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Abstract—Automated skin lesion classification in dermoscopy
images is an essential way to improve the diagnostic performance
and reduce melanoma deaths. Although deep convolutional neu-
ral networks (DCNNs) have made dramatic breakthroughs in
many image classification tasks, accurate classification of skin
lesions remains challenging due to the insufficiency of training
data, inter-class similarity, intra-class variation, and lack of the
ability to focus on semantically meaningful lesion parts. To
address these issues, we propose an attention residual learn-
ing convolutional neural network (ARL-CNN) model for skin
lesion classification in dermoscopy images, which is composed
of multiple ARL blocks, a global average pooling layer, and a
classification layer. Each ARL block jointly uses the residual
learning and a novel attention learning mechanisms to improve
its ability for discriminative representation. Instead of using extra
learnable layers, the proposed attention learning mechanism aims
to exploit the intrinsic self-attention ability of DCNNs, i.e. using
the feature maps learned by a high layer to generate the attention
map for a low layer. We evaluated our ARL-CNN model on the
ISIC-skin 2017 dataset. Our results indicate that the proposed
ARL-CNN model can adaptively focus on the discriminative parts
of skin lesions, and thus achieve the state-of-the-art performance
in skin lesion classification.

Index Terms—Attention learning, residual learning, skin lesion
classification, dermoscopy images.

I. INTRODUCTION

KIN cancer is one of the most common forms of cancers

in the United States and many other countries, with 5
million cases occurring annually [1], [2]. Dermoscopy [3], [4],
a recent technique of visual inspection that both magnifies
the skin and eliminates surface reflection, is one of the
essential means to improve diagnostic performance and reduce
melanoma deaths [5]. Classifying skin lesions, particularly the
melanoma, in dermoscopy images is a significant computer-
aided diagnosis task.

A number of automated skin lesion classification methods
have been proposed in the literature. Among them, deep
learning solutions [8], [10], particularly those based on deep
convolutional neural networks (DCNNSs), have achieved sig-
nificantly improved performance [28], [30], [29]. However,
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accurate classification of skin lesions remains a challenge due
to three factors. First, the insufficiency of training samples
limits the success of DCNNs in this task, as there is usually
a small dataset in most medical imaging research, and this
relates to the work required in acquiring the image data and
then in annotation [6]. It is difficult for DCNNs to achieve the
same success on skin lesion classification, which usually has
only thousands of data, as they have done in the ImageNet
Challenge [13], which has tens of millions of data. Second,
the accuracy of skin lesion classification suffers from the
inter-class similarity and intra-class variation [7], [30]. Skin
lesion classification is much more complicated than classifying
objects or scenes in natural images. As shown in Fig. 1, there
is a significant visual difference among each group of four
skin lesions in the same class, but visual similarities in shape
and color between some lesions, which are from different
classes. Such visual confusion makes it hard even for a human
to distinguish the fine-grained lesion appearances without the
expertise. Third, the region of a skin lesion occupies only a
small part of a dermoscopy image, and most parts of the image
are normal skin tissues, which are irrelevant but may have an
interference with the lesion classification.
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Fig. 1. Some typical samples show melanoma, nevus and seborrheic keratosis
in skin lesion dermoscopy images.

Many works [21], [22] have demonstrated that the DCNN
trained for a classification task has a remarkable localization
ability that can highlight the discriminative regions in images,
despite being trained with only image-level labels, instead
of the bounding boxes of discriminative regions. Hence, we
suggest strengthening the discriminative ability of a DCNN via
taking advantage of its self-attention ability. Since the higher
layers in a DCNN have a better ability for semantic abstraction
than lower ones, it might be possible to use the feature maps
obtained by higher layers as the attention mask of lower ones.
Meanwhile, the residual network [23] is more suitable for
small-sample learning problems than other DCNNSs, such as
AlexNet [48], VGG [49], and GoogLeNet [50], since it uses
“shortcut connections” to skip one or more layers, and thus
enable the construction of a deeper network.
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In this paper, we propose an attention residual learning
convolutional neural network (ARL-CNN) model for the skin
lesion classification. We jointly use the residual learning
mechanism to train a DCNN with a small set of dermoscopy
images and a novel attention learning mechanism to strengthen
the discriminative representation ability of the DCNN via
enabling it to focus more on semantically meaningful parts
(i.e. lesions) in dermoscopy images. The proposed attention
learning mechanism makes full use of the intrinsic and re-
markable self-attention ability of classification-trained DCNNs
and can work well under any DCNN frameworks without
adding any extra attention layers, which is critical for small-
sample learning problems like skin lesion classification. From
an implementation perspective, both residual learning and
attention learning can be embedded in each so-called ARL
block. An ARL-CNN model with an arbitrary depth can be
constructed by stacking multiple ARL blocks and be trained
in an end-to-end manner. We evaluated the proposed ARL-
CNN model on the ISIC-skin 2017 dataset [5] which is a
largest publicly available skin dermoscopy image achieve,
and achieved the state-of-the-art performance (i.e., an average
AUC of 0.917).

The main contributions of this paper are thus summarized as
follows: (1) we propose a novel ARL-CNN model for accurate
skin lesion classification in dermoscopy images, which embeds
simultaneously two learning mechanisms - residual learning
and attention learning. Residual learning enables the network
to become deep, and attention learning helps the network focus
more on semantically important regions and thus improves
its ability for discriminative representation; (2) we design
an effective attention mechanism which takes advantages of
the intrinsic self-attention ability of DCNNS, i.e., using the
feature maps obtained by a high layer as the attention mask
of a low layer, instead of learning the attention mask with
extra layers; and (3) we achieve the state-of-the-art skin
lesion classification performance on the ISIC-skin 2017 dataset
by using a single 50-layer model, which is important for
computer-aided diagnosis of skin cancer.

II. RELATED WORK
A. DCNN Models

In recent years, DCNNs have achieved the state-of-the-art
performance in many computer vision applications, including
image classification [23], [S1], [54], [55], target detection
[24], [25] and image segmentation [26], [27]. There are
two basic operations in DCNNs - convolution and pooling.
Convolutional layers apply a set of convolutional kernels to the
input with the mechanism of sharing weights, which allows
the DCNNs to be deeper with fewer parameters. Pooling
layers use various pooling operations, such as the max-
pooling, min-pooling, and average-pooling, which are indeed
nonlinear down-sampling, to reduce the spatial dimension of
the learning representation, number of parameters, and amount
of computation.

Many successful DCNN models [48], [49], [50], [23], [51]
have demonstrated that their performance depends heavily
on the network depth. The increased availability of large
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scale datasets, powerful computing devices, and computational
tricks, such as the rectified linear units activation [37], dropout
[40], batch normalization [38] and layer normalization [39],
make it possible to design and train deep networks. However,
due to degradation problems [41], [42], it is still hard to
train a very deep network. The residual learning technique
[23] successfully addressed this issue by using “shortcut
connections”, and hence enables the training of a DCNN with
as many as 1,000 layers.

B. Attention Mechanism Used in Classification

The attention mechanism is an effective technique that helps
a model pay more attention to important information. It has
made great progress in the cross fields of computer vision and
natural language processing, such as image/video caption and
visual question answering [14], [15], [16], [17], [18]. Recently,
the attention mechanism has also been successfully used in
DCNNs [19], [20], [17] to improve their feature representation
ability in large scale image classification tasks. Wang et al.
[19] proposed a residual attention network, which is con-
structed by stacking multiple attention modules in a residual
network. Each attention module uses trainable layers with a
bottom-up and top-down feedforward structure to learn soft
weights, and then multiplies the weights with convolutional
features. Hu et al. [20] recalibrated adaptively channel-wise
feature responses by explicitly modelling the channel-wise
interdependencies of convolutional features. They generated
the attentive features using channel-wise multiplication be-
tween the attention weights learned by two additional fully-
connected layers and the original feature map. Chen et al.
[17] jointly used spatial and channel-wise attentions in con-
volutional networks. The spatial and channel-wise attention
weights are generated by a neural network followed by a soft-
max layer, respectively. Although the attention mechanisms
effectively improve the performance of deep learning models
in large scale image classification tasks, the attention weights
in these methods are learned by using additional learnable
layers with a lot of extra parameters, which may cause not
only computational costs but also overfitting on small training
datasets.

C. Skin Lesion Classification

Many skin lesion classification solutions are based on hand-
crafted features, including color, texture, shape, and combined
descriptors of lesions [43], [44], [45], [46]. Barata et al. [45]
proposed a global and local method to classify skin lesions by
extracting a set of color and texture features and using them
to train a classifier. Xie et al. [46] extracted the color, texture,
and border descriptors of skin lesions and used an ensemble
of neural networks to classify lesions.

To apply deep learning techniques directly to skin lesion
classification, a straightforward solution is to collect more
training data and fine-tune a powerful pre-trained DCNN [9],
[10], [11], [12]. Esteva et al. [28] trained a DCNN using
129,450 clinical images for diagnosing the most common
and deadliest skin cancers and achieved the performance that
matches the performance of 21 board-certified dermatologists.
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Fig. 2. Architecture of the proposed ARL-CNN model.

Ge et al. [29] jointly used the dermoscopy and clinical skin
images to train DCNNs and demonstrated the effectiveness
of cross-modality learning. Matsunaga et al. [31] proposed an
ensemble of multiple pre-trained DCNNs with geometrically
transformed images for the classification of melanoma, nevus
and seborrheic keratosis. Menegola et al. [33] also improved
the performance of skin lesion classification using pre-trained
DCNNSs and as much as possible training data.

To filter out the useless background, Yu et al. [30] leveraged
very deep DCNNs for automated melanoma recognition in
two steps - segmentation and classification, and found that
lesion segmentation benefits the classification. Diaz et al. [32]
also designed several convolutional networks that incorporate
lesion segmentation and structure segmentation into the di-
agnosis of skin lesions. However, since the malignancy of
skin lesion usually relates only to a part of the lesion, image
features extracted in the entire lesion may lead to sub-optimal
results. Meanwhile, these methods often requires the ground
truth boundaries of lesions being marked in training data,
which makes it even more difficult to obtain a large training
dataset.

III. METHOD

The proposed ARL-CNN model is composed of multiple
ARL blocks, a global average pooling (GAP) layer and a
classification layer. In each ARL block, the residual learning
mechanism is employed to address the degradation problem,
and a novel attention mechanism is designed to strengthen the
discriminative representation ability. The architecture of this
model is shown in Fig. 2. We now delve into the details of
this model.

A. ARL Block

1) Residual Learning: Let us consider a plain DCNN block
which is composed of a few stacked convolution layers, as

Attention Residual Learning Block

Awusp| &
Ayuapl &
uoljuaY

(a) Plain block (b) Residual block (c) ARL block

Fig. 3. Three types of learning blocks used in DCNNs.

shown in Fig. 3(a). The underlying mapping fitted by these
layers is denoted as H (x). These stacked layers are expected
to directly approximate H (x). Hence, a plain block is defined
as follows

y=Flz,W) ey

where x and y represent the input and output of the block,
respectively, and F'(-) represents the underlying mapping
function which is learned by these stacked layers with the
parameter set W. In residual learning, we let these stacked
layers learn a residual function F(x) := H(x) — «, instead
of directly approximating H (x). The definition of residual
learning is

y=Flx,W)+=zx 2)

where the function F(-) represents the residual mapping
learned by these stacked layers. The formulation of residual
learning can be implemented by the feedforward network with
shortcut connections, as shown in Fig. 3(b).

0278-0062 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



Transactions on Medical Imagin,

TABLE I

itrans24.com/landing1.

Www.trans24.ir : 5T
FEOVYYYA-Fe (YY) wled

hal s fgld:h@fbﬂkgw@ﬂm htltptdﬁi'@npep@mire issue of this journal, but has not been fully edited. Content may Fl}tlt?# rior to ﬂréli)ubliciltio . Ci a}%lt%ﬁ inforfittton 'BER oIS T Mfr‘)é9ﬁ‘§%
4

ARCHITECTURES OF RESNET14, ARL-CNN14, RESNET50 AND ARL-CNN50 MODELS.

Layer name | Output size H ResNet14 ARL-CNN14 ResNet50 ARL-CNNS50
Convl 112x112x64 Conv, 7x7, stride 2 Conv, 7x7, stride 2 Conv, 7x7, stride 2 Conv, 7x7, stride 2
- - 3 - -
Conv2_x S6x56x256 3x3 ma).( pool, stride 2 3x3 max pool, stride 2 x3 m'ax pool,stride 2 3x3 max pool,stride 2
Residual block ARL [Residual block]x3 [ARL]x3
Residual block, stride 2 ARL, stride 2
Conv3_x | 28x28x512 | Residual blockstride 2 ARL stride 2 csidual block, stride » stride
[Residual block]x3 [ARL]x3
Convd_x | 14x14x1024 || Residual block,stride 2 ARL stride 2 Residual block, stride 2 ARL, stride 2
[Residual block]x5 [ARL]x5
Conv5_x 7x7x2048 Residual block,stride 2 ARL,stride 2 Residual block, stride 2 ARL, stride 2
[Residual block]x2 [ARL]x2
GAP 1x1x2018 Global Average Pooling | Global Average Pooling Global Average Pooling | Global Average Pooling
Output 2 Fully Connected Fully Connected Fully Connected Fully Connected

2) Attention Learning: The traditional attention mecha-
nisms designed for image classification are to learn the at-
tention weights by using extra learnable layers, such as the
convolutional layers used in [19] or the fully connected layers
used in [20]. Different from these solutions, we propose a
novel attention learning method to strengthen the discrimina-
tive representation of the network by generating the attention
weights from the classification-trained network itself, without
introducing extra learnable layers. Given that higher layers
have a better ability for semantic abstraction than lower ones,
we suppose that the attention ability of higher layers is stronger
than that of lower layers. Hence, we propose to use the
more abstract feature maps produced by higher layers as the
attention mask of lower layers.

We denote a set of stacked layers in a DCNN as
{LHL . L+, where {L+1} is the low layer and {LiT"}
is the corresponding high layer. The output feature map of
{L**™™} is defined as O with a dimension of H x W x C,
where H, W and C represent the height, width and number of
channels, respectively. The attention mask zo can be generated
by applying a normalization function ) to the feature map O

w = N(0) 3)

Three normalization functions are defined as follows

S c eof’j
N7 (0) = {m|mj ; = W} “4)
C c 602’,]-
N (0) = {m|m; ; = W} o)
N (0) = {m|m{; =0 (05 )} (6)

where ¢, j represent the spatial position, ¢ represents the chan-
nel index of O, and o(-) is the sigmoid function. The spatial
attention 91°(-) uses a spatial softmax function and highlights
the important regions in each channel. The channel attention
MY (-) uses a softmax function to perform the normalization in
the channel space. The mixed attention 91 (-) uses the simple
sigmoid normalization at each spatial and channel position.

Since we expect the model to focus on semantic regions of
skin lesions, the spatial attention 91°(-) is adopted and the
comparison given in the Section V.A also shows that the spatial
attention performs better than other two attentions in the skin
lesion classification task.

Then, we use the attention mask zo as the control gates of
input neurons = of {L*™!} which are similar to the gates used
in the Highway Network [42]. The attention feature map is
computed by multiplying = with zo on an element-by-element
basis.

A=w- x @)

This attention learning method strengthens the ability of
DCNN s to focus on semantically meaningful regions without
adding extra parameters, which is critical for small-sample
learning tasks.

3) ARL Block: To train a deep DCNN with an improved
ability for discriminative representation, we propose the ARL-
CNN model, which embeds both residual learning and atten-
tion learning mechanisms. The architecture of an ARL block, a
basic module of this model, is displayed in Fig. 3(c). It shows
that we simultaneously use the identity mapping as designed
in the residual block and generate an attention mask for the
original input & via applying the spatial normalization 91°
to the feature map F'(x) obtained by the residual mapping.
Then, we get the attention feature map through the following
element-wise production

A=NF(x)] = 8

The output of an ARL block is an element-wise addition of
the identity map, residual feature map, and attention feature
map, shown as follows

F(x) +a- N[F(x)] -z 9)

———

attention feature map

y=x+
residual feature map

where « is a learnable weighting factor called the scale gate
that represents a trade-off between the attention feature map
and other two maps. Since a well-trained DCNN has a stronger
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Fig. 4. An illustration of multi-scale patch extraction on dermoscopy images.
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attention ability than a poorly trained DCNN, the scale gate
is able to adaptively adjust the contribution of the attention
feature map, avoiding the interference by a bad attention
feature map obtained at the early stages of model training.

B. ARL-CNN

An ARL-CNN model with an arbitrary depth can be eas-
ily constructed by stacking ARL blocks. We introduce a
lightweight version called ARL-CNN14 and a heavyweight
version called ARL-CNNS5O for skin lesion classification.
ARL-CNN14 has 14 learnable layers, and ARL-CNNS50 has
50 learnable layers.

TABLE 1 gives the architectures of the ResNetl4, ARL-
CNN14, ResNet50 and ARL-CNN50 models. Both ResNet
and ARL-CNN are stacked from a 224 x 224 x 3 input layer,
a 7 x 7 convolutional layer, a max-pooling layer, a series of
residual or ARL blocks, a GAP layer and a fully-connected
(FC) classification layer. The difference is that the proposed
ARL-CNN model replaces the residual blocks used in ResNet
with ARL blocks. Each ARL block is stacked by a fixed mode
of 1 x 1,3 x 3 and 1 x 1 convolutional layers followed by
batch normalization layers. ARL-CNN14 can be trained from
scratch for skin lesion classification, and ARL-CNN50 can be
initialized by using a ResNet50, which has been trained on the
ImageNet dataset, and fine-tuned with the skin lesion data. The
pre-trained technique can not only improve the performance,
but also reduce the training time.

IV. EXPERIMENTS AND RESULTS
A. Dataset

The proposed ARL-CNN model was evaluated on the
International Skin Imaging Collaboration 2017 skin lesion
classification (ISIC-skin 2017) dataset [5], which is the largest
skin dermoscopy image dataset publicly available, consisting
of 2000 training, 150 validation, and 600 test images screened
for both privacy and quality assurance. Lesions in dermoscopy
images are all paired with a gold standard (definitive) diagno-
sis, i.e. melanoma, nevus, and seborrheic keratosis. There are
two binary classification sub-tasks - melanoma classification
(melanoma vs. others) and seborrheic keratosis classification
(seborrheic keratosis vs. others). We also collected 1320
additional dermoscopy images, including 466 melanoma, 822
nevus images, and 32 seborrheic keratosis images, from the
ISIC Archive! to enlarge the training dataset.

Uhttps://isic-archive.com/

B. Implementation

Since the proposed ARL-CNN model takes 224 x 224
images as input, all dermoscopy images should be shrunk to
this size before they can be fed into our model. However, skin
lesions occupy only a small part of an image, and shrinking
the image may lead the lesions to becoming too small to be
classified. To address this issue, we randomly extracted 60
rectangular image patches from the central part of each image
at different scales (1/5, 2/5, 3/5, and 4/5 of original image size)
on both official and extra training images, and then resized
them to 224 x 224 using the bilinear interpolation, as shown in
Fig. 4. Next, we employed online data augmentation, including
random rotation ([—10°,+10°]), zoom (90%-110% of width
and height), horizontal and vertical flips, to enlarge the training
dataset.

The mini-batch SGD algorithm with a batch size of 32 was
adopted as the optimizer. The learning rate was initialized
to 0.01 for training ARL-CNN14 from scratch and 0.0001
for fine-tuning ARL-CNNS50 with pre-trained parameters, and
was reduced by half very 30 epochs. The initial weighting
factor of the attention feature maps was set to 0.001 in
each ARL block when fine-tuning the ARL-CNNS50. The
maximum epoch number was set to 100. We used the officially
provided validation set to monitor the performance of our
model and stopped the training process when the network
fell into overfitting. In the test stage, we used the same patch
extraction method to randomly crop nine patches from each
test image, fed them to the trained network, and averaged the
obtained scores as the predicted score of the image.

C. Evaluation Metrics

Quantitative evaluation - To quantitatively evaluate the pro-
posed ARL-CNN model, we used the accuracy, sensitivity,
specificity, and area under the receiver operating characteristic
curve (AUC) as performance metrics, which are defined as

B TP +TN w0
accuracy = TP.’- FN T TN m FP
it — ity — — I
sensiivity = TP+FN,SP€CZ ity = TN+FP
1
AUC = / tor(for)dfr = P(X1> X0)  (12)
0

where T'P, FFN, T'N and F'P represent the number of true
positive, false negative, true negative and false positive, respec-
tively, t,, is the true positive rate, f,, is the false positive rate,
and X0 and X1 are the confidence scores for a negative and
positive instance, respectively. The AUC value describes the
probability that a classifier ranks a randomly chosen positive
instance higher than a randomly chosen negative one. The ISIC
2017 skin lesion classification challenge used the AUC value
as a gold indicator, according to which all participants were
ranked [5].

Qualitative evaluation - We adopted the class activation
mapping (CAM) [21] to visualize the attention regions in
obtained feature maps. We defined the output of a GAP layer
as f.(i,7), where c represents the index of channel and i, j is
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Layer name | Output size RAN14 SEnet14 RANS50 SEnet50
Convl 112x112x64 | Conv, 7x7, stride 2 | Conv, 7x7, stride 2 | Conv, 7x7, stride 2 | Conv, 7x7, stride 2
M 1 M 1 M 1 M 1
Conv2_x 56x56x256 -ax poo AX poo :ax poo A% poo
Attention Module Attention Module
. SE Block . [SE Block]x3
Residual Block [Residual Block]x3
Attention Modul Attention Modul
Conv3_x | 28x28x512 ention Mocuie SE Block ention Mocuie [SE Block]x4
Residual Block [Residual Block]x4
Attention Modul Attention Modul
Convd_x | 14x14x1024 ention Viodute SE Block ention Viodute [SE Block]x6
Residual Block [Residual Block]x6
Attention Modul
Conv5_x TxTx2048 ention Vodule SE Block [Residual Block]x3 [SE Block]x3
Residual Block
GAP 1x1x2048 GAP GAP GAP GAP
FC 2 Fully Connected Fully Connected Fully Connected Fully Connected

the index of spatial positions, and denoted the CAM for class
k as Cj. Then each element of C;, can be calculated as

(Ck(i,j) = Zw’; . fc(zvj)

where w” is the weight corresponding to class & for the chan-
nel ¢. Each spatial element Cg(4,5) reflects the contribution
of the spatial position (7, ) to the classification of the input
into the category k. We can visualize the CAM to validate
which part of the input image plays an important role in the

classification.

D. Comparing to Baseline and Attention Methods

Since the proposed ARL-CNN model uses both residual
learning and attention learning, we compared it to the corre-
sponding ResNet, which is a baseline, and two state-of-the-
art attention models - RAN [19] and SEnet [20]. Our ARL-
CNNS50 can be easily initialized by transferring the parameters
from a pre-trained ResNet50 to it since they have the same
parameter structure. However, both RAN and SEnet have
a lot of extra parameters, which cannot be initialized by
using a pre-trained ResNet. To make a fair comparison, we
evaluated the lightweight versions (with 14 learnable layers)
of these models and trained them from scratch with the
same parameter settings, including the SGD optimizer, initial
learning rate, decay of learning rate, and maximum epoch
number. Architectures of the RAN and SEnet used for this
study were shown in TABLE II. The designs of “Squeeze-
and-Excitation” (SE) blocks in SEnet and attention modules

in RAN was adopted from [20] and [19].

In TABLE III, we compared the proposed ARL-CNN

13)

"trans2f

to the additional learnable attention layers. The increased

number of parameters makes it difficult to train a very deep
model for skin lesion classification, which is a small-sample

learning task. Other columns in this table give the classifi-

cation performance in two sub-tasks. First, we compare four

lightweight models which were trained from scratch. It reveals
that three attention models, including RAN14, SEnetl4, and
ARL-CNNI14, have substantially improved performance over
the baseline ResNetl4 model. Moreover, our ARL-CNN14
achieved the highest AUC, ACC, Sensitivity and Specificity

in the melanoma classification and highest AUC, ACC, Speci-
ficity and second highest Sensitivity in the seborrheic keratosis
classification among all lightweight models. Then, we com-
pared the heavyweight ARL-CNN50 model with the baseline

ResNet50 and other heavyweight attention models. Note that
the ARL-CNN50 model and RAN50 model were initialized
with the corresponding parameters from ResNet50, which has
been well trained in the ImageNet classification dataset. The
additional layers designed for attention learning in RANS0
had to be trained from scratch. Besides, the SEnet50 model
was initialized from the ImageNet pre-trained model provided
in [20]. It shows that, compared to lightweight models, a
deeper architecture and the pre-training technique contribute
significantly to the classification performance in both sub-
tasks. However, the RAN50 model did not produce much im-
provement in AUC, since the additional layers in RAN50 were
trained from scratch to learn attention weights, which may
be inaccurate due to the insufficient training data. Compared
to these attention methods, the proposed ARL-CNN model
can achieve much better performance, particularly an AUC of

0.875 in the melanoma classification and an AUC of 0.958 in

model, including the lightweight ARL-CNN14 and heavy-
weight ARL-CNNS50, with the baseline ResNet model and

state-of-the-art attention models in the melanoma classification
and seborrheic keratosis classification. The second column in
this table gives the number of model parameters. It shows
that our ARL-CNN model has almost the same number
of parameters as the baseline ResNet, but both RAN and
SEnet have much more parameters than the baseline due

the seborrheic keratosis classification.

E. Comparing to Challenge Records

In TABLE 1V, we compared the performance of the pro-
posed ARL-CNNS50 model to six top-ranking performances in
the ISIC-2017 skin lesion classification challenge leaderboard
[311, [32], [33], [34], [35], [36]. Almost all the methods listed
in TABLE IV (including those reported in [31], [32], [33],
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TABLE III
COMPARISON OF THE PROPOSED ARL-CNN MODEL WITH THE BASELINE MODELS (RESNET14 AND RESNETS50), AND STATE-OF-THE-ART ATTENTION
METHODS (RAN14, SENET14, RAN50 AND SENET50) IN MELANOMA AND SEBORRHEIC KERATOSIS CLASSIFICATIONS. THE MODELS WITH “*” WERE
INITIALIZED WITH THE IMAGENET PRE-TRAINED MODEL, AND OTHERS WERE RANDOMLY INITIALIZED. THE BEST PERFORMANCES ACHIEVED BY
LIGHTWEIGHT AND HEAVYWEIGHT MODELS WERE HIGHLIGHTED IN “BLACK BOLD” AND “RED BOLD”, RESPECTIVELY.

M. i - Melanoma Classification Seborrheic Keratosis Classification
ethods Params (x10°) — — — —
AUC ‘ ACC ‘ Sensitivity | Specificity | AUC ‘ ACC ‘ Sensitivity | Specificity
ResNet14 [23] 0.8 0.732 | 0.748 0.538 0.799 0.820 | 0.711 0.800 0.696
RANI14 [19] 1.2 0.767 | 0.762 0.615 0.797 0.852 | 0.758 0.833 0.745
SEnet14 [20] 1.1 0.758 | 0.757 0.598 0.795 0.847 | 0.727 0.811 0.712
ARL-CNN14 0.8 0.777 | 0.778 0.615 0.818 0.875 | 0.763 0.822 0.753
ResNet50* [23] 2.3 0.857 | 0.838 0.632 0.888 0.948 | 0.842 0.867 0.837
RANS50* [19] 39 0.849 | 0.850 0.624 0.906 0.942 | 0.862 0.878 0.859
SEnet50* [20] 2.6 0.861 | 0.848 0.624 0.903 0.952 | 0.863 0.856 0.865
ARL-CNNS50* 2.3 0.875 | 0.850 0.658 0.896 0.958 | 0.868 0.878 0.867
TABLE IV

COMPARISON BETWEEN THE PERFORMANCE OF OUR ARL-CNNS50 MODEL AND THE TOP SIX ISIC 2017 CHALLENGE RECORDS. FOR EACH
PERFORMANCE METRIC, THE HIGHEST AND SECOND HIGHEST VALUES WERE HIGHLIGHTED IN “RED BOLD” AND “BLACK BOLD”, RESPECTIVELY. NOTE
THAT THE AVERAGE AUC OF BOTH CLASSIFICATION SUB-TASKS IS THE GOLD EVALUATION METRIC, ACCORDING TO WHICH ALL PARTICIPANTS WERE

RANKED.
Methods | External data | Ensembles Melanoma Classification Seborrheic Keratosis Classification Average AUC
AUC | ACC [ Sensitivity | Specificity | AUC [ ACC | Sensitivity | Specificity

Ours 1320 N 0.875 | 0.850 0.658 0.896 0.958 | 0.868 0.878 0.867 0.917
#1 [31] 1444 Y 0.868 | 0.828 0.735 0.851 0.953 | 0.803 0.978 0.773 0.911
#2 [32] 900 N 0.856 | 0.823 0.103 0.998 0.965 | 0.875 0.178 0.998 0.910
#3 [33] 7544 Y 0.874 | 0.872 0.547 0.950 0.943 | 0.895 0.356 0.990 0.908
#4 [34] 1600 Y 0.870 | 0.858 0.427 0.963 0.921 | 0.918 0.589 0.976 0.896
#5 [36] 1341 Y 0.836 | 0.845 0.350 0.965 0.935 | 0913 0.556 0.976 0.886

Ours 0 N 0.859 | 0.837 0.590 0.896 0.951 | 0.908 0.778 0.931 0.905
#6 [35] 0 N 0.830 | 0.830 0.436 0.925 0.942 | 0.917 0.700 0.995 0.886

[34], [36]) were trained with external dermoscopy images to
boost their classification performance. Especially, Menegola
et al. [33] trained the deep model with up to 7,500 external
images. Besides, the ensemble strategy was employed in [31],
[33], [34], [36] for an extra performance gain. Actually, these
methods cannot be compared directly with each other due to
the differences in the training dataset and whether it is an
ensemble or not. However, these reported results on the ISIC-
2017 challenge dataset can, to some extent, reflect the state-
of-the-art performance in the skin lesion classification task. To
compare our model to the state of the art while keeping this
comparison informative enough, we provided the number of
external training data and whether using ensemble learning as
a reference in TABLE IV.

It shows that our ARL-CNN50 model, which were trained
on the ISIC-2017 training dataset and 1320 additional der-
moscopy images, achieved the highest AUC and the second
highest sensitivity in melanoma classification, the second high-
est AUC and sensitivity in seborrheic keratosis classification.
Although [32] achieved the highest AUC and specificity in se-
borrheic keratosis classification, this solution has an extremely
low sensitivity. According to the ranking rule of the challenge,

our ARL-CNNS50 achieved an average AUC of 0.917 in two
sub-tasks, which is higher than the top-ranking performance
listed in the leaderboard and is, to our knowledge, the best
skin lesion classification performance on the ISIC-skin 2017
dataset. More importantly, our model achieved the state-of-the-
art performance using only a single network with 50 learnable
layers, which requires less computation resources and training
time than ensemble models.

Meanwhile, we also compared our model to the one pre-
sented in [35]. Both models use neither ensemble learning
nor additional training data. In this scenario, our ARL-CNN50
model attained an average AUC of 0.905, which is noticeably
higher than that reported in [35].

F. Visualization of CAM

The proposed ARL-CNN model shows an excellent perfor-
mance in skin lesion classification, substantially better than the
performance of their ResNet counterparts (see TABLE III).
We suppose that the performance gain is mainly attributed
to the use of attention learning, which enables a DCNN to
focus more on semantically meaningful parts of lesions and
thus strengthens the network’s ability to learn discriminative
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TABLE V
PERFORMANCE OF ARL-CNNS50 IN TWO SUB-TASKS WHEN USING DIFFERENT ATTENTION NORMALIZATION METHODS.

Methods Melanoma Classification Seborrheic Keratosis Classification
AUC | ACC | Sensitivity | Specificify | AUC | ACC | Sensitivity | Specificify
Channel-wise softmax | 0.861 | 0.847 0.607 0.905 0.952 | 0.852 0.867 0.849
Mixed Sigmoid 0.851 | 0.832 0.641 0.878 0.951 | 0.898 0.811 0.913
Spatial-wise softmax | 0.875 | 0.850 0.658 0.896 0.958 | 0.868 0.878 0.867

mﬂ
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Fig. 5. Visualization of dermoscopy images (top row) and the corresponding CAMs obtained by ResNet50 (middle row) and our ARL-CNNS50 (bottom row).

Qoo

=iy
S o ‘v'r‘

"'L.l‘ N

Fig. 6. Eight dermoscopy images (top row) and the corresponding CAMs obtained by ARL-CNN50 when applying it to melanoma classification (middle

row) and seborrheic keratosis classification (bottom row), respectively.

representation. To validate this, we visualized the CAMs
obtained by ResNet50 and ARL-CNNS50 in Fig. 5. It shows
that the attention regions learned by both models, i.e. the
highlights in CAMs, have different positions and concentra-
tions. Compared to ResNet50, our ARL-CNN50 model shows
a stronger attention ability that highlights the discriminative
lesion parts instead of background tissues in dermoscopy
images, especially in the samples given in the 6! and 7"
columns.

Although highlighting background regions, a powerful
ResNet50 model could rely on its data fitting ability to easily
remember those examples during the training process [47].
However, the generalization ability of such model is poor. We
hope that a classification model could pay more attention to
the regions, which have better discriminatory power, instead of
focusing on irrelevant normal tissues. With a stronger attention

ability, the proposed ARL-CNN model makes more reliable
and accurate classification based on discriminative regions.
Hence, it may explain why the proposed ARL-CNN model
has a better classification performance than the corresponding
ResNet model.

V. DISCUSSION
A. Attention Mask Normalization

In the proposed ARL-CNN model, we use the spatial
softmax, which normalizes a soft mask in the spatial domain,
to generate the soft attention mask zo from the high-layer
feature map O. Certainly, other mask normalization methods
can also be used. In Table V, we compared the classification
performance of ARL-CNNS50 in two sub-tasks when using
different attention soft mask normalization methods, including
the channel-wise softmax, mixed sigmoid, and spatial-wise

0278-0062 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 7. Visulization of the feature maps in low, middle and high layers and
the corresponding curves of weighting factors during the training process: (a)
feature map in the 13" layer, (b) feature map in the 315 layer, (c) feature
map in the 49" layer, (d) curve of weighting factors in the 13t" layer, (e)
curve of weighting factors in the 315¢ layer, and () curve of weighting factors
in the 49" layer.

softmax. It shows that the spatial softmax method achieved
the best performance in most metrics.

B. Attention Regions Learned from Different Tasks

In Fig. 6, we displayed eight dermoscopy images and the
corresponding CAMs learned by ARL-CNNS50 for melanoma
classification and seborrheic keratosis classification, respec-
tively. It reveals that, if the skin lesion is small (see left
four images), the CAMs learned for both tasks show similar
attention regions, which highlight the skin lesions; other-
wise (see right four images), the CAMs learned for both
tasks demonstrate different highlights. Therefore, the proposed
ARL-CNN model is able to adaptively focus on task-related
semantic regions when the skin lesion is large.

C. Weighting Factor of Attention Learning

As shown in Eq. (9), the output of each ARL block is a
weighted sum of the identity map, residual feature map, and
attention feature map. The weighting factor «, which is also
a learnable parameter, represents the trade-off between the
attention feature map and other two maps. We displayed the
attention feature maps produced by the low (13-layer), middle
(31-layer) and high layers (49-layer) of the proposed ARL-
CNN50 model in the left column of Fig. 7. It shows that
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Fig. 8. [Eight examples of (left column) dermoscopy images and the
corresponding (middle column) segmentation masks and (right column) ROIs
cropped according to segmentation masks.

TABLE VI
CLASSIFICATION PERFORMANCE OF RESNETS50 AND ARL-CNNS50 WITH
/ WITHOUT SEGMENTATION. (M: MELANOMA CLASSIFICATION, SK:
SEBORRHEIC KERATOSIS CLASSIFICATION).

’ Methods ‘ Segm ‘ AUC of M | AUC of SK | Average AUC
ResNet50 X 0.857 0.948 0.903
ResNet50 v 0.864 0.955 0.910

ARL-CNNS50 X 0.875 0.958 0.917
ARL-CNN50 v 0.876 0.96 0.918

a higher layer has a stronger attention ability than a lower
layer. In the right column of Fig. 7, we plotted the variation
of the learned value of « versus the epoch during the training
process. Generally, the weighting factor « increases during
training in all three cases. However, a high layer may have a
large weighting factor o, and accordingly the attention feature
map learned by a high layer makes more contributions to the
classification process.
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Fig. 9. Visualization of dermoscopy images (above) which contains some
artifacts, such as hair and bubbles, and the corresponding CAMs (bellow)

obtained by the proposed ARL-CNNS50 model.
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Fig. 10. Some typical examples of dermoscopy images normalized by using
color constancy algorithm. Top row: original images; bottom row: normalized
images.
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D. Effect of Lesion Segmentation

In the above experiments, the lesions were not segmented
before applying the images to the proposed ARL-CNN model
and directly patches were extracted. To evaluate the effect of
lesion segmentation, we also compared the baseline model
ResNet50 and our proposed ARL-CNN50 model, both of
which were trained with the segmented skin lesions - region
of interest (ROI). To obtain an accurate segmentation mask
of a lesion, we trained a state-of-the-art segmentation model
deeplabV3+ [52] by using the ISIC 2017 Skin Lesion Seg-
mentation dataset [5]. Some segmentation examples are shown
in Fig. 8. We randomly extracted image patches in the ROI
at different scales as introduced in section IV.B. In TABLE
VI, we compared the AUC obtained by the ResNet50 model
and our ARL-CNNS50 model with and without segmentation
in the melanoma classification and seborrheic keratosis clas-
sification. It shows that training the ResNet50 model based
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on the segmented ROI can effectively resolve the background
noise and generated more discriminative features for better
classification, resulting in an improvement of the average AUC
from 0.903 to 0.910. However, training the proposed ARL-
CNN50 model based on the segmented ROI only slightly
improved the average AUC from 0.917 to 0.918. The reason
can be attributed to the effective attention learning mecha-
nism which enables our ARL-CNN model to focus more on
semantically meaningful parts and to achieve the comparable
performance without segmentation. Considering that the pixel-
wise segmentation has little effect on classification, but a rather
high computational cost, we did not segment lesions before
applying the images to the proposed model.

E. Attention ability to the artifacts

The classification of skin lesions may suffer from the
presence of artifacts, including natural hairs and artificial air
bubbles. Some skin lesions may be partly obscured or covered
by these artifacts, as shown in Fig. 9. To evaluate the effect
of our attention mechanism on these artifacts, we visualized
the CAMs obtained by the proposed ARL-CNN50 model for
these skin lesions in Fig. 9. It shows that the attention is still
paid to the skin lesions, instead of hairs, bubbles, or other
artifacts. The robustness of learned attention to these artifacts
is significantly important for the accurate lesion classification.

FE. Normalization of Luminance and Color

We exploited the gray-world color constancy algorithm [53]
to normalize the luminance and color in dermoscopy images.
As shown in Fig. 10, the top row is original dermoscopy
images, and the second row is corresponding normalized
images. We trained the proposed ARL-CNNS50 model with
these normalized images and achieved an average AUC of
0.918. It shows that our ARL-CNN model is able to achieve
the comparable performance without normalizing the lumi-
nance and color, which shows a good generalization ability
on diversified images.

G. Robutness Analysis

We evaluated the proposed ARL-CNNS50 model and the
baseline ResNet50 model 10 times independently (m =
n = 10) and obtained 10 average AUC values for each
model, which were listed in Table VII. We assumed that
the average AUC values of ResNet50 and ARL-CNNS50 are
random variables X and Y, respectively, each following a
Gauss1an dlStI'lbuthIl ie. X ~ N(u1,02), Y ~ N(uz,03),
and 07 = 03. We adopted the independent two-sample #-test
to determine whether the ARL-CNNS50 significantly improves
the classification performance. The hypotheses to be tested are
Hy : pug > po versus Hy @ pp < po. Given the significance
level o = 0.01, t.01(10 + 10 — 2) = 2.552, and we have
a rejection domain W = {t < —2.552}. According to Table
VII, we have

T=090.26, 7=91.66
e R v
85 = wig 2y (y; —7)? = 24
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TABLE VII
AVERAGE AUC VALUES (%) OF ARL-CNN50 AND RESNETS50
OBTAINED IN 10 INDEPENDENT TESTS.

Test Index 1 2 3 4 5 6 7 8 9 10
ResNet50 90.3 190.4 | 90.3 [ 90.1 [ 90.3 | 90.5 | 90.2 | 90.4 | 90.1 | 90.0
ARL-CNN50 | 91.7 [ 91.7 | 91.6 | 91.8 | 91.7 | 91.5 | 91.6 | 91.6 | 91.7 | 91.7
Then,
. :Vﬂm—lp?+m—1n§: 0.0224 +0.0064 _
v m4+n—2 10+10—2
(15)

and the value of statistic tq is

T—y ~90.26 —91.66
1 1
suy/nr oy 0.04/& + 15
(16)
Since ¢ belongs to the rejection domain W, we reject the hy-
pothesis Hy. Therefore, comparing to ResNet50, the proposed

ARL-CNNS50 model improves the classification performance
and the improvement is statistically significant.

to = = —78.2624 < —2.5176

H. Computational Complexity

In our experiments, it took about 30 hours to train the
proposed ARL-CNNS50 model with one NVIDIA GTX Titan
XP GPU. The bulk of the time was consumed during the off-
line training. However, using the trained model to classify a
test image is relatively fast, taking less than 0.2 second (0.02
second per patch) on average. The fast online testing suggests
that our approach could be used in a routine clinical workflow.

VI. CONCLUSION

In this paper, we propose the ARL-CNN model for skin
lesion classification in dermoscopy images, which jointly uses
the residual learning and a novel attention learning mecha-
nisms to improve the discriminative representation ability of
DCNNs. The novel attention learning mechanism is designed
to use the feature maps learned by high layers to generate the
attention maps for low layers. We evaluated our model on the
ISIC-skin 2017 dataset. Our results show that the proposed
ARL-CNN model can adaptively focus on the discriminative
parts of skin lesions, and thus achieve the state-of-the-art
performance in skin lesion classification. Our future work in-
cludes the investigation of the unsupervised attention learning
and fine-grained skin lesion classification.
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