 , w t+1 , w 

1 
t+1 , . . . , w 

Q 
t+1 

) 

w 

′ 
t+1 

x t /C t+1 (y t , w t+1 , w 

1 
t+1 

, . . . , w 

Q 
t+1 

) 
. (13) 

Their geometric mean, to avoid an arbitrary choice of the reference 

year, is given by: 

CMP I (y t , y t+1 , x t , x t+1 , w t , w t+1 , w 

1 
t , . . . , w 

Q 
t , w 

1 
t+1 , . . . , w 

Q 
t+1 

) 

= 

[(
CE t (y t+1 , x t+1 , w t , w 

1 
t , . . . , w 

Q 
t ) 

CE t (y t , x t , w t , w 

1 
t , . . . , w 

Q 
t ) 

×CE t+1 (y t+1 , x t+1 , w t+1 , w 

1 
t+1 , . . . , w 

Q 
t+1 

) 

CE t+1 (y t , x t , w t+1 , w 

1 
t+1 

, . . . , w 

Q 
t+1 

) 

)−1 
] 1 / 2 

. (14) 

Once more, the interpretation is analogous to the output- 

specific CMPI but for the aggregate output production y t . That is, 

an index value less than 1 implies cost-productivity progress for 

the aggregate output production, a value greater than 1 implies 

cost-productivity regress for the aggregate output production and 

a value of 1 indicates constant cost-productivity for the aggregate 

output production. As a final remark, we would like to point out 
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again that the CMPI solely depends on output-specific minimal and 

actual costs (see (11) ). 

2.2.3. Disaggregation of the cost Malmquist productivity index 

Following our previous discussion, it is now established that the 

CMPI for the aggregate output production only depends on output- 

specific minimal and actual costs (see (11) ). Nevertheless, it would 

be more attractive to relate the CMPI to the output-specific cost ef- 

ficiency measurements. Indeed, it would provide a disaggregate of 

the CMPI in terms of the output-specific cost efficiency measure- 

ments. Moreover, it would also facilitate the computational aspect 

(see Section 2.4 ). In particular, let F be the function that links the 

output-specific cost efficiency measurements to the CMPI 

CMP I (y t , y t+1 , x t , x t+1 , w t , w t+1 , w 

1 
t , . . . , w 

Q 
t , w 

1 
t+1 , . . . , w 

Q 
t+1 

) 

= F 
(
CE 1 c (y 

1 
b , x 

1 
b , w c , w 

1 
c ) , . . . , CE 

Q 
c (y 

Q 
b 
, x Q 

b 
, , w c , w 

Q 
c ) 

)
, 

for b, c = { t, t + 1 } . (15) 

The disaggregation is obtained with the following weights: 

αq 

c,b 
(x b , x 

q 

b 
, w c , w 

q 
c ) = 

w 

q ′ 
c x 

q 

b 

w 

′ 
c x b 

, for b, c = { t, t + 1 } . (16) 

A first observation is that the weights αq 

c,b 
(x b , x 

q 

b 
, w c , w 

q 
c ) de- 

pend on the inputs x b and their price w b , and on the output- 

specific inputs x 
q 

b 
and their price w 

q 

b 
. This is not surprising since 

the goal is to aggregate output-specific cost efficiencies into a CMPI 

for the aggregate production process. 

Next, the weights αq 

c,b 
(x b , x 

q 

b 
, w c , w 

q 
c ) sum to unity: 

Q ∑ 

q =1 

αq 

c,b 
(x q 

b 
, x q 

b 
, w c , w 

q 
c ) = 

Q ∑ 

q =1 

w 

q ′ 
c x 

q 

b 

w 

′ 
c x b 

= 

∑ Q 
q =1 w 

q ′ 
c x 

q 

b 

w 

′ 
c x b 

= 

w 

′ 
c x b 

w 

′ 
c x b 

= 1 . 

(17) 

Finally, the weights αq 

c,b 
(x b , x 

q 

b 
, w c , w 

q 
c ) allow us to obtain the 

cost efficiency as a weighted sum of the output-specific cost effi- 

ciencies: 

CE c (y b , x b , w c , w 

1 
c , . . . , w 

Q 
c ) 

= 

Q ∑ 

q =1 

αq 

c,b 
(x b , x 

q 

b 
, w c , w 

q 
c ) CE 

q 
c (y 

q 

b 
, x q 

b 
, w c , w 

q 
c ) , 

for b, c = { t, t + 1 } . (18) 

As such the weights αq 

c,b 
(x b , x 

q 

b 
, w c , w 

q 
c ) allow us to identify 

which output-specific cost efficiency contributes more to the cost 

efficiency at period b taking period c as the reference year for tech- 

nology. Therefore, the weights could be interpreted as the share of 

the total budget that is allocated to output q at period b taking 

period c as the reference year for the technology. 

These weights share a close relationship with existing weights 

in the literature. Firstly, they generalize the weights introduced 

by [9,12] to aggregate their output-specific cost/profit efficiency in 

their static model. Secondly, they are conceptually similar to the 

weights introduced by [28–31] , [46] , and [73] to aggregate effi- 

ciency to group efficiency. 

Using the weights αq 

c,b 
(x b , x 

q 

b 
, w c , w 

q 
c ) for b, c = { t, t + 1 } , we 

obtain the desired disaggregation of the CMPI 

CMP I (y t , y t+1 , x t , x t+1 , w t , w t+1 , w 

1 
t , . . . , w 

Q 
t , w 

1 
t+1 , . . . , w 

Q 
t+1 

) 

= 

[ ( ∑ Q 
q =1 α

q 
t ,t +1 

(x t+1 , x 
q 
t+1 

, w t , w 

q 
t ) CE 

q 
t (y 

q 
t+1 

, x q 
t+1 

, w t , w 

q 
t ) ∑ Q 

q =1 α
q 
t,t (x t , x 

q 
t , w t , w 

q 
t ) CE 

q 
t (y 

q 
t , x 

q 
t , w t , w 

q 
t ) 

×
∑ Q 

q =1 α
q 
t +1 ,t +1 

(x t+1 , x 
q 
t+1 

, w t+1 , w 

q 
t+1 

) CE q 
t+1 

(y q 
t+1 

, x q 
t+1 

, w t+1 , w 

q 
t+1 

) ∑ Q 
q =1 α

q 
t+1 ,t 

(x t , x 
q 
t , w t+1 , w 

q 
t+1 

) CE q 
t+1 

(y q t , x 
q 
t , w t+1 , w 

q 
t+1 

) 

) −1 
⎤ 

⎦ 

1 / 2 

. (19) 

2.2.4. Input price availability issue 

As it is defined, the CMPI depends on both the input and 

output-specific input prices. In the following we relax these two 

assumptions. We also note that if partial information is available 

for the input price data, they can be used to increase the realism 

of the computed prices (as it is the case for many applications 

and in particular our application in Section 3 ). Let us first con- 

sider that the input prices are observed while the output-specific 

prices are not. In that case, we evaluate the DMUs in the best pos- 

sible way, which gives the benefit of the doubt in the absence of 

true price information. In nonparametric technical efficiency mod- 

els, the most favourable prices are referred to as multipliers (see, 

for example, [13,16] ). As such, evaluating the DMUs under the most 

favourable prices corresponds to the multiplier formulation of non- 

parametric technical efficiency models (see also our discussion in 

Section 2.3 ). 

Therefore in the absence of true output-specific input price in- 

formation, we choose the output-specific input prices that maxi- 

mizes the minimal costs for b, c = { t, t + 1 } . 

C c (y b , w c ) = 

Q ∑ 

q =1 

C q c (y 
q 

b 
, w c ) 

= max 
w 

1 
c , ... , w 

Q 
c ∈ R P + 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

Q ∑ 

q =1 

C q c (y 
q 

b 
, w c , w 

q 
c ) (w 

q 
c ) p = (w c ) p for p an output-specific input, 

Q ∑ 

q =1 

(w 

q 
c ) p = (w 

q 
c ) p for p a joint (sub-joint) input. 

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

. (20) 

Maximizing a cost function could seem counter-intuitive but 

this maximization reflects exactly the benefit of the doubt spirit of 

the methodology. Indeed, the minimal cost C c ( y b , w c ) selects the 

output-specific prices w 

1 
c , . . . , w 

Q 
c that maximize the minimal cost 

at time c , or in other words, the obtained prices can be interpreted 

as the most favourable prices for evaluating the joint (and sub- 

joint) inputs, i.e. the shadow prices. (These prices are only required 

to be strictly positive). As a consequence, the minimal cost C c ( y b , 

w c ) provides an upper bound for C c (y b , w c , w 

1 
c , . . . , w 

Q 
c ) . Also, the 

output-specific minimal costs C 
q 
c (y 

q 

b 
, w c ) are interdependent since 

they depend on the input prices w c (see (3) and (4) ) that are not 
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observed. Additionally, we also point out that other procedures (for 

example the one used in [31] to obtain the minimal costs without 

knowing the price information could be used at this stage. We use 

the benefit of the doubt spirit since it allows us to obtain an in- 

teresting dual equivalence of our CMPI, as explained in detail in 

Section 2.3 . 

The cost efficiency measurements in the absence of true 

output-specific input price information are given by 

CE q c (y 
q 

b 
, x q 

b 
, w c ) = 

C q c (y 
q 

b 
, w c ) 

w 

q ′ 
c x 

q 

b 

. (21) 

CE c (y b , x b , w c ) = 

C c (y b , w c ) 

w 

′ 
c x b 

= 

∑ Q 
q =1 C 

q 
c (y 

q 

b 
, w c ) ∑ Q 

q =1 w 

q ′ 
c x 

q 

b 

. (22) 

Following the benefit of the doubt spirit, we have 

CE 
q 
c (y 

q 

b 
, x 

q 

b 
, w c ) ≥ CE 

q 
c (y 

q 

b 
, x 

q 

b 
, w c , w 

q 
c ) and CE c (y b , x b , w c ) ≥

CE c (y b , x b , w c , w 

1 
c , . . . , w 

Q 
c ) . It implies that the cost efficiencies 

without observing the output-specific input prices are the upper 

bound of the cost efficiencies when these prices are observed. 

Also, the output-specific cost efficiencies CE 
q 
c (y 

q 

b 
, x 

q 

b 
, w c ) are in- 

terdependent since, as mentioned previously, the output-specific 

minimal costs C 
q 
c (y 

q 

b 
, w c ) are interdependent. As a consequence, 

these output-cost efficiencies can not be evaluated separately. See 

Section 2.4 for more details. 

The disaggregation of the CMPI without observing the output- 

specific input prices is therefore given by 3 

CMP I (y t , y t+1 , x t , x t+1 , w t , w t+1 ) 

= 

[ ( ∑ Q 
q =1 α

q 
t ,t +1 

(x t+1 , x 
q 
t+1 

, w t ) CE 
q 
t (y t+1 , x t+1 , w t ) ∑ Q 

q =1 α
q 
t,t (x t , x 

q 
t , w t ) CE 

q 
t (y t , x t , w t ) 

(23) 

×
∑ Q 

q =1 α
q 
t +1 ,t +1 

(x t+1 , x 
q 
t+1 

, w t+1 ) CE 
q 
t+1 

(y t+1 , x t+1 , w t+1 ) ∑ Q 
q =1 α

q 
t+1 ,t 

(x t , x 
q 
t , w t+1 ) CE 

q 
t+1 

(y t , x t , w t+1 ) 

) −1 
⎤ 

⎦ 

1 / 2 

. 

(24) 

Note that, in this case, the weights αq 

c,b 
(x b , x 

q 

b 
, w c ) do not 

depend on the output-specific input prices w 

q 
c , contrary to the 

weights defined before αq 

c,b 
(x b , x 

q 

b 
, , w c , w 

q 
c ) . 

Now, let us assume that neither the input prices nor the 

output-specific input prices are observed. In this case, it is still 

possible to evaluate the CMPI. In the same manner to that done 

previously, when the output-specific input prices are not observed, 

we suggest evaluating the DMUs in the best light by taking the 

most favourable input and output-specific input prices (i.e. the 

shadow prices). That is, at time b, c = { t, t + 1 } , we choose the in- 

put prices that maximize the minimal costs without observing the 

output-specific input prices 

C c (y b ) = 

Q ∑ 

q =1 

C q c (y 
q 

b 
) = max 

w c ∈ R Q + 

{ 

Q ∑ 

q =1 

C q c (y 
q 

b 
, w c ) 

} 

. (25) 

Clearly, since no input prices are available, the constraints on 

the output-specific input prices in (20) are irrelevant. As such, the 

minimal cost with no price information can also be obtained from 

the initial minimal cost when all input prices are available 

C c (y b ) = 

Q ∑ 

q =1 

C q c (y 
q 

b 
) = max 

w 

1 
c , ... , w 

Q 
c ∈ R Q + 

{ 

Q ∑ 

q =1 

C q c (y 
q 

b 
, w c , w 

q 
c ) 

} 

. (26) 

3 It is straightforward to define the output-specific CMPI by using CE q c (y 
q 

b 
, x q 

b 
, w c ) 

instead of CE q c (y 
q 

b 
, x q 

b 
, w c , w 

q 
c ) in (9) . 

In this definition, no constraints are put on the output-specific 

prices except that they are strictly positive. As such, the input 

prices are defined with the output-specific prices as explained in 

(3) and (4) . Also, it is clear that C c ( y b ) ≥ C c ( y b , w c ) following the 

benefit of the doubt spirit. See also our previous discussion on the 

benefit of the doubt spirit when defining the minimal cost C c ( y b , 

w c ). Using the new definition of the minimal cost, we can define 

the cost efficiency measurements as follows: 

CE q c (y 
q 

b 
, x q 

b 
) = 

C q c (y 
q 

b 
) 

w 

q ′ 
c x 

q 

b 

= 

C q c (y 
q 

b 
) 

w 

q ′ 
c x 

q 

b 

. (27) 

CE c (y b , x b ) = 

C c (y b ) 

w 

′ 
c x b 

= 

∑ Q 
q =1 C 

q 
c (y 

q 

b 
) ∑ Q 

q =1 w 

q ′ 
c x 

q 

b 

. (28) 

Clearly, the remark made previously on the interdependence of 

the output-specific minimal costs and output-specific cost efficien- 

cies when the output-specific input prices are not observed re- 

mains true when no input price information is available. As such, 

the evaluation of the CE 
q 
c (y 

q 

b 
, x 

q 

b 
) s cannot be done separately. See 

Section 2.4 for more details. 

Finally, the CMPI can be disaggregated as follows 4 

CMP I (y t , y t+1 , x t , x t+1 ) 

= 

[ ( ∑ Q 
q =1 α

q 
t ,t +1 

(x t+1 , x 
q 
t+1 

) CE q t (y 
q 
t+1 

, x q 
t+1 

) ∑ Q 
q =1 α

q 
t,t (x t , x 

q 
t ) CE 

q 
t (y 

q 
t , x 

q 
t ) 

×
∑ Q 

q =1 α
q 
t +1 ,t +1 

(x t+1 , x 
q 
t+1 

) CE q 
t+1 

(y q 
t+1 

, x q 
t+1 

) ∑ Q 
q =1 α

q 
t+1 ,t 

(x t , x 
q 
t ) CE 

q 
t+1 

(y q t , x 
q 
t ) 

) −1 
⎤ 

⎦ 

1 / 2 

. (29) 

This establishes a CMPI and its disaggregation when only input- 

output data are available. We believe that it is particularly attrac- 

tive since it still allows the consideration of cost minimization be- 

havior of the DMUs even if no input price data are available. We 

note that if partial information is available for the price data, they 

can be used to increase the realism of the computed prices (as is 

the case for many applications and in particular our application, 

see Section 3 ). 

2.3. Malmquist productivity index 

In this section, we establish a duality for the CMPI when no 

price data are available with a technical productivity index that 

takes the form of an MPI. We start by defining technical efficiency 

in our multi-output contexts with different types of inputs. Then, 

we define the MPI. Finally, we explain the duality. 

2.3.1. Technical background 

When efficiency is evaluated, the boundaries of the output- 

specific input sets I 
q 
t (y 

q 
t ) are of interest. In this case, they are de- 

fined, for each output q , by the isoquants of the input sets I 
q 
t (y 

q 
t ) 

Isoq I q t (y 
q 
t ) = { x q t ∈ I q t (y 

q 
t ) | for β < 1 , βx q t 	∈ I q t (y 

q 
t ) } . (30) 

Thus x 
q 
t ∈ Isoq I 

q 
t (y 

q 
t ) means that the inputs x 

q 
t constitute the 

minimal input quantities to produce the output quantity y 
q 
t . As 

such, Isoq I 
q 
t (y 

q 
t ) represents the technically efficient frontier of 

I 
q 
t (y 

q 
t ) . 

We evaluate input efficiency as the distance of the evaluated 

DMU’s input vector to the isoquants Isoq I 
q 
t (y 

q 
t ) , which is defined 

as: 

D t (y t , x t ) = sup 

{
θ | ∀ q : 

(
x q t 
θ

)
∈ I q t (y 

q 
t ) 

}
. (31) 

4 It is easy to obtain the output-specific CMPI by using CE q c (y 
q 

b 
, x q 

b 
) instead of 

CE q c (y 
q 

b 
, x q 

b 
, w c , w 

q 
c ) in (9) . 
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This is an adapted version of the standard input distance func- 

tion introduced by [57,58] to our multi-output setting. The distance 

is the reciprocal of an adapted [18–32] input efficiency measure- 

ment. In particular, it is defined as: 

T E t (y t , x t ) = 

1 

D t (y t , x t ) 
= inf { η | ∀ q : ηx q t ∈ I q t (y 

q 
t ) } . (32) 

In words, TE t ( y t , x t ) defines the maximal equiproportion- 

ate/radial input reduction (captured by η(x 1 t , . . . , x 
Q 
t ) ) that still al- 

lows for producing the output y t . Generally, TE t ( y t , x t ) is situated 

between 0 and 1, and a lower value of TE t ( y t , x t ) indicates greater 

technical inefficiency. 

2.3.2. Malmquist productivity index 

The MPI to compare (y t+1 , x t+1 ) and ( y t , x t ) is the geometric 

mean of the distance ratios taking period t and t + 1 as the year 

reference for the technology 

MP I (y t , y t+1 , x t , x t+1 ) = 

[
D t (y t+1 , x t+1 ) 

D t (y t , x t ) 
× D t+1 (y t+1 , x t+1 ) 

D t+1 (y t , x t ) 

]1 / 2 

(33) 

= 

[ (
T E t (y t+1 , x t+1 ) 

T E t (y t , x t ) 
× T E t+1 (y t+1 , x t+1 ) 

T E t+1 (y t , x t ) 

)−1 
] 1 / 2 

. (34) 

As for the CMPI, the benchmark value is 1. If the index is 

greater than 1, it implies that on average, the input levels x t+1 are 

further from the efficient boundary than the inputs x t for securing 

the corresponding outputs, which implies a productivity regress. 

When the index is smaller than 1, it is the opposite, on average, 

the input levels x t are further from the efficient boundary than the 

inputs x t+1 for securing the corresponding outputs, which implies 

a productivity progress. if the index equals one, it is the status quo. 

The new MPI could be seen as a particular version of the MPI 

of [3] when the inputs are allocated to the outputs. 5 Clearly, in 

settings with one output (i.e. Q = 1 ), the two indexes coincide. 

When Q > 1, the new MPI offers the advantage to better detect 

(technical) inefficient behaviors (i.e. a more discriminatory power) 

due to the output-specific modeling. See also the application in 

Section 3 for a comparison between the two indexes. 

2.3.3. Duality with the cost Malmquist productivity index 

Attractively, the CMPI with no price information is dually equiv- 

alent to the MPI in the multi-output context 

CMP I (y t , y t+1 , x t , x t+1 ) = MP I (y t , y t+1 , x t , x t+1 ) . (35) 

This defines a specific dual interpretation of our CMPI in terms 

of an MPI. As discussed before, when no price information is avail- 

able, we evaluate the cost efficiencies under the most favourable 

scenario, i.e. with the most favourable prices. These prices have 

a direct interpretation in terms of multipliers of the technical ef- 

ficiency measurement. As such, there is an equivalence between 

the cost efficiency with no price information and the technical ef- 

ficiency in our multi-output context. As a consequence, the CMPI 

and MPI are equal when no price information is available. More- 

over, it is important to note that, in similar contexts, this duality 

has also been discussed in, for example, [73] and [46] . 

When prices are observed, the equality between the CMPI and 

the MPI does not hold anymore. Nevertheless, in that case, it is still 

possible to relate the two measures by introducing the notions of 

allocative efficiency change (AEC) and price effect (PE); see [44] . 

5 Also, in their paper, [3] do not consider the input set when defining their in- 

dex but instead the production possibility set. It is straightforward to adapt their 

definition to coincide with our modeling of the production process. 

AEC indicates the extent to which the DMU catches up with the 

optimum input mix in light of the input prices. PE captures the 

changes in the inputs needed to produce certain output attributed 

to changes in relative input prices. We obtain: 

CMP I (y t , y t+1 , x t , x t+1 , w t , w t+1 , w 

1 
t , . . . , w 

Q 
t , w 

1 
t+1 , . . . , w 

Q 
t+1 

) 

= MP I (y t , y t+1 , x t , x t+1 ) × AEC × PE . (36) 

As a consequence, when prices are not observed, the allocative 

efficiency change and the price effect are equal to unity. It is 

straightforward to define AEC and PE in our output-specific context 

given the definitions provided in [44] . Attractively, these two new 

notions could also be disaggregated, as done for the CMPI, into 

output-specific measures. This disaggregation would be very simi- 

lar to what [73] has done for the revenue efficiency when consid- 

ering groups. Given the direct similarity and for the sake of com- 

pactness, we do not give the details here but refer to their papers 

for the definition and the disaggregation procedure. 

2.4. Practical implementation 

Assume we observe K DMUs during T periods of time. Assume 

also, we observe, for each period t , the output vector y kt , the input 

vector x kt , and the information vectors for every output A 

1 
kt 

, . . . , A 

Q 
kt 

yielding to the output-specific input vectors x 1 
kt 

, . . . , x Q 
kt 

(where, 

for each q : x 
q 

kt 
= A 

q 

kt 
� x kt ). As discussed previously, prices could 

be difficult to find and/or to rely on. As such, we consider three 

cases: (1) the input and output-specific input prices are observed, 

(2) only the input prices are observed, and (3) no input prices are 

observed. The corresponding data sets are given by D 1 , D 2 and D 3 

respectively. 

D 1 = { (y kt , x 1 kt , . . . , x Q kt , w kt , w 

1 
kt , . . . , w 

Q 
kt 
) | k = 1 , . . . , K; t = 1 , . . . , T } , 

D 2 = { (y kt , x 1 kt , . . . , x Q kt , w kt ) | k = 1 , . . . , K; t = 1 , . . . , T } , (37) 

D 3 = { (y kt , x 1 kt , . . . , x Q kt ) | k = 1 , . . . , K; t = 1 , . . . , T } . 
Clearly D 3 ⊂D 2 ⊂D 1 meaning that less data is available. 

The CMPIs under the three different data sets ( D 1 , D 2 and D 3 ) 

cannot be computed directly because of their non-linear nature. 

Indeed, the CMPIs are ratios of unknown cost efficiency measures. 

In practice, it is difficult to optimize non-linear function. Fortu- 

nately, the cost efficiencies that composed the CMPIs can easily be 

computed using linear programs. Before giving the practical linear 

programs to compute these cost efficiency scores, we first need to 

explain how to deal in practice with the returns-to-scale assump- 

tion when assuming convexity of the input sets. The basic idea, 

introduced by [2,52] , is to define a function that scales the out- 

puts up or down to make two DMUs comparable. Extending their 

initial definition in our multi-output constant returns-to-scale con- 

text, we obtain the following function βq 

kb 
(y q c ) : 

βq 

kb 
(y q c ) = inf 

{
β ∈ R 

+ 
0 | βy q 

kb 
≥ y q c 

}
. (38) 

βq 

kb 
(y q c ) gives the factor by which the value of y 

q 

kb 
should be scaled 

to make it comparable with y 
q 
c . As explained in Section 2.1 , the 

methodology does not crucially depend on the constant returns- 

to-scale assumption. Other returns-to-scale assumptions are easily 

implemented by replacing R 

+ 
0 

by (0, 1], [1, ∞ ), {1} for the decreas- 

ing, increasing and variable returns to scale assumption, respec- 

tively. 

As a final remark, the function βq 

kb 
(y q c ) is not present in most 

of the papers on MPI/CMPI. This could be explained by two main 

reasons. On the one hand, some authors prefer to use the pro- 

duction possibility sets, defined in our output-specific setting as 

T 
q 
t = { (x q t , y q t ) ∈ R 

P+1 
+ | x q t can produce y q t } , instead of the input sets 

I 
q 
t (y 

q 
t ) . In that case, they do not need the functions β

q 

kb 
(y q c ) . On the 

other hand, other authors define their concepts with respect to the 
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input sets I 
q 
t (y 

q 
t ) but prefer to use a shortcut by defining the lin- 

ear programs with respect to the technology set T 
q 
t . In that case, 

they are not really consistent since the linear programs and their 

definitions are based on two different technologies. All in all, we 

believe that in nonparametic settings, it is important to rely on a 

minimal number of assumptions on the technology. Consequently, 

in the cost setting, it is preferable to define and compute the con- 

cepts with respect to the input sets I 
q 
t (y 

q 
t ) since imposing convex- 

ity on these sets is less restrictive than imposing convexity on the 

technology sets T 
q 
t . 

For every DMU, operating for each q at (y q 
b 
, x 

q 

b 
) , the cost effi- 

ciency score is obtained at periods b, c = { t, t + 1 } as follows: 

• The data set D 1 is observed: (LP-1) 

CE c (y b , x b , w c , w 

q 
c ) = max 

C 1 c , ... ,C 
Q 
c ∈ R + 

∑ Q 
q =1 C 

q 
c 

w 

′ 
c x b 

s.t. ∀ q ∈ { 1 , . . . , Q} : C q c ≤ w 

q ′ 
c β

q 

kb 
(y q c ) x 

q 

kb 

for all k : βq 

kb 
(y q c ) y 

q 

kb 
≥ y q c . 

• The data set D 2 is observed: (LP-2) 

CE c (y b , x b , w c ) = max 
C 1 c , ... ,C 

Q 
c ∈ R + 

w 

1 
c , ... , w 

Q 
c ∈ R Q + 

∑ Q 
q =1 C 

q 
c 

w 

′ 
c x b 

∀ q ∈ { 1 , . . . , Q} : C q c ≤ w 

q ′ 
c β

q 

kb 
(y q c ) x 

q 

kb 

for all k : βq 

kb 
(y q c ) y 

q 

kb 
≥ y q c , 

s.t. (w 

q 
c ) p = (w c ) p for p an output-specific input, 

Q ∑ 

q =1 

(w 

q 
c ) p = (w 

q 
c ) p 

for p a joint (or sub-joint) input. 

• The data set D 3 is observed: (LP-3) 

CE c (y b , x b ) = max 
C 1 c , ... ,C 

Q 
c ∈ R + 

w 

1 
c , ... , w 

Q 
c ∈ R Q + 

Q ∑ 

q =1 

C q c 

s.t. ∀ q ∈ { 1 , . . . , Q} : C q c ≤ w 

q ′ 
c β

q 

kb 
(y q c ) x 

q 

kb 

for all k : βq 

kb 
(y q c ) y 

q 

kb 
≥ y q c , 

w 

′ 
c x b = 1 . 

We end this section by providing a couple of remarks. Firstly, 

the βq 

kb 
(y q c ) s are not obtained by the linear programs since they are 

computed before using (38) . Secondly, as explained in Section 2.2 , 

when the input prices and the output-specific prices are observed 

(i.e. D 1 is observed), the output-specific cost efficiencies could be 

obtained independently by solving Q linear programs (LP-4) 

CE q c (y 
q 

b 
, x q 

b 
, w c , w 

q 
c ) = max 

C q c ∈ R + 

C q c 

w 

q ′ 
c x 

q 

b 

s.t. C q c ≤ w 

q ′ 
c β

q 

kb 
(y q c ) x 

q 

kb 
for all k : βq 

kb 
(y q c ) y 

q 

kb 
≥ y q c . 

The advantage of (LP-1) is that all the cost measures are obtained 

by solving only one linear program. When price information is 

missing (i.e. D 2 or D 3 are observed), the output-specific cost effi- 

ciencies are interdependent (this is captured by (4) ). As such, they 

cannot be computed separately and are thus given a posteriori by 

(LP-2) and (LP-3) . This is also the case for the output-specific CMPI 

and the weights that are obtained when solving the linear pro- 

grams in the three cases. We refer to Section 2.2 for more details. 

Next, the distance functions, the technical efficiency measurements 

and the MPI are directly obtained by (LP-3) , see our discussion on 

the duality at the end of Section 2.3 . Subsequently, the objective 

in (LP-3) could seem strange since the cost efficiency score has no 

denominator. In fact, the objective in (LP-3) is non-linear. We make 

it linear by using [5] normalization, i.e. the denominator ( w 

′ 
c x b ) 

equals unity. As such, the cost efficiency is given directly by the 

numerator. Finally, lower and/or upper bounds on the input and 

output-specific input prices can easily be added to increase the re- 

alism of the prices obtained in (LP-2) and (LP-3) since in those 

programs only strict positivity is imposed on these prices. See our 

application for an illustration of that possibility. 

3. Application 

Benchmarking the electricity plants is popular in the nonpara- 

metric efficiency literature. See, for example, [11,26,56,69] for anal- 

yses of US electric utilities; [34,36,62] for analyses of both Japanese 

and US electric utilities; and [41] for an analysis of European elec- 

tric utilities. 

All these studies systematically select nameplate capacity (used 

as a proxy for total assets) and the quantity of fuel used as the 

two main inputs, and the quantity of electricity generated as an 

output. This setting ignores the multi-output production profile of 

the plants. Indeed, to benefit from economies of scope of the joint 

inputs used, plants produce different types of electricities: renew- 

able (e.g. wind, solar, geothermal) and non-renewable (e.g. coal, oil, 

gas). Moreover, the fuel quantity is clearly not used to produce re- 

newable electricity. Nameplate capacity is thus a joint input and 

the fuel quantity is an output-specific input wholly allocated to 

non-renewable electricity production. 6 

We will investigate the cost-productivity progress/regress of the 

plants. It can reasonably be assumed that the electricity gener- 

ated is exogenously defined, which means that the size of the 

electricity market (or number of consumers) falls beyond con- 

trol of the electric utilities but the plants can still minimize their 

costs for given renewable and non-renewable electricity produc- 

tion. The new CMPI technique offers several advantages in this 

context. Firstly, the two inputs are differently linked to the out- 

puts. Nameplate capacity is used to produce both types of electric- 

ity while the quantity of fuel is only used to produce fossil elec- 

tricity. As such, the new CMPI technique is particularly useful in 

this context since it recognizes the links between inputs and out- 

puts. Secondly, the new CMPI technique provides cost-productivity 

results on each output. We believe that it is of particular interest 

in this context as plants have been producing non-renewable elec- 

tricity for decades while the production of renewable electricity 

has started more recently. Consequently, one can expect a differ- 

ent cost-productivity for each type of electricity. Finally, the price 

data for nameplate capacity are not available. Thus, the new CMPI 

technique that works with/without partial input price data is very 

attractive for that reason. All in all, it means that the new CMPI 

model better uses the available information contained in the data 

and provides more results than standard CMPI techniques (without 

making extra assumptions on any aspect of the production pro- 

cess). 

To present our empirical application, we first discuss the speci- 

ficities of our set-up. Subsequently, we present the data and the 

results. 

6 At this point, it is useful to note that additional inputs (such as the total number 

of employees, the generator capacity and the boiler capacity) and undesirable by- 

products of the use of fuel as an input (as SO 2 , NO x and CO 2 emissions) are also 

considered by some studies. For simplicity and to match with all previous studies, 

we do not consider these additional inputs and undesirable by-products. 
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3.1. Input and output selection 

Following our discussion above, we have a setting with two 

outputs ( Q = 2 ): non-renewable electricity generated ( y 1 ), and re- 

newable electricity generated ( y 2 ); and two inputs ( P = 2 ): name- 

plate capacity ( x 1 ) and quantity of fuel used ( x 2 ). Nameplate ca- 

pacity is a joint input and the fuel quantity is an output-specific 

input wholly allocated to the production of non-renewable elec- 

tricity. Using the notation of Section 2.1 , we have for each plant k 

at period t 

y kt = 

[
y 1 
kt 

y 2 
kt 

]
, x kt = 

[
x 1 
kt 

x 2 
kt 

]
, A 

1 
kt = 

[
1 
1 

]
and A 

2 
kt = 

[
1 
0 

]
, 

x 1 kt = A 

1 
kt � x kt = 

[
x 1 
kt 

x 2 
kt 

]
and, similarly, x 2 kt = A 

2 
kt � x kt = 

[
x 1 
kt 
0 

]
. 

(39) 

3.2. Data and descriptive statistics 

We have taken the data from the eGRID system developed by 

the US Environmental Protection Agency (EPA). eGRID stands for a 

comprehensive source of data on the environmental characteristics 

of all electricity utilities in the US. In particular, we use the two 

most recent databases: 2009 and 2012. It would be interesting to 

see how the results change when the data for 2015 is made avail- 

able. We focus our analysis on plants that are multi-output pro- 

ducers in both years. That is, in this context, plants that produce 

renewable and non-renewable electricities. We end up with a sam- 

ple of 277 plants. Tables 6 and 7 in the Appendix report the corre- 

sponding descriptive statistics for the different inputs and outputs. 

As expected, multi-output plants produce, on average, more 

non-renewable than renewable electricity for both years. Also, the 

production of both types of electricity increase, on average, be- 

tween 2009 and 2012. This is accompanied by an increase in the 

input quantities/the costs. The question is then whether the in- 

crease of the output production is greater than the increase in the 

costs. Finally, the sample heterogeneity increases between the two 

years, as shown by the standard deviations. 

Unfortunately, no data for the input prices are reported by the 

eGRID system but we can use available information to construct 

lower and upper bounds to increase the realism of the computed 

prices. For fuel, the EPA provides prices at the state level. For the 

nameplate capacity, there is no price available but we can proxy 

the price by transforming the electricity price (available at the 

state level too) since nameplate capacity is defined as the maxi- 

mal electricity generated by the plants during one year. 7 As the 

output-specific input prices are the share of the input prices borne 

by each output, we can also put some bounds on these prices by 

using the relative production share of each type of electricity. The 

lower and upper bounds for all the prices are found by defining 

a 50% confidence interval centred in the proxies used. The results 

are very similar by using any percentage for the lower and upper 

bounds. The goal of these bounds is to avoid trivial and/or unreal- 

istic prices (as too close to zero or too large). 

3.3. Cost Malmquist productivity index results 

We compute the cost efficiency scores for the two periods b, c = 

{ 2009 , 2012 } using (LP-3) with the extra constraints on the input 

and output-specific input prices as explained previously. Table 1 

7 The electricity price is given in cents per Kilowatt-hour. As such, the price in 

Dollars per Megawatt for nameplate capacity is obtained by multiplying by 10 and 

dividing by the number of hours (cent/kWh = cent/(kW 

∗hr) = cent/((MW/10 0 0) ∗hr) = 

10 0 0 ∗cent/(MW 

∗hr) = 10 0 0 ∗(dollar/10 0)/(MW 

∗hr) = 10/hr (Dollar/MW)). 

Table 1 

CMPI results. 

Min Mean Median Max St. dev. # imp % imp 

CMPI 0.23 1.25 1.00 2.45 2.06 138 49.82 

CMPI 1 0.21 1.22 1.03 2.15 2.15 120 43.32 

CMPI 2 0.15 1.05 0.99 2.18 2.23 146 52.71 

Table 2 

CMPI for selected plants. 

CMPI CMPI 1 CMPI 2 

Plant # 28 0.7239 1.2260 0.6691 

Plant # 59 0.9689 0.7312 1.6072 

Plant # 112 1.1666 1.0021 1.2354 

Plant # 185 1.1964 1.7476 1.0376 

Plant # 234 0.8785 0.7054 0.9125 

Plant # 237 0.7547 0.9248 0.6485 

contains the descriptive statistics for the CMPI at the aggregate and 

output-specific levels. 

At the aggregate level ( CMPI ), on average, the plants have a 

cost-productivity regress (index bigger than 1); but the median is 

close to 1 indicating the status quo between the two years. We also 

compute the numbers of plants that have a cost-productivity im- 

provement (index smaller than 1). We obtain 138 plants or 49.82% 

of the sample. Finally, the minimum and the maximum indicate 

that some plants have huge cost-productivity regress and progress. 

At the output-specific level ( CMPI 1 and CMPI 2 ), on average, 

plants have a larger cost-productivity regress for non-renewable 

electricity than for the renewable electricity. The medians indicate 

that plants have a cost-productivity progress for renewable elec- 

tricity and a cost-productivity regress on the non-renewable elec- 

tricity. The number of plants that displays a progression also con- 

firm this tendency: 146 plants (or 52.71% of the sample) on the 

production of renewable electricity and 120 (or 43.32% of the sam- 

ple) for non-renewable electricity. 

To illustrate the benefit of the output-specific CMPIs, we re- 

port in Table 2 the aggregate and output-specific CMPI for se- 

lected plants. Plant # 28 has an aggregate CMPI lower than 1 

indicating a cost-productivity progress on the period 2009–2012. 

The output-specific CMPIs contrast this finding since the cost- 

productivity progress occurs only for renewable electricity. As such, 

this plant should try to reduce its cost for non-renewable electric- 

ity or concentrate its production on renewable electricity since it 

performs well on that output. For Plant # 59, the opposite holds, 

the aggregate cost-productivity progress is due to renewable elec- 

tricity production. Plants # 112 and # 185 present both a cost- 

productivity regress (index bigger than 1) but the output-specific 

CMPIS reveal on which output they perform the worse: renewable 

electricity for Plant # 112 and non-renewable electricity for # 185. 

The same holds also for Plants # 234 and # 237, which both dis- 

play a cost-productivity progress (index smaller than 1). Plant # 

234 performs better on non-renewable electricity production while 

plant # 237 performs better on renewable electricity production. 

3.4. Comparison 

We propose in the following a comparison between our 

methodology and the more standard CMPI introduced by [44] . We 

consider two different benchmark indexes: a slightly modified ver- 

sion of their index, and their index using our output-specific mod- 

eling of the technology. This comparison will highlight the bene- 

fit of our methodology and therefore gives credit to the output- 

specific setting with allocation of the inputs to the outputs. 

The CMPI of [44] does not consider the possibility of not ob- 

serving the input prices and assumes convexity of the aggregate 

input set (i.e. I t (y t ) = { x t ∈ R 

P + | x t can produce y t } ). As such, to 
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Table 3 

Benchmark CMPI results. 

Min Mean Median Max St. dev. # imp % imp 

CMPI benchmark 1 0.38 1.12 1.08 1.59 1.67 132 47.65 

CMPI benchmark 2 0.27 1.18 1.09 2.79 2.54 133 48.01 

CMPI 1 
benchmark 2 

0.21 1.12 1.02 2.14 1.56 128 46.21 

CMPI 2 
benchmark 2 

0.18 1.04 1.00 2.45 1.89 137 49.46 

provide a fair comparison, we will adapt their methodology to give 

the option of not observing the input prices. 8 Giving the method- 

ology established previously, this is relatively straightforward. We 

obtain our first benchmark index: CMP I benchmark 1 
. 9 

Using the aggregate input set I t ( y t ) could also seem unfair. As 

such, we will consider a second benchmark CMPI by using the def- 

inition of [44] with output-specific input sets (i.e. I 
q 
t (y 

q 
t ) = { x t ∈ 

R 

P + | x t can produce y q t } ). Then, it means that no input allocation 

is assumed, or in other words, all the inputs are joint. We obtain 

our second benchmark index: CMP I benchmark 2 
. 10 

The results of the two benchmark CMPIs are presented in 

Table 3 . Given that the first benchmark CMPI is based on the ag- 

gregate input set, we cannot compute the output-specific CMPIs for 

that index. For the second benchmark CMPI, based on the output- 

specific setting, the output-specific CMPI can be computed. 

The results of the CMP I benchmark 1 
are consistent with what we 

have found previously for the new CMPI in Table 1 . The main dif- 

ference is that, as explained before, the output-specific CMPIs are 

not given for indexes defined with respect to aggregate technology 

sets. Next, the results of the CMP I benchmark 2 
are also consistent with 

what we found previously. The difference between the two types 

of electricity (captured by the output-specific CMPIs) is less pro- 

nounced, which could be due to the non-allocation of the inputs. 

In conclusion, the differences between the three CMPIs reflect the 

importance of taking into account the output-specific setting and 

the input allocation. 

As a final remark, we want to emphasize that these indexes 

cannot be ranked since they are defined as ratios of cost efficien- 

cies. Nevertheless, as proven by [9] , cost efficiencies when consid- 

ering an output-specific setting and the allocation of the inputs to 

outputs, are always smaller than in the case when they are not be- 

8 In that case, the modified version (i.e. without assuming the observation of the 

input prices) of the CMPI of [44] has a direct interpretation in technical terms. In 

fact, it is dually equivalent to a modified version (i.e. based on the input set) of the 

MPI of [3] . See our discussion in Section 2.3 . 
9 Each cost efficiency CE c ( y b , x b ) at periods b, c = { t, t + 1 } , composing the index, 

can be computed using the following linear program: (LP-5) 

CE c (y b , x b ) = max 
C c ∈ R + 
w c ∈ R Q + 

C c 

s.t. C c ≤ w 

′ 
c βkb (y c ) x kb for all k : βkb (y c ) y kb ≥ y c , 

w 

′ 
c x b = 1 . 

In that case, the function βkb ( y c ), which is similar to the definition given by [2,52] , 

compare output vectors ( y c and y kb ) instead of individual outputs ( y c and y kb ) as 

the function βq 

kb 
(y c ) . 

10 Each cost efficiency CE c ( y b , x b ), composing the index, can be computed at peri- 

ods b, c = { t, t + 1 } using the following linear program (LP-6) 

CE c (y b , x b ) = max 
C 1 c , ... ,C 

Q 
c ∈ R + 

w 1 c , ... , w 
Q 
c ∈ R Q + 

Q ∑ 

q =1 

C q c 

s.t. ∀ q ∈ { 1 , . . . , Q} : C q c ≤ w 

q ′ 
c β

q 

kb 
(y q c ) x kb for all k : β

q 

kb 
(y q c ) y 

q 

kb 
≥ y q c , 

w 

′ 
c x b = 1 . 

The only difference between the second benchmark CMPI and our index is that x q 
kb 

is replaced by x kb in the constraint. It implies that the inputs are not allocated or, 

in other words, that all the inputs are joint. 

Table 4 

CMPI results without outliers. 

Min Mean Median Max St. dev. # imp % imp 

CMPI 0.23 1.08 1.02 2.04 1.78 127 48.84 

CMPI 1 0.18 1.21 1.08 2.02 1.85 111 42.69 

CMPI 2 0.14 1.02 0.98 2.04 1.14 135 51.92 

CMPI benchmark 1 0.38 1.05 1.04 1.44 1.26 126 47.19 

CMPI benchmark 2 0.31 1.07 1.05 2.03 2.44 127 47.92 

CMPI 1 
benchmark 2 

0.23 1.11 1.01 1.98 1.32 120 45.28 

CMPI 2 
benchmark 2 

0.18 1.05 1.00 2.32 1.50 132 49.81 

ing considered. This highlights the greater ability of the methodol- 

ogy to detect inefficient behavior (i.e. more discriminatory power). 

3.5. Robustness checks 

In this last part, we check if our previous conclusions are ro- 

bust. Indeed, the CMPI is computed using all the plants and is 

therefore sensitive to outliers. The impact on the resulting effi- 

ciency analysis could be huge since outliers disproportionately, and 

perhaps misleadingly, influence the evaluation of the performance 

of the plants. Moreover, under constant returns-to-scale, the con- 

sequences can be accentuated. To solve that issue, robust efficiency 

measurements have been suggested: the order −m efficiency mea- 

surement (where m can be viewed as a trimming parameter); 

and the order −α efficiency measurement (analogous to traditional 

quantile functions). 11 These measures use a sub-sample of the data 

set to compute the cost efficiencies. As such, they are less sensitive 

to outliers. We apply the order −α procedure to our data (using dif- 

ferent values of α as suggested by [59] to detect the outliers). We 

found 17 outliers (6.14%) so this leaves us with with 260 plants re- 

maining. We recalculate the computations using the new sample. 

The results are given in Table 4 . Clearly, the descriptive statistics of 

the CMPIs change with the new sample but the previous conclu- 

sion remains valid. That is, the plants have on average at the ag- 

gregate level a cost-productivity regress (first row of Table 4 ) while 

on the output level, they perform on average better on renewable 

electricity (second and third rows of Table 4 ). The medians and 

the numbers of plants with cost-productivity improvement confirm 

these results. 

We also investigate for the presence of outliers when consid- 

ering our two benchmark indexes. We found 10 outliers for our 

first benchmark index and 12 for the second one. The results in 

Table 4 (rows four to seven) confirm our previous findings., i.e. the 

differences between the three CMPIs reflect the importance of tak- 

ing into account the output-specific setting and the input alloca- 

tion. 

3.6. Testing the differences 

Our previous results highlight interesting differences between 

the performance of the plants in the production of renewable and 

the non-renewable electricity. In this last part, we formally test if 

these differences are statistically verified. We will make use of the 

two-sample Kolmogorov–Smirnov test (the null hypothesis states 

that the two samples are from the same continuous distribution) 

to check if there are differences across the whole distribution. We 

consider two cases: (1) the standard case where all observations 

are used, and (2) the robust case where outliers have been re- 

moved (see Table 4 ). The p−values of the Kolmogorov–Smirnov 

tests are available in the first line of Table 5 . Clearly, these re- 

sults confirm our previous findings, i.e. there is a performance 

11 See, for example, [17] for a large literature survey on these robust nonparamet- 

ric efficiency measurements. 
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Table 5 

Kolmogorov–Smirnov p−values. 

Standard Robust 

CMPI 1 vs CMPI 2 0.0 0 0 0.0 0 0 

CMPI vs CMPI benchmark 1 0.011 0.011 

CMPI vs CMPI benchmark 2 0.021 0.019 

CMPI 1 vs CMPI 1 
benchmark 2 

0.044 0.045 

CMPI 2 vs CMPI 2 
benchmark 2 

0.045 0.051 

difference between the two output productions. Removing the out- 

liers does not affect the conclusion. 

We also will made use of the same test to check if the CMPIs 

based on the output-specific modeling were statistically different 

from the benchmark CMPIs. The p−values are given in lines two to 

five of Table 5 . They reveal that there is a statistical difference be- 

tween the indexes at the aggregate level and at the output-specific 

levels. This reveals that the output-specific modeling and the input 

allocation are important for this application. 

At a general level, we believe that this empirical analysis con- 

vincingly demonstrates the usefulness of our methodology. Firstly, 

our methodology is based on a more realistic modeling of the pro- 

duction process by taking the links between inputs and outputs 

into account. Indeed, while nameplate capacity is used to produce 

both types of electricity, the quantity of fuel is only used to pro- 

duce fossil electricity. Secondly, the output-specific CMPIs give ex- 

tra valuable information on cost-productivity and allow us to bet- 

ter understand the change in cost-productivity at the aggregate 

level. Indeed, at the aggregate level, we found that the plants have, 

on average, a cost-productivity regress that could be explained by 

a worse performance for renewable electricity. Finally, prices for 

nameplate capacity are difficult to find. Thus, our CMPI method 

that also works with/without partial price data is very useful in 

this context. All in all, it means that our model uses the available 

information contained in the data more effectively and provides 

more results than standard CMPI techniques (without making ex- 

tra assumptions on any aspect of the production process). 

4. Conclusion 

In this paper, we presented a new productivity index for cost 

minimizing producers in multi-output settings. The new index 

takes the form of a cost Malmquist productivity index (CMPI). The 

distinguished feature of the new CMPI is that it is based on a non- 

parametric output-specific modeling of the production process that 

recognizes the different types of inputs present in multi-output 

production processes. On the one hand, some inputs are jointly 

used to produce all (or a subset of) the outputs. These inputs give 

rise to economies of scope that form a prime economic motiva- 

tion to produce multiple outputs. On the other hand, some inputs 

are allocated to specific output productions. Attractively, nonpara- 

metric output-specific modeling of the production process natu- 

rally allows us to define output-specific CMPIs and to disaggregate 

the CMPI in terms of output-specific cost efficiency measurements. 

We also tackled the issue of input price availability and explained 

how to extend the CMPI with partial price information or without 

assuming observation of the input prices. In the latter case, we es- 

tablished a duality with a technical productivity index, which takes 

the form of a Malmquist productivity index. The new indexes can 

be used to evaluate cost-productivity and productivity changes or 

can be fairly easily combined with existing extensions. 

We proposed an application for electricity plants. The new 

CMPI technique offers several advantages in this context. Firstly, 

the two inputs are linked differently to the outputs. Nameplate ca- 

pacity is used to produce both types of electricity while the quan- 

tity of fuel is only used to produce fossil electricity. As such, the 

new CMPI technique is particularly useful in this context since 

it recognizes the links between inputs and outputs. Secondly, the 

output-specific CMPIs give extra valuable information on the cost- 

productivity and allow to better understand the change in cost- 

productivity at the aggregate level. Finally, the price data for name- 

plate capacity are not available. Thus, the new CMPI technique that 

also works with partial price information or without input prices is 

very attractive for this reason. All in all, it means that our model 

uses the available information contained in the data more effec- 

tively and provides more results than standard CMPI techniques. 

Appendix 

Table 6 

Descriptive statistics for the 277 plants in 2009. 

Outputs Inputs 

Non-renewable Renewable Nameplate Fuel 

energy energy capacity 

(MWh) (MWh) (MW) (MMBtu) 

Min 1.29 6.73 1.2 49 

Mean 157,640 131,490 76.51 2,815,800 

Max 8,474,234 607,280 1,755 82,691,0 0 0 

Std 648,870 136,650 159.19 6,599,800 

Table 7 

Descriptive statistics for the 277 plants in 2012. 

Outputs Inputs 

Non-renewable Renewable Nameplate Fuel 

energy energy capacity 

(MWh) (MWh) (MW) (MMBtu) 

Min 0.80 5.2 1.2 31.52 

Mean 163,770 134,100 78.5 2,931,400 

Max 10,149,0 0 0 642,230 1,759 99,047,0 0 0 

Std 729,750 143,560 168.80 7,178,400 
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