Comparison of Five Black-box Testing Methods for Object-Oriented Software

Kwang Ik Seo

Eun Man Choi

Dept. of Computer Engineering, Dongguk University, Seoul, Korea
{bradseo,emchoi}@dgu.ac.kr

ABSTRACT

As the size of software is getting huge, it is difficult
for testers to check out all parts of source code in
white-box style during integration testing or system
testing period. Therefore functional test methods based
on requirements information are frequently used in
system level test. There have been a lot of test methods
based on requirement specification. Each method has a
different approach to specify software requirements.
Test engineer should consider those various aspects of
approaches and select proper black-box testing method
to be applied. This paper presents the empirical
comparison of major black-box testing methods and
shows the different results by applying them to test a
certain software system. The result shows that black-
box testing methods check different levels of code
construct. Test planer should consider the combination
Jor the efficient test methods which combine extended
use case test method and OCL test method.

Keywords: Specification-based test, Comparison of
testing methods, Black-box test, Performance of testing
methods.

1. INTRODUCTION

Software testing is used to evaluate the correctness,
completeness and quality of developed computer
software. There are two main approaches of software
testing. One is white-box testing and the other is black-
box testing. White-box testing method is used for
logical and analytic test in unit test level. Meanwhile
black-box testing is used in integration level or system
level because black-box test does not need to look into
source code but just need to execute a system by using
input data and output result.

Even if we select a testing method among black-box
testing methods, the test result will be different because

the technique specifying requirements and the method
extracting test data are different in spite of the same
black-box style. If we don’t apply a proper test method
for black-box testing, we can’t trust the test result and it
produces enormous loss due to a waste of time,
manpower and money. Accordingly we need the various
comparative studies of test techniques to apply properly
in the testing field.

A couple of papers defined the elements to compare
the performance or the efficiency and the method to
build test case. These papers propose the method of
comparison based on cost, efficiency, usefulness, and
the number of faults[1][2][3]. Most researches showing
the results of test methods comparison are related to
statement coverage test, branch coverage test and data
flow coverage test based on white-box test. The subject
system in these papers experiment is also developed by
procedural paradigm[4][5][6]. It is difficult to find out
the comparison papers of black-box testing based on
OO specification even though programming paradigm
was shifted to Object-Oriented.

This motivation makes this paper execute five black-
box testing methods based on requirements of two
target systems developed by OOP and analyzes testing
results. Because test case specification and checking
parts of five testing techniques are all different, it is
difficult to acquire a uniform of the comparative
criterion. But the number of accessed variables or
methods in an object can be applied to the criterion
equally. Five black-box testing methods used for
empirical comparison are use-case driven testing, black-
box testing using collaboration diagram, testing using
extended use-cases, testing using formal
specifications(OCL or Object-Z). Two target systems
are adopted to evaluate these five testing methods. One
is ATM system and the other is the session scheduling
system.

IF u-@

COMPUTER
SOCIETY

Proceedings of the Fourth International Conference on Software Engineering Research,
Management and Applications (SERA’06)
0-7695-2656-X/06 $20.00 © 2006 IEEE

This paper is organized as follows. Section 2 of this
paper introduces testing methods based on
requirements. Section 3 describes how to test ATM
system and session scheduling system by executing five
different testing methods. Section 4 shows the
comparison of testing method’s approach. Section 5
presents analysis of coverage results in target systems.
In section 6, we propose efficient compound mixed
from test techniques to make coverage the largest. Our
conclusions are presented in Section 7.

2. TEST METHODS
REQUIREMENTS

BASED ON

Along with information technology development, the
complexity of software 1is increasing rapidly.
Accordingly various requirements and modeling
techniques are developed in order to help comprehend
system and communicate opinion with others.
Requirements specification is a baseline of software
project. Therefore functional testing frequently uses
various forms of requirements such as use-case
diagram[4], OCL[5], collaboration diagram[6], Object-
Z[7], extended use-case diagram[8], state transition
diagram[9] and Petri-net[10]. How these different forms
of requirement specification make effect on selecting
test cases and testing results? That is big research
question in this experiment.

Software paradigm was turned toward object-
oriented development method from traditional software
development. In these days object-oriented languages
are widely used in implementing software systems.
Accordingly in this paper, we choose to make
experiments of testing methods closely related to
object-oriented development methods and also pick
systems implemented by JAVA programming language
as a target system. In object-oriented point of view we
shift out simple use case, extended use case, Object-Z
mixed with state diagram, OCL devised to constraint
UML.

UML is lovely used by OO developers for analyzing
and modeling requirements. All of the testing methods
compared in this paper are using UML specification to
select test cases. Evaluating five black-box testing
methods based on UML specification make clear in
selecting UML based black-box testing. In our research
two target systems are neither parallel system nor real-
time system required to synchronous verification. Both
are sequential systems operated a designed sequential
task. In other words, these are sequential systems whose
main functions are to control sequential transaction by a

state transition simulation and a wuser interface.
Therefore, we would not consider the test methods
designed to a parallel processing and a synchronous
specification like Petri-net technique.

2.1. Use case Driven Testing

Test case extraction from simple use-case
diagram[4] is shown in Figure 1. First, by using use-
case diagram test engineers describe functions of a
system and define the flow of events from those
functions. Second, they redefine events flow with the
graph which is predefined in natural language for
composing possible scenarios. Last, test cases are
extracted from scenarios with adding exceptions. In this
method, algorithm in the system and interaction
between program modules are not considered. Test
engineers only forecast, define and verify possible
erTors.

Event Flow:
Use case starts
Phone Supplies dial
User selects 7 digit

"

(Use Case)

(Event Flow)

=

(Sc
G) 4

Except.1|Except.3 | Except.7 [Except.11
Except.2 |Except.4 | Except.8

enario)

D)

1

Except.5 |Except.9
Except.6 |Except.10

. (Test Case) .
Figure 1. Process for use case driven testing

[=] 0.Front.inser() [method | object point asdinpu fOutpu
et TN o b
A 2.Dispenser.delever() © — eeeee- 3
3.Front.diliver() g
(CoDl'laborat;on (Method List) (Method Sequence) (Test Case)
iagram

Figure 2. Process for testing using
collaboration diagram

2.2. Black-box Testing Using Collaboration
Diagram

Collaboration diagram in UML represents
correlation and messages to display interaction between
objects. Black-box testing method using collaboration
diagram[7] begins to make function-centered
collaboration diagram and then extracts test cases with
correlation and message flow between objects. In other
words, test engineer composes sequence of operation’s

uu-@

COMPUTER
SOCIETY

Proceedings of the Fourth International Conference on Software Engineering Research,
Management and Applications (SERA’06)
0-7695-2656-X/06 $20.00 © 2006 IEEE

calling and defines input/output values and makes test
cases for invoking series of message passing.

2.3. Testing Using Formal Specification

Object-Z was converted from Z, a formal
specification language for describing object-oriented
systems[10]. Test cases are extracted from Object-Z
specification as displayed in Figure 3. First, the major
classes are described with Object-Z and then Object-Z
is transformed to state transition diagram along with
transition paths of objects states. Finally, we make test
scenarios from state transition diagram and select an
input data and expected results for each scenario.

UML has a formal specification method to
compensate modeling only using diagrams. Object
Constraints Language is useful to present both
responsibility and authority of objects clearly by using
pre-condition and post-condition constraint In order to
build test cases from OCL we need to partition domain
of functions to be tested and then express constraints in
OCL. Next we analyze the relations between objects in
the partitioned domain and divide each object’s
components such as attributes, initial values and
variables. Finally, we arrange the components and the
constraint of the objects to make test cases. Testing
makes sure that the components satisfy their constraints.

method makes use case. Second, we compose a scenario
and extract classes or parameter used in classes. Third,
we combine the scenario and parameter of classes and
extract MM-path(Method/Message path). Finally we
make test cases by setting input events and output
events expected of MM-path from a scenario.

Class/method
E> extraction) Case Jnput dutput
Scenario —
- Instance |:>MM Path |:>A()7>B() :
B o) bo-co | - foxe

(Use Case)

(Sequence Diagram)

Figure 5. Process for testing extended use
cases

3. EXPRIMENT OF TESTING
SOFTWARE

ATM

ATM(Automated Teller Machine) software is
selected for this study and the system is implemented
using Java language. Data transmission and function
selection occur frequently between ATM system and a
user. ATM system opens two accounts for a customer.
A customer needs PIN and customer number for
transaction like cash withdrawal.

JPanel
JFrame

Bank

-custarmers:ArrayList

KeyPad ATM +Bank
+readCustomersyoid

+addCustomeroid

-custor int

-buttonPanel:JPanel
- -currentCustomer:Customer

«JButton

—Object — @ 1 2 input joutput
» AlA 1
2 8) =8| |®
QD "|c|p| b
S E|E
(Object Z) (State Diagram) (Scenario) (Test Case)
Figure 3. Test process using Object-Z
specification
[intaial value Table
D.d() |:> ‘m - methods |::> A |B
» variables 1 ITIF
Precondition C
<] {a] 7| T
Postcondition|
(OCL Expression) (Class Diagram) (Component (T/F Table)

Division)

Figure 4. Process for testing using OCL

2.4. Testing Using Extended Use Cases

The test case extraction of extended use case test
method is shown in Fig. 5. First, extended use case test

+findCustarer.Customer

-curentAccount BankAccount
-theBank Bank
-aButton-JBution
-bButton-JBution
-cButton:JButton
-pat:KeyPad
-displayJTextrea

~display.JTextField

+KeyPad
-addButton-void

Customer
+clearvoid

-pinint

value:double -customerhurnber:int

-BTART_STATE:int
-PIN_STATE:int
-ACCOUNT_STATE:nt
-TRANSACT_STATEint

+Customer
+matchboolean

-CHECKING_ACCOUNT It

checkingfccountBankAccount
-BAVINGE_ACCOUNT Nt

savingsAccount BankAccount

+ATM
+setCustomerNumbervoid
+selectCustomervoid
+salectAceountoid
+withdrawsoid
+depositvoid

Bankaccount

+BankAccount
+BankAccount
+depositvoid

+withdrawrvoid

-BButtonListener
-CButtonListenar
-ABUttanListEner

staterint halance:double

Figure 6. ATM class diagram

Figure 6 shows ATM software architecture. KeyPad
class inherited from JPannel class makes user interface
to input data. ATM class inherited from Jframe class
which is a super class of ATM class builds a frame and

m»-@

COMPUTER
SOCIETY

Proceedings of the Fourth International Conference on Software Engineering Research,
Management and Applications (SERA’06)
0-7695-2656-X/06 $20.00 © 2006 IEEE

accesses KeyPad class, Bank class, Customer class and
BankAccount class. Bank class uses Customer class.

3.1. Experiment #1: Use Case Driven Testing

In exterior user’s point of view, use case diagram
defines system functions to specify system
requirements. Figure 7 shows a use case for
‘Withdrawal function’. In case of withdrawal balance
can be enough or shortage. Also we need to consider
both normal case and exception case to make test cases.
A test case for cash withdrawal is shown in Table 1.

* Use case name | Withdrawal
actor Custorner

A customer get
authentication narmally |
1. & customer push the

button of withdrawal
Authenticaton function

Pre-condition

2. & customer input

Event flow
cash amount
deposit 3. ATM System
surrender and show a

customer

- halance

3.1 In a balance shart
case, AT system
show the message to
deny the withdrawal
Terminate the
transaction normall

Figure 7. Use case for withdrawal

Ll

Exception

Pre-condition

Table 1. Test cases for checking withdrawal

State Input | Output Balance

Normal 30$ 1. 30$ cash Before: 50%
1. remainder 208 | / After: 20$
Abnormal | 80$ 1. Balance short | Before: 50%
message / After: 50%

3.2. Experiment #2: Black-box Testing Using
Collaboration Diagram

'ﬂ1 1: chear() void
ﬁ1 1 gefvaluad) void
#1.4: getvalualooid
ﬁ"ij‘ tlzaf)yoid

7 7.4; getBavingsAccountvold
InkATREATM 0 g 1y

~q 8.1 wishdrasw{arnount) vaid

currentCustomer Customar

>1o

1: constuciorvald ==

=45Linrex

CurrentAccount BankAaccount

2 seiSiEe{START_STATE)vaid—=
1.2.1: setCustomerniumaen void ==
1,241 SelStPI_STATE ol ==
1.6 sat5lata(ACCOLUNT_STATE)woid ~==
1.1: salecticcount{accountyvaid ==
1.8: etState(TRANSACT_STATE)void—=
1.8: setEtatE(ACCOUNT _STATE)vold =

1.5 ndCustamen(zustomerhumbier Pin vold &

theBank;Bank

Figure 8. Collaboration Diagram

Collaboration diagram in Figure 8 displays the
sequence that after a customer creates ATM object,
ATM system prepares ATM functions and
communicates messages between objects.Table 2 shows
test cases for collaboration diagram which describes
systems creating ATM object and preparing
transactions. Also it describes the sequence of access
between objects and messages to be collaborated. From
collaboration diagram, we understand the methods of
functions and expect input/output values. Test cases
were built from compounding of those method and
input/output data.

Table 2. Test cases extracting from
collaboration diagram

No Test cases Input Oracle
1 ATM.AT Instrumented actionName:constructor
M() code linkEndOgjectTypeName:A
™

next : KeyPad.clear()
2 Pad.clear() Instrumented actionName:clear()
code linkEndOgjectTypeName:
KeyPad
next :
ATM.setState(START _STA
TE))
3 ATM.setSt Instrumented actionName:setState(STAR
ate(STAR code T STATE)
T _STATE linkEndOgjectTypeName:
) ATM

oo ceoe eee cee

16 currentAcc Instrumented actionName: withdraw()

ount.withd code linkEndOgjectTypeName:

raw() BankAccount
next: ATM.setState(ACCOU
NT_STATE)

17 setState(A Instrumented actionName:

CCOUNT code setState(ACCOUNT _STAT

_STATE) E)
linkEndOgjectTypeName:
ATM

next : KeyPad.clear()
18 Pad.clear() Instrumented actionName: clear()
code linkEndOgjectTypeName:
KeyPad
next : NULL

3.3. Experiment #3: Testing using Object-Z
specification

After generating Object-Z specification of target
system, we draw state transition diagram about an
important object. Then we make a scenario and expect
input/output values from the sequence of state transition
diagram. Figure 9 shows state transition diagram and
scenario about a withdrawal and deposit function. Table

Proceedings of the Fourth International Conference on Software Engineering Research, ¥ ,,.@
Management and Applications (SERA’06) COMPUTER
0-7695-2656-X/06 $20.00 © 2006 IEEE SOCIETY

3 shows the test cases driven by state transition diagram
of withdrawal object.

1, Sterd{stale = START_STATE)
1«_;,}"- 2, setCustomerNembenstate = PIN_STATE)
/"Ii" 3 :L:;_ 3, selectCustomel{state = ACCOUNT_STATE)
\E P 4, selectaccount{state = TRANSACT_STATE)
) J B1 witdraw(state = ACCOUNT_STATE)
pe Id.’ u-.,_?]-" 5.2 deposif{state = ACCOUNT_STATE)
< - 6 End

Figure 9. ATM State Transition Diagram

Table 3. Test cases based on Object-Z

Input Oracle Remarks
ID PIN Withdrawal or Deposit Balance
1. normal withdrawal Balance 0
S i 1234 Withdrawal: 300
C 2. normal deposit Balance 0
E 1 1234 Deposit : 3000
3. PIN Error
N 1 1234 Error
A Message
4. Cancel a selection of Account
R™ 1234 Initial
1 i) screen
5. deposit after withdrawal Balance 0
O 1 1234 Withdrawal:300 / Deposit: -200 200
100 decrease
6. withdrawal after deposit Balance 0
1 1234 De&osit: 300 / Withdrawal: ~ +200 200
10 increase
Table 4. Partition of object category
Class LB LB+1, HB-1 HB (High
(Low Boundary) boundary)
ATM 1 N/A N/A
KeyPad 1 N/A N/A
Bank 1 N/A N/A
Customer 1 N/A N/A
Table 5. Test cases based on OCL
Test Script Test Data Oracle
Pstatel F
pad.setValue() Pstate2 T
Pstate3 F
Pstate4 F
Pstatel F
theBank.findCustomer(customerNumber, Pstate2 F
pin)-customer
Pstate3 T
Pstate4 F
Pstatel T
theBank.findCustomer(customerNumber, — Pstate2 F
pin)<>NULL
Pstate3 F
Pstate4 F
) Pstatel F
currentCustomer.getCheckingAccount() Pstate2 F
Pstate3 F
Pstate4 T

3.4. Experiment #4:
specification

Testing wusing OCL

Table 4 shows the partition of object category. The
range of multiplicity depends on the system. But in this
case only one customer can create a transaction at one
time. Therefore LB(Low Boundary) is just 1.

Table 5 shows the final test cases derived from OCL
specification. In ATM system, a state attribute has
information of transaction about what ATM serves for
customer. List of test script includes methods changing
the value of state attributes. List of test data is the value
of the state attribute. Value of Pstatel is
‘START STATE, value of Pstate2 is ‘PIN STATE’,
value of Pstate3 ‘ACCOUNT_STATE’ and value of
Pstate4 ‘TARNSACT STATE’. So we can check that
the value of states can changed correctly according to
calling of a method.

3.5. Experiment #5: Extended Use Cases

For using extended use cases we should prepare
scenarios with specific instance of use case. Then we
extract the message paths of methods from scenario and
map input/output value into use case instance. Table 6
shows scenario about the function of selecting “Check
Account”. Table 7 is test cases from extended use case
test method about initial state of ATM. Initial state
should be ready to receive customer ID and PIN.

Table 6. ATM Cash Withdrawal Use Case

Agent Action
ATM Customer number request
User Customer number entry
ATM PIN request
User PIN entry
ATM Account selection
User Checking selection
ATM Amount and transaction type request
User Amount entry and transaction selection
ATM Cash delivery
User Cash withdrawal
ATM Account selection
User Exit
ATM Customer number request

uu-@

COMPUTER
SOCIETY

Proceedings of the Fourth International Conference on Software Engineering Research,
Management and Applications (SERA’06)
0-7695-2656-X/06 $20.00 © 2006 IEEE

Table 7. Test cases based on extended use
case

Test Case including Test Script InputOutput Note
ATM.ATM()->pad.clear() Before data
input
AButtonListener.actionPerformed()-> " Data
ATM.setCustomerNumber()-> input(click
pad.setValue() button
No.l)
ATM.setState()->pad.clear()-> """ After data
display.setText("Enter PIN A=OK") input

4. RESULTS OF EXPRIMENTS

Most of the test case derivation methods affect a
format of test case, amount of test data, coverage
because of their unique test case extraction technique
and approach. In this section we compare features of
test derivation methods.

Figure 10 shows coverage of each test case method
and domain of system during composing test cases.
Simple use case driven testing method doesn’t concern
inside of the system at all. However, in case of testing
method using extended use cases test engineers make
use scenarios for selecting test cases. When test
engineers find a fault, they make a specific test case by
inspecting inside of the system such as source code in
detail. For instance, if test engineers make test cases on
a basis of certain scenario and find faults at node D in
System Exterior Domain in Figure 11, test engineers
would concern source code as faults related with node
D and then they will build new test case again more
specifically.

<Modeling Domain tPngraming Domain

I
<System Exterior Domain: : i
|
|

|
[olams b]
Daomain 4 } aublio vaid 3af(}
f q o= B .. F
| clasaCd .
| } o= .. b
I T
Sirfale Use Case Test M d Collaboration Diagram Test Method
Covaragel = Ohject-2 Test hethod ‘QCL Test Methos

[Estended Use Case Test Method —

Figure 10. Approach features of test methods

In case of Object-Z test method we first understand
the relationship of methods between objects in system
and make scenarios to be tested finally. In Figure 11,
available scenarios are two paths as shown in system
exterior domain. So, we can test only two scenarios, (A,
B, D, E) and (A, C, D, E). In case of OCL test method

the technique to derive test cases cannot be related to
scenario at all. So to speak, test cases can be derived
from only certain states, methods, member variables or
relationship of classes. It means that the volume of test
cases depends on how to partition a target and
relationship.

Test case derivation methods have different points of
system domain and system access direction during
testing. For example, black-box testing using
collaboration diagram and Object-Z start to test with the
model domain. But levels of coverage are different so
that after testing with collaboration diagram test
method goes down into source code level as a program
domain. But testing method with Object-Z goes up to
functions of system level. Therefore if test document
depend mainly on modeling specification language like
class diagram and test level is a system functional level,
Object-Z test method is better than others. Meanwhile,
if test document depend mainly on modeling
specification languages like class diagram and purpose
of the testing is to test inner flow of program source
code focusing certain value of data, testing method
using collaboration diagram will be the best choice.

4.1. Coverage Analysis

For identifying characteristics of five back-box
testing methods, we measure coverage of each testing
scenario as standard for comparison. The scenario is
that customer accesses ATM system, selects account,
selects transaction and finishes the transaction. We
measure the percentage of coverage invoked by test
cases generated by each testing method.

Table 6 shows that the coverage of extended use
case test method is 84%, collaboration diagram 44%
and Object-Z test method 44%. The coverage of the
extended use case test method is almost twice lager than
Object-Z or collaboration diagram test method. The
reason of big difference is that extended use case
accessed logical flows as well as functions because the
process of extended use case test method proceeds from
black-box type to white-box type. That is to say, test
direction is top-down process down from system level
to source code level. On the contrary, the Object-Z or
collaboration diagram test method’s coverage is low
because the method is only on the basis of black-box
test of a test transition of state and a relation between
objects. Also Table 6 shows that the percentage of
coverage is 74% in OCL test method which partitions
dependency and multiplicity of a relationship between
classes, data members, methods and their combination.

uu-@

COMPUTER
SOCIETY

Proceedings of the Fourth International Conference on Software Engineering Research,
Management and Applications (SERA’06)
0-7695-2656-X/06 $20.00 © 2006 IEEE

In the case of simple use case diagram test method, the
percentage of coverage is the lowest as 24% because
this method is completely black-box test method which
covers only the fact related to UI(User Interface.

Table 8. Coverage with the same scenario
Simple Collaboration Object- OCL Extended

Use Diagram Z Use Case
Case

Target Variable(24) 9 10 11 21 23

Object

Method(27) 3 12 11 16 19
The number among 12 22 22 37 42
51
Coverage(%) 24% 44% 44% T4% 84%
4.2. More Experiment

To acquire reliability of coverage analysis, we test
the Session Scheduling system which is larger than
ATM with all five black-box testing methods
introduced in Section 2. Figure 11 is the class diagram
of Session Schedule System. Session Schedule manager
opens classes to session and students take courses.
While students try to take courses, system checks a
capacity of classes and completion of required subjects.
Students can add, delete and refer to classes.

subjects list in right side. This scenario is used to each
test derivation method equally. For this test, we found
member variables and methods as test target and test
data, and the result of coverage is shown in Table 9.

As shown in Table 9, data shows that simple use
case’s coverage is 41%, collaboration diagram’s
coverage 46%, Object-Z’s coverage 48%, OCL’s
coverage 66% and extended use case’s coverage 81%.
Even though there is little difference from ATM system
test's results, you can figure out that the coverage of
simple use case test method and of extended use case
test method in session schedule system, gets larger than
ATM system. As we already mentioned the reason for
these gaps in section 4, the reason isthe different
direction to access domain of the system and the
different viewpoint of each method as well.

Table 9. Coverage Of Session Schedule

System
Simple Collabora Object-Z OCL Extended Use
Use tion Case
Case Diagram
Target 33 25 23 47 53
Variable(59)
Method(51) 12 26 30 26 36
Total Number(110) 45 51 53 73 89
Coverage (%) 41% 46% 48% 66% 81%

Sectionl ist Sugang JDialog JFrame
«
-sections Vector +sectionListSectionList
“termSiting l<—— st Student “topPanel.JPanel “opPanel.JPanel
-bottomPanel:JPanel -lefiPanelJPanel
SectionList +mainvoid -complefionLabel.JLabel ~leflTopPanel.JPanel
+addSection void -complefionListJList -centerPanelJPanel
+getSectionsVectar -emitSerollPane:JSerollPane ~rightPanel JPanel
+gefTerm String -okButtan:JBution ~rightTopPanel.JPanel
~rightTopTopf JPanel
CompletionDialog ~rightBottornPanel.JPanel
-hultanPanel.Panel
Student ~totalNumPanel.JPanel
CourseSection -complefionPanel.Panel
tring ~gludentinfoLabel.JLahel
SUCCESSint -studentiD:String ~courseListLabel: JLabel
FAIL_REGISTERED:int ~majarSting -registeredListLabelJLabel
FAIL_PREREQUIREDint ranscript Transcript Transcript -totalNumLabel.JLabel
FAIL_FULLint ~tegistered CourseSection Vector -tompletionCourseLabel-JLahel
-originalSourse:Course ~cormpletionCs ector -allCourseListList
~sectionNoint Student [-student Stucent ~registeredListList
~daySting +getStudentDidtring -exitButtan:JBution
“startTimeint +get3tudentiame:3tring Transcript ~registerBution:/Bution
finishTime:int +geldajorSiing +getStudent Student |Button-JBution
_maxSeatint +gelTranseript Transcript < +addCompletionCoursevoid -completionButton:JButton
_minSeatint +add Completion Coursexvoid +getCompletionCourseNector -serollPanet:JScrallPane
-registeredSeatint +registerCourseSectionvoid +hasCompleted hoolean -gerollPane2.JSerollPane
sectionListSectionList +isRegisteredboolean
“registeredStudent Hashtable +uelRegisteredCourse SectionVer SugangFrame
+oSting:Sting

CourseSection
+etOriginalCourse:Course
+getSectionNocint

+getDay String
+getstarTime:int
+gelFinishTimeint
+gelaSeatint
+getilingeatint
+gelReyisteredSeatint
+setectionListvoid
+gelReyisteredStudent Hashtable
“iegisterStudentint
“cancelboolean

“toBtring String

Course

CompletionCourse
-courselD:Sting
-tourseName:Sting
-preReduiredVector
-secfians Vector

~cormpletionCourse:Course
“gradechar

CompletionCourse
+getCompletionCourselD:Sting
+getGrade:char
“toBtringSting

Course
+adiPreRequiredvoid
+addSectionyvaid
+getCourselD:String
+getCaurseName:Sting
+getPreRequired Veclor

Figure 11. Class diagram of session
scheduling system

The scenario to test session scheduling system is the
following. Students access system, select the subject
among the subject, and then browser shows selected

5. Combination for Coverage Maximization

In the table 8 and table 9, although the percentage
figures are some different, the comparison of the
coverage says the same result of the coverage
percentage like “simple use case test method <
collaboration diagram test method < Object-Z test
method < OCL test method < extended use case test
method”. Especially OCL test method has
approximately 70 % and extended use case test method
has about 80%. Therefore we can refer to extended use
case or OCL if you need to consider broader coverage
as test purpose in the test planning stage. In addition,
we can test software systems efficiently with
combination of extended use case test method and OCL
test method.

As you look into the Section 3 and Section 4, those
test methods are some different aspects in the process of
extracting the test cases between OCL and extended use
case test method. For extended use case test method, it
is black-box test based on the functions of the system by
using a scenario which contains the test of a logical
flow of the inner program in the system. Otherwise,

m»-@

COMPUTER
SOCIETY

Proceedings of the Fourth International Conference on Software Engineering Research,
Management and Applications (SERA’06)
0-7695-2656-X/06 $20.00 © 2006 IEEE

OCL test method isn't for the verification about the
logical flow but it tests the relationship with member
variables or methods or objects, which are components
of the logical flow. Hence, first if we test a scenario
instance which represents the logical flow by extended
use case test method, and then traces the fault from the
error spot by OCL Test Method when the error rises, it
would be efficient test work.

6. CONCLUSIOIN

It is necessary for developing quality software that
developers make specification of user requirements
before implementing a system. So, the method using
specification is the easiest and plain way to test whether
the system is built correctly or not. We tested ATM and
Session Schedule System with five test methods, and
compared features and coverage of each method. This
empirical experiment shows how and why the coverage
is different according to the point of view in test
approach.

Moreover, we considered the combination for the
efficient test methods which combine extended use case
test method and OCL test method. If we use the data
from this study about various black-box test methods as
the required material and the results of this experiment
is organized well, it will be helpful in planning and
improving the performance of software testing

7. References

[1] L.A. Clarke, A. Podgurski, D.J. Richardson, S.J. Zeil, “A
Comparison of Data Flow Path Selection Criteria,” 8th IEEE
International Conference on Software Engineering, pp.244-
251, August 1895.

[2] L. Lauterbach & W. Randall, “Experimental evaluation of
six test techniques,” Proceedings of COMPASS'89,
Gaitersburg, MD, pp.36-41, June 1989.

[3] S. Ntafos, “A Comparison of Some Structural Testing
Strategies,” IEEE Transaction on Software Engineering, Vol.
14, No.6, pp.868-874, June 1988.

[4] Dave Wood & Jim Reis, “Use Case Derived Test Cases,”
STAREAST on Software Quality Engineering Conference,
1999.

[5] Eun Man Choi, “Generating Test Cases for Object-
Oriented Design Specification Described by OCL,” Journal
of Korea Information Processing Society, Vol.8-D, No.6,
pp.-843-852, December 2001.

[6] Aynur Abdurazik & Jeff Offutt, “Using UML
Collaboration Diagrams for Static Checking and Test
Generation,” The Third International Conference on the
Unified Modeling Language (UML’ 00), October, York, UK,
pp-383-395, 2000,

[7] Chun-Yu Chen, Constructing Usage-Based Testing On
Object-Z Formal Specification Based Specification, Ph.D.
Dissertation, Auburn University, 1999.

[8] Eun Man Choi, “Use-Case Driven Test for Object-
Oriented System,” Proceedings of the IASTED International
Conference, ACTA Press, August, pp.164-192, 2001.

[91 Y. G. Kim, H. S. Hong, D. H. Bea & S. D. Cha, “Test
cases generation from UML state diagrams,” [EEE
Transaction on Software Engineering, Vol. 164, No. 4,
pp.-187-192, August 1999.

[10] S. Ramaswamy, “A Petri net based approach for
establishing necessary software design and testing
requirements,” System, Man and Cybernetics, 2000 IEEE
International Conference, Vol.4, pp.3087-3092, October
2000.

[11] P. Hsia, “Formal Approach to Scenario Analysis,” /EEE
Software, Vol.11, No. pp.33-41, 1993.

[12] K. Koskimies & H. Mossenbok, “Scene: Using Scenario
Diagram and Active Text for Illustrating Object-Oriented
Programs,” Proceedings of 18th International Conference of
Software Engineering, pp.366-375, March 1996.

[13] K. Yukse, S. Dupont, D. Harnoir and C. Froidure, “FTTx
automated test solution: Requirements and experimental
implementation,” /[EE Magazine Electronics Letter, Vol.41,
No.9, pp.546-547, 2005.

[14] R. Boddu, G. Lan, G. Mukhopadhyay, B. Cukic,
“RETNA: from requirements to testing in a natural way,”
12th IEEE International Requirements Engineering
Conference, pp.262-271, 2004.

[15] P. Jorgensen, “Object-Oriented Integration Testing,”
Communications of the ACM, Vol.37, No. 9, pp. 30-38, 1994.
[16] J. McGregor and T. Korson, “Integrated Object-Oriented
Testing and Development Process,” Communications of the
ACM, Vol.37, No.9, pp. 57-77, 1994.

[17] C. Lott, A. Jain, S. Dalal, “Advances in Model-Based
Testing(A-MOST2005): Modeling requirements for
combinatorial Software testing,” ACM SIGSOFT Software
Engineering Note, Preceedings of the first international
workshop on Advances in model-based testing A-MOST °05,
Vol.30, pp.1-7, 2005.

[18] E. Weyuker and B. Jeng, “Analyzing Partition Testing
Strategies,” [EEE Transactions on Software Engineering,
Vol.17, No.7, pp.703-711, 1991.

[19] R. Lutz, 1.C Mikulski, “Requirements discovery during
the testing of safety-critical software,” Software Engineering
25th IEEE International Conference, pp.578-583, 2003.

[20] S. Berner, R. Weber, RK. Keller, “Requirements &
testing: Observations and lessons learned from automated
testing,” Proceedings of 27th international conference on
software Engineering, pp.571-579, 2005.

[21] D. Eshelman & M. Klafter, “Activity diagram — a
requirements distribution process for test equipment
development,” [EEE AUTOTESCON 2004 Proceedings,
pp.37-43, 2004.

IF H-@

COMPUTER
SOCIETY

Proceedings of the Fourth International Conference on Software Engineering Research,
Management and Applications (SERA’06)
0-7695-2656-X/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

