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Agent-Based Analysis of Capacity Withholding
and Tacit Collusion in Electricity Markets

Athina C. Tellidou and Anastasios G. Bakirtzis, Senior Member, IEEE

Abstract—This paper employs agent-based simulation to study
energy market performance and, in particular, capacity with-
holding and the emergence of tacit collusion among the market
participants. The energy market is formulated as a repeated game,
where each stage game corresponds to an hourly energy auction.
Each hourly energy auction is cleared using locational marginal
pricing. Generators are modeled as adaptive agents capable of
learning through the interaction with their environment, following
a reinforcement learning algorithm. The SA-Q-learning algo-
rithm, a modified version of the popular Q-Learning, is used. Test
results on a two-node power system with two and eight competing
generator-agents, demonstrate the development of tacit collusion
among generators even under competitive conditions.

Index Terms—Agent-based simulation, capacity withholding,
collusion, reinforcement learning, repeated games.

NOMENCLATURE

k,(K)  Index (set) of buses.
g, (G) Index (set) of generators.
£

F)  Index (set) of consumers.

km Line from bus & to bus . index.

k(g) Bus on which generator g is connected.

pres Generator g net capacity.

mc, Generator g marginal cost.

By Generator g offer quantity in the spot market.
b, Generator ¢ offer price in the spot market.

Py Unit g scheduled quantity in the spot market.
P Generator active power output vector.

d Consumer active power demand vector.

[ Bus voltage phase angle vector.

Bret Reference bus voltage phase angle.

Thm Reactance of line k.

Ipa® Transmission capacity limit of line &mi.

B Network admittance matrix.

Hyg Bus to generator incidence matrix (size K - G).
Hy r Bus to consumer incidence matrix (size K - F).
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I. INTRODUCTION

HE liberalization of the energy sector allows for the opera-
T tion of open markets where participants can choose among
different products and different time horizons in order to con-
duct their trading agreements. In this new regime, electricity
trade is usually conducted in three different kinds of markets,
regarding the time horizon. In the long-term, where participants
have the opportunity to come to direct agreement, bilateral con-
tracts dominate. In the short term, two kinds of markets have
prevailed: the day-ahead market, which is a forward market for
next day delivery in one-hour or half-hour trading intervals, and
the real-time or spot market, which serves as balancing mech-
anism for the next hour or half-hour. Both short-term markets
are usually organized as auctions repeated every day (day-ahead
market) or every several hours (real-time market).

In [1], Rothkopf deals with the important issue of daily repe-
tition in electricity auctions. He states that the experience in auc-
tions suggests that the repetition of auctions involving the same
parties can have major consequences and argues that models of
how auctions work in isolation may not predict well how they
work when repeated daily. Both the single-stage and the iterated
prisoner’s dilemma are presented in order to illustrate how repe-
tition of a game can lead to cooperation, when single-play model
of the game predicts fierce competition. In [2], Axelrod inves-
tigates the conditions under which cooperation may emerge in
a world of egoists without central authority. He states that the
two-person prisoner’s dilemma captures an important part of
the strategic interaction and that what makes the emergence of
cooperation possible is the possibility that the interaction will
continue. With an infinite number of interactions, where the
players can communicate only through the sequence of their
behavior, one can expect the emergence of cooperation under
certain conditions.

In [3], according to [1], Smith looks at auctions from the point
of view of sociology. He gives great insight into the behavior of
participants in regularly repeated auctions. Smith is convincing
in arguing that bidders in a repetitive auction process form a
special group with its own norms and behavior designed to pro-
tect the group’s interests. Bidders in electricity auctions interact
daily. While they do so at a distance, they are likely to form a
social group that protects its own interests. This implies that the
behavior studied by Smith will occur and should be taken into
account in the design of electricity auctions.

Hence, one of the most important effects of the daily repeti-
tion of electricity auctions is the emergence of collusion. Collu-
sion refers to combinations, conspiracies or agreements among
sellers to raise or fix prices and to reduce output in order to
increase profits [4]. Collusion does not necessarily have to in-
volve an explicit agreement or communication between firms;
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they may take their rivals’ actions into account and coordinate
their actions as if they were a cartel without an explicit or overt
agreement. Such coordinated behavior is often referred to as
tacit collusion or conscious parallelism [4]. Tacit collusion—in
contrast to the explicit one—can be unstable since the partic-
ipants can get higher short-term payoff by deviating from the
collusive strategy; hence a myopic decision-making participant
tends to deviate from the collusive behavior [5].

Although, as noted in [6], many of the attributes that facilitate
collusion are present in electricity markets, little work has been
done so far to study this. In [7], an infinitely repeated game of ca-
pacity-constrained price competition among symmetric firms is
analyzed; in every period, the firms submit offers that specify the
minimum price at which they are willing to supply their output
up to capacity. The analysis focuses on the comparison of the
level of collusion under the two prevailing pricing rules in elec-
tricity auctions, uniform and discriminatory pricing. In [8], the
above results are extended to the case where firms may submit
bids that are step functions of price-quantity pairs with any finite
number of price steps. The analysis of the feasibility of collu-
sion is limited to the uniform pricing auction, but two different
rules are used to determine the uniform price. In [9], Oren deals
with the problem of implicit collusion in congested electricity
system from a game-theoretic point of view. His objective is to
illustrate the inefficiency of passive transmission rights, since
they may be preempted by the strategic bidding of generators.
Hence, using a Cournot model of competition in a congested
transmission network, he concludes that, “although none of the
generators have market power by any measure of concentration,
rational expectation of congestion leads to implicit collusion.”
In [5], a co-evolutionary genetic algorithm is used to model the
strategies of the players, who participate in an electricity market
formulated as a dynamic game with trading interactions being
repeated over time. The results indicate that in a simple market
two agents can “learn” to develop collusion in order to increase
the market price.

An alternative to the game theoretic approach, used to study
the behavior of market participants, is agent-based simulation
(ABS) [10]. In the implemented ABS, the market participants
develop their profit-maximizing strategy through the repetition
of the game and reinforcement learning. Q-Learning [11] is
among the most popular reinforcement learning algorithms,
owing to its simplicity. Its main advantages are that it can be
used online and it is model free—it does not need an explicit
model of its environment.

Q-Learning was initially developed concerning the interac-
tions of one agent in a static environment; in this form it has
been used for the modeling of the participants’ behavior in elec-
tricity markets [12]. However, as the interest for multi-agent
interactions has increased, many extensions of the Q-learning
algorithm have been proposed [13], [14]. Two important tech-
nical reports [15] and [16] enlighten the research on multi-agent
reinforcement learning by presenting the relative literature and
summarizing algorithms and convergence proofs.

Based on the extensions of Q-learning algorithm discussed
above, Krause et al. analyze the strategic bidding in power mar-
kets in [17] and [18]. They present an extended agent-based
study of an electricity auction, simulated as a repeated game.
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Their cases include both active players and agents who simply
offer their marginal cost, underlining the difference in their be-
havior and their profits. The offer curves are simulated with
two different ways, as a single pair of quantity-price and as
linear function. Their analysis concludes that agents following a
Q-learning strategy can learn to behave as game theory suggests.

In this paper, the power market operation is formulated
as a repeated game with each stage being an hourly auction;
Q-learning algorithm, in the form presented in [17] and [18],
is used to model the bidding strategy of generators in this
auction. The main difference is the followed policy; instead
of the greedy one, in this paper a different approach based on
the Metropolis criterion of simulated annealing is used. Our
purpose is to study the behavior of the players in a network con-
strained market and the development of tacit collusion through
capacity withholding. Section II presents the spot electricity
market structure. Section III introduces the repeated games
and discusses their analogies to electricity market. Section IV
presents the fundamentals on reinforcement learning along
with a description of the SA-Q-learning algorithm and a model
of generator’s behavior. Section V reports the results of our
tests. Finally, Section VI summarizes our conclusions.

II. ELECTRICITY MARKET STRUCTURE

This paper studies the behavior of generators in a spot market
with hourly trading interval. Generators submit energy offers
to the independent system operator (ISO), declaring the power
they are willing to sell at or above a certain price. Each gener-
ator, g € G, with net capacity £;"** and marginal cost, mc,,
offers a certain amount of power P, in MW, 0 < P, < P;“ax,
at a constant price b, in €/MWh, which cannot be higher than
the market price cap, pc, or lower than the generator’s marginal
cost, mec, < b, < pe.

A. ISO Market Clearing Problem

The ISO collects the energy offers (P, b,) of all generators,
g € G, and based on the most recent forecast of the nodal
demands, d, computes the quantities, p,,Vg € G, and nodal
prices, LMPg,Vk € K, that clear the market, by solving the
following optimal power flow (OPF) problem

Min Z by - Py 1)
gEG
subject to

B-#=Hyxgp— Hgrd 2

Brot = 0 3)

1 !
(B — O )| < FIB2% for all lines km 4
Thkm

0<p, <P, forall generators g € G. %)

Constraints (2) represent the system DC power flow equa-
tions, (3) defines the slack bus voltage phase angle since
det{(B) = 0,1 (4) represent the transmission line power flow

IThe slack bus is not omitted in (2).
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limits, and (5) represent the unit active power output limits.
The Lagrange multipliers of the nodal active power balance
constraints (2) are the nodal prices (LMPs).

B. Generator Profit Maximization Problem

The Generator’s objective is to maximize his profits in the
spot market, by selecting the parameters of his energy offer,

(Fy,bg)

Max Profit, = (LMPj,y — me,) - p, (6)

subject to the following constraints:

0< F, < P™ @)
me, < by < pe ®)

as well as the ISO market clearing problem solution (1)—(5),
needed to define p, and LMP .y used in (6).

However, the generator does not have the information on the
transmission network, the consumer demand and the competitor
energy offers that the ISO has when solving the market-clearing
problem. Section IV describes a reinforcement learning process
by which the generator can “learn” through the repetition of the
hourly energy auction to select the profit maximizing parame-
ters of his energy offer, {F,,b,), based only on publicly avail-
able (LMP) information.

III. REPEATED GAMES

A. Static Games

The essential elements of a game are:

1) the participants, who comprise the set of players;

2) the set of alternative choices each participant has, which is
called the set of actions;
3) the payoff each participant gets for each outcome of the
game (or combination of participants’ actions) [19].

Let us assume the following # -player simple game:

1) Players 1 through » simultaneously choose actions a; €
A, through a,, € A, respectively.

2) They receive their payoffs wuj(a,...
U (g, oo ap).

T = {A,..., Ay;u1,...,u,} denotes the above static
game and will be called stage game of the corresponding
repeated game [20].

According to the above, the market operation, as described in
Section II, can be seen as a stage game, where G is the set of
players; then each generator can be regarded as player and his
action space consists of all the possible selections of his energy
offer, (Pg, bg), i.e., his action space is the Cartesian product of
the regions defined by constraints (7) and (8).

,an) through

B. Infinitely Repeated Games

1) Definition 1: Given a stage game T', let I'(c, §) denote
the infinitely repeated game in which T is repeated forever and
the players share the discount factor &. For each £, the outcomes

of the £ — 1 preceding plays of the stage game are observed be-
fore the tth stage begins. Each player’s payoff in I'(oc, &) is the
present value of the player’s payoffs from the infinite sequence
of stage games [20].

2) Definition 2: Given the discount factor 8, the present value
of the infinite sequence of payoffs u(, u{®, w3, . is

a4 5@ 82 . = Z 51t )
t=1

The discount factor reflects the time value of money [20];
the closer 4 is to 1 the more important are distant payoffs. In
games of complete information, the discount factor affects the
outcome of the repeated game. The analysis presented in this
paper—which refers to a game of incomplete information—is
indifferent about the value of the discount factor, as it will be
justified in the discussion of the results.

According to Definition 1, the electricity market simulated
in this paper can be thought of as an infinitely repeated game,
where each stage game is the same with the one described in the
last paragraph of the previous subsection.

IV. GENERATOR’S BEHAVIOR UNDER MODIFIED Q-LEARNING

A. Reinforcement Learning

Many learning theories have been developed as a result of
man’s effort to analyze the behavior of animals and artificial
systems. Reinforcement learning (RL) is one of them and fo-
cuses on the effect of rewards (positive payoffs) and punish-
ments (negative payoffs) on subjects’ choices in their attempt to
achieve a goal; it studies complex behaviors, where sometimes
taking an unpleasant action may lead to a long-term reward [21].

RL theory’s basic elements are:

* the learner or the decision-maker, called the agent;

 everything it interacts with, called the environment.

The effects of agent’s actions cannot be fully predicted; thus
he must monitor his environment frequently and react appropri-
ately, in order to learn from the consequences of his actions [22].
The basic concept behind RL is trial-and-error search, since the
agent explores his environment and learns from his mistakes.

Recently, the research focused to multi-agent RL. Instead
of a static environment, unknown but predictable to some
extent—after some learning procedure—the agent has to face
a constantly evolving environment containing other agents. In
particular, the behavior of the other agents may change, as they
also learn to better perform their tasks. This type of multi-agent
non-stationary world creates a difficult problem for learning to
act in these environments [16]. From a technical point of view,
the research has been redirected from the realm of Markov
decision problems to the one of game theory [15].

It is important to note that in such a multi-agent environment
each agent does not interact with the others explicitly; its actions
are not directed to the rest of the agents, but to his environment,
so he does not try to teach the others. In RL, experience is the
only teacher [23]; hence, an agent influences the behavior of
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his competitors only implicitly, through the change he causes in
their environment.

B. Q-Learning Algorithm

The Q-Learning algorithm, proposed by Watkins [11], is
one of the most commonly used RL algorithms, because of its
simplicity. Its main advantages are that it can be used online
and it is model free—it does not need an explicit model of
its environment. Q-Learning is an algorithm for learning to
evaluate the payoff for a given state-action pair; thus it is a
very useful tool for solving Markov decision problems. In
order for the algorithm to be suitable for our game-theoretic
multi-agent approach, some modifications—as presented in
[17] and [18]—of the original algorithm, concerning the Q
values, have been adopted.

The agent g in Q-Learning keeps in memory a function
2, (a,)? that represents the expected payoff he believes he will
obtain by taking an action a,; the function of the expected
payoff is represented by a one-dimensional lookup table in-
dexed by actions, whose elements are defined as Q-values.

The agent’s experience, concerning his interaction with the
environment, consists of a sequence of distinct stages. Let A, =
{ag1,042,...,04.4,} be the set of A, possible actions the
agent g can take. In the {th stage, the agent:

1) selects and performs an action agt) € A, using a policy;

2) receives an immediate payoff ugt) (ag);

3) updates his ¢} values according to (10) at the bottom of the

page.

According to (10), only © values corresponding to the last ac-
tion chosen are updated. agt) (ag) is a learning rate in the range
[0, 1), that reflects the degree to which estimated Q values are
updated by new data; it can be different in each episode and ac-
tion dependent [24], [25].

C. SA-Q-Learning Algorithm

The SA-Q-Learning algorithm was proposed by Guo et al.
[26] as a result of their research in controlling the balance
between exploration and exploitation during the evolution of
the Q-learning algorithm. They applied the Metropolis criterion
[27], used in the SA algorithm [28], in order to determine the
action-selection strategy of Q-learning. The outcome is very
promising, as shown in their experiments, since in the execution
process of the Q-learning algorithm the exploration gradually
decays, leading to convergence.

The SA-Q-Learning algorithm explains the first step of the
Q-learning algorithm, by defining the followed policy, i.e., the

2The Q-values of each agent depend on the actions selected by other agents
also; however, for simplification reasons, we use this notation.
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criteria an agent uses to select the next action. Hence, the SA-Q-
learning can be described by the steps 1-3 mentioned in the
previous subsection, with the first step being replaced by the
following actions:

a) Selects an action a, . € A, randomly.

b) Selects an action a, , € A, following a greedy? policy:

Qgp = Argmax,, Qgtfl)(ag).
¢) Generates a random number £ € (0, 1).

d) Selects and performs action ag,t) € A, as follows:

Q(giil)(ag.r)fQ;iil) {eg.p)
T

alth = Tow> if £ > exp

g Othorwise.

(1)

e) Calculates Tétﬂ) by the temperature-dropping criterion.

Although the temperature-dropping criterion can be in gen-
eral arbitrary, in this paper the geometric scaling factor criterion
is used, as in [26]. Let Tét) be the temperature in the fth stage
and A € (0.5,1) a constant, usually close to 1, in order to guar-
antee a slow decay of the temperature in the algorithm. Then in
the £ + 1 stage the temperature will be

Tg(,t+1) :)\Tét)’t:O,l,Q,.... (12)

D. Modeling Generator’s Behavior

Each generator, as a player in a repeated game, must select his
actions in every stage in order to maximize his payoff. The ap-
plication of the SA-Q-learning algorithm in modeling the gen-
erator offering behavior requires the definition of the admissible
actions and the returned payoff.

1) Action: The generator-agent action is the selection of
the offer quantity and price, (Fy, b,). The agent’s action space
is discretized, by discretizing both the offer quantity and the
offer price intervals of variation (7), (8) into .A§ and .A"; levels,
respectively.

2) Payoff: The payoff received by each agent during an
auction round is equal to the profit, in €} the agent makes by
participating in the spot market, defined in (6).

The learning rate is designed to be action dependent, as in [24]
and [25]. The learning rate agt) (a,) is inversely proportional to

3Greedy policy: the agent always selects the action with the highest Q value.

ng)(ﬂg) =

™ (ay),

Qgt)(ag)“gt)(agL ifa; =ay”,

(1 af(a0) ) @5 V(ag) +

(t)
(10)

otherwise
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the visited number ,G_gt) (agy) of action a, up to the present trading
stage, as follows:

1
g g

E. Agent-Based Energy Market Simulation

The spot energy market simulation consists of the repetition
for a large number of stages, { = 0,1,2,...,{"* of the fol-
lowing steps:

Step 1) All generator-agents select an action ag,t) =
(Pét), bg,t)) according to the policy defined by
the SA-Q Learning (11), and submit their energy
offers defined by the selected action to the ISO.

2) The ISO processes the energy offers submitted by
all generator-agents, along with transmission system
and nodal demand information, and computes the
quantities and prices that clear the market by solving
(D=(5).

3) The ISO posts the public information on nodal prices,
LMP;, ¥k € X, and informs every generator-agent
g € G about the quantity, p,, of his energy offer
accepted in the spot market.

4) All generator-agents use the information they receive
from the ISO (Step 3) to compute profits and update
their Q Tables according to (10).

5) The stage count, ¢, is updated; the temperature is
updated according to (12); the learning rate is up-
dated according to (13). The whole process, Step 1
through Step 5, is repeated if the stage count, %, is
less than the maximum number of stages, ™.

In the ISO market clearing process (step 2), if the energy
prices of different energy offers arithmetically coincide and the
respective quantities of such offers are not included in their en-
tirety in the ISO schedule, then the specific energy offers to be
partially or wholly included in the ISO schedule are selected
at random. In this way, asymmetries in the simulation results
caused by a consistent selection of the winning energy offers
among the marginal energy offers with identical offer prices are
avoided.

Step

Step

Step

Step

F. Model Limitations

The social interactions and the human behavior are rather
complicated to be modeled through the simple algorithm de-
scribed before. Hence, it should be noted that the objective of the
simulation is not the realistic representation of the market envi-
ronment, but the analysis of some undesirable—for the effective
operation of the market—phenomena that can be observed even
in this simple model of the market procedures and the partic-
ipants’ behavior. The basic assumptions of our model are the
following.

The price elasticity of demand is zero. It is well recognized
[29] that “electricity balancing markets have little or no demand
elasticity”; hence the hourly market that we simulate is modeled
more realistically when there is no demand elasticity. This is
an assumption also made in [30], where the market power in

Gen-1 7 Gen-2
Node-1 Node-2
d, = 100MW d, =200 MW

Fig. 1. Two-node test system.

TABLE 1
GENERATION DATA FOR CASES A AND B
Generators P, me,
g (MW] [€/MWh|
Gen-1 500 20
Gen-2 500 30

a congested network is studied and the model used considers
inelastic system load. In order to avoid arbitrarily high prices,
all generators’ offer prices are subject to a price cap.

Furthermore, note that in all stage game repetitions the nodal
load demand vector and the transmission system conditions
(line status, parameters, and limits) remain the same. Although
our assumption may not be realistic, our objective is not to
simulate the real-world conditions but to study if the agents are
able to learn to respond to a specific environment.

Finally, only the LMPs are considered as public information,
while the marginal costs, the bids and the dispatched quantities
of the rivals as well as the transmission network are not publicly
known. Hence, each generator-agent does not know anything
about the other participants and there is no explicit interaction
with them. The rivals as well as the transmission network are
embedded in the environment of each generator-agent and are
treated as part of it.

V. TEST CASES

A simple, two-node system, shown in Fig. 1, is used in our
test cases. The transmission capacity limit is 100 MW. Two
500-MW generators, who represent the market players, compete
to serve the two constant loads shown in Fig. 1. The generator
data (net capacity, Pg‘a“', and marginal cost, mc,) are shown
in Table I. Locational marginal pricing is used for market settle-
ment, as already discussed. The market price cap is 40 €/MWh.

Three cases are examined.

In Case A, each generator offers its full capacity at marginal
cost, so that competitive prices result. This case is used as ref-
erence to test the exercise of market power by the generators.

In Case B, each generator participates in a repeated energy
auction trying to maximize its profits by reinforcement learning,
as described in Section V.

In Case C, each of the two generators of Table I is “split”
into four identical competing generators as shown in Table II.
By increasing the number of competitors from two to eight in
this case the level of competition is increased (compared to Case
B) while the remaining data (total generation and transmission
capacity and total demand) are the same.

Parameter Selection. All generators are considered to be
players in our market and their behavior is modeled through
the SA-Q-learning algorithm, as described before. The param-
eters of the algorithm that need to be defined are the initial
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TABLE II
GENERATION DATA FOR CASE C

Generators p,m me,
g IMW]  [€/MWh]
Gen-1la, Gen-1b, Gen-lc,
Gen- 1 125 20
Gen-2a, Gen-2b, Gen-2c,
Gen_2d 125 30

TABLE III
MARKET CLEARING UNDER COMPETITIVE PRICES (CASE A)

Nodes  Cenerators P LMP, Profit,,
k ¢ IMW|  [€/MWh|  |€]
Node-1 Gen-1 200 20 0
Node-2 Gen-2 100 30 0

temperature T and the constant X of the temperature-drop-
ping criterion. All generators have the same parameters
7 = 100 000 and A = 0.99.

In the simulations presented, each agent’s action space is
discretized. The step for the offer price has been set equal to
2€/MWh, while the step for the offer quantity has been set
equal to 10 MW for Case B and 2.5 MW for Case C.

A. Reference Case: Two Generator-Agents

Both generators offer their full capacity at marginal cost,
so that competitive prices result. The market clearing results
under competitive prices are presented in Table III. Owing to
the 100-MW transmission limit, the cheaper generator, Gen-1,
is dispatched only up to 200 MW (100 MW serve the local
Node-1 demand, while the remaining 100 MW are transported
to Node-2, congesting the transmission line). The remaining
100 MW of the Node-2 demand are supplied by the more
expensive local generator, Gen-2. There is locational price dif-
ference, owing to congestion, and, since no generation capacity
limit is active in the OPF solution, the LMP at each node is
equal to the marginal cost of the local generator. Hence, neither
generator makes profit from the energy market, while the ISO
collects €'1000 of congestion rent.

B. Oligopoly Case: Two Generator-Agents

If both generator-agents act strategically, trying to maximize
profits through reinforcement learning, the resulting market
conditions are shown in Figs. 2 and 3, where the results of
the last 500 stages out of the total 2500 stages of the SA-Q
learning algorithm are presented. As shown in Fig. 2 the first
agent withholds capacity by offering only 200 MW, in order
to leave the transmission line uncongested and be paid at the
LMP of Node-2, thus increasing profits. According to [9], this
is consistent with Coase Theorem (1960), which supports the
argument that “in the absence of transaction costs and with
public knowledge of transmission capacity, bargaining among
buyers and sellers will capture all congestion rents.” In our
case, despite the fact that Gen-1 does not know the transmission
capacity, he “learns” to withhold capacity through repetition.
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500

450
400 A
—— Gen-1 Offer Cuantity

350 A
E 300
=
£
5 200
&

150 4

100 1

50 A
0 . . : . . : T T T : T
1 46 0 13 1gl 236 271 3& 361 A6 43 498
Number nf Stages
Fig. 2. Generator 1 offer quantity, equal to Generator 1 dispatched quantity.
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Fig. 3. Gen-1 offer price and market clearing price.

Since there is no congestion, both producers are paid at the
same system-wide market clearing price (MCP). The resulting
MCEP is very close to the market price cap, as shown in Fig. 3
owing to the fact that agent Gen-2 realizes his monopoly power
over the last 100 MW of the local, Node-2, demand and the
absence of demand elasticity at Node-2.

The above outcome is a Nash equilibrium since no agent can
profitably deviate as can be easily shown.

C. Increased Competition Case: Eight Generator-Agents

Here, each of the two generators of Case B is “split” into four
identical competing generators in order to increase competition
among generators. Fig. 4, where the results of the last 500 stages
out of the total 5000 stages of the SA-Q Learning algorithm
are presented, shows that the generator-agents of Node-1 collec-
tively withhold capacity, even though there is no communication
amongst them. The generators located on Node-1 seem to de-
velop some kind of cooperation through the learning procedure,
and keep their cumulative offer quantity below the threshold of
200 MW, managing to prevent the transmission line congestion.

From the game theoretic point of view, this developed coop-
eration is consistent with Friedman’s (1971) Theorem [20] for
infinitely repeated games, which suggests that the outcome of an
infinitely repeated game may not be a Nash equilibrium of the
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Fig. 4. Cumulative offer quantity of generators on Node-1, equal to their cu-
mulative dispatched quantity.

corresponding stage game. In [20], the infinitely repeated Pris-
oner’s Dilemma is analyzed; it is suggested that the outcome of
this infinitely repeated game can be the choice of cooperation
for both players, which is not a Nash equilibrium of the stage
game, and yet it is a subgame-perfect Nash equilibrium. In case
one generator deviates from the collusive strategy, he may end
up gaining increased short-term profit (just for the stage he devi-
ates); this would cause more aggressive bidding from the other
generators and his profit would be lower in the new competitive
environment.

At this point, it is important to discuss the development of co-
operation, in the absence of the discount factor in our model. In
[31], Axelrod states that “an important conclusion drawn from
this investigation is that foresight is not necessary for the evolu-
tion of cooperation.” Reference [31] analyses the conditions in
a variety of social incidences, under which the emergence of co-
operation is possible. Commenting the cases of trial-and-error
learning, like RL, Axelrod concludes that “the players can come
to cooperate with each other through trial-and-error learning
about possibilities for mutual rewards . .. even through a blind
process of selection of the more successful strategies with a
weeding out of the less successful ones.” But, since learning
through trial-and-error is “slow and painful,” foresight is some-
thing that can be used in order to “speed-up the evolution of co-
operation.” Hence, discount factor is not necessary for the emer-
gence of cooperation, but it can play an accelerating role.

Since there is no LMP difference, all generators are paid at
the system-wide MCP. In contrast to the previous case, as can
be seen in Fig. 5, the MCP is not very high; in fact, it is close
to the marginal cost of the generators of Node-2. This can be
easily explained by the increased competition among four com-
peting generators in Node-2. The generator-agents of Node-1
offer prices below 30 € = /MWh, ensuring the dispatch of
their offered quantity (collectively 200 MW); the four gener-
ator-agents of Node-2 have to compete for supplying the re-
maining 100 MW of Node-2 demand. The outcome of the de-
veloped competition is the low level of the MCP. The observed
fluctuation in MCP (Fig. 5) can be attributed to the fact that the
generator-agents of Node-2 try to raise their profit either by in-
creasing their dispatched quantity, thus lowering their bid price,

1 4691 136 181 236 2Tl 316 36l 406 451 496

Number of Stages

Fig. 5. Offer Prices of Generators on Node-1 and system-wide LMP.

TABLE IV
EXECUTION TIMES

Case No of Stages  Execution Time (min)
Casc B 2,500 21.65
Case C 5,000 47.84

or by increasing the MCP, thus bidding a higher price at the ex-
pense of dispatched quantity.

It is important to discuss why identical agents with the same
parameters do not develop the same optimal policy. The reason
is that they face different environments. If each one of these
agents had been placed separately in the same environment, then
they would have generated the same offers. In our case, the first
iterations of the algorithm are purely exploratory and during ex-
ploration the actions are selected randomly and are different for
each player. Hence, each agent ends up facing his own environ-
ment—slightly different from the ones of his co-players—de-
spite the symmetry among them. Consequently, everyone de-
velops his own policy and based on that generates his offers.

D. Simulation Environment-Execution Times

The agent-based simulation has been developed in JBuilder
2005 environment using Java (J2SE 5.0). A commercial
package, GAMS 2.5 (CPLEX solver), is used for the solution
of the ISO market clearing problem. All simulations run on an
AMD Athlon™ Processor 3200+, 2.01 GHz, 1.75 GB RAM.
Table IV presents execution times for test cases B and C.

VI. CONCLUSION

An analysis of the development of tacit collusion and capacity
withholding in a simulated electricity market was presented in
this paper. The electricity market was formulated as a repeated
game, where each hourly auction is represented by a stage of the
game. For the needs of the analysis agent-based simulation was
employed, where each generator was modeled as an adaptive
agent, following a SA-Q-learning bidding behavior. Test cases
on a simple two-node test system, with two and eight competing
generators led to the following conclusions.

Under high market concentration (Case B) generators partici-
pating in arepeated energy auction can learn to develop capacity
withholding strategies (Gen-1) and to recognize their locational
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market power (Gen-2) based only on publicly available (LMP)
information.

Even under competitive conditions (Case C) generators par-
ticipating in a repeated energy auction can learn to develop tacit
collusion, in order to capture the ISO’s congestion rents. It is
important to note that tacit collusion arises, even though there is
no teaching (i.e., punishing aggressive behavior by competitors)
in the learning algorithm.
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