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A B S T R A C T

In this paper, a multiobjective hybrid bat algorithm is proposed to solve the combined economic/emission
dispatch problem with power flow constraints. In the proposed algorithm, an elitist nondominated sorting
method and a modified crowding-distance sorting method are introduced to acquire an evenly distributed
Pareto Optimal Front. A modified comprehensive learning strategy is used to enhance the learning ability of
population. Through this way, each individual can learn not only from all individual best solutions but also
from the global best solutions (nondominated solutions). A random black hole model is introduced to ensure
that each dimension in current solution can be updated individually with a predefined probability. This is not
only meaningful in enhancing the global search ability and accelerating convergence speed, but particularly
key to deal with high dimensional systems, especially large-scale power systems. In addition, chaotic map is
integrated to increase the diversity of population and avoid premature convergence. Finally, numerical ex-
amples on the IEEE 30-bus, 118-bus and 300-bus systems, are provided to demonstrate the superiority of the
proposed algorithm.

1. Introduction

In power systems, the objective of economic dispatch problem is to
seek an optimal schedule for all committed generators to minimize the
operating fuel cost while satisfying all kinds of constraints such as load-
demand balance constraint and generation capacity constraints [1,2].
However, with the increasing public concern on the environmental
problem caused by fossil fuels, it is urgent for us not only to care for
economic benefit, but also to tackle the emission problem of fossil fuels
[3,4]. Therefore, the emission objective should also be involved.

1.1. Literature review and motivation

As a multiobjective optimization problem (MOP), the combined
economic/emission dispatch (CEED) problem has been intensively
studied by different technologies [3–18], which are mainly classified
into two categories [19]:

(i) Classical optimization methods Such methods include linear pro-
gramming [5], weighted sum method [6] and ε–constraints [7], etc.
The most popular method among them is weighted sum method,
which mainly has two drawbacks: ① This method, as well as other

classical method, is not suitable for solving nonconvex and/or
nonsmooth problems. ② Only one solution is generated in a single
run, that is, if the Pareto Optimal Front (POF) has 100 non-
dominated solutions, the program must be run 100 times by varying
the weights [8,9].

(ii) Evolutionary algorithm techniques Many of these algorithms have
been successfully introduced to solve the CEED problem, such as GA
(genetic algorithm) based algorithm [1,12], PSO (particle swarm
optimization) based algorithms [13,14], flower pollination algo-
rithm [15], SMODE [16], FBHPSO-DE [17] and ant colony opti-
mization [18]. These algorithms essentially remove the aforemen-
tioned drawbacks of weighted sum method, and are suitable to deal
with the nonlinear and nonconvex optimization problem. However,
it is well known that evolutionary algorithms have difficulty in
dealing with premature convergence problem. For example, genetic
algorithm (GA) often suffers from premature convergence problem
once the degree of population diversity is sharply decreased [20],
and PSO also encounters the same problem when particles trap into
local optima [21,22]. Moreover, existing algorithms always have
difficulties in dealing with large-scale system. For example, in PSO,
all the dimensions of vit or xit are updated simultaneously rather
than only for one dimension. In addition, the same parameters are
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applied to the update of vit and xit in each step of iteration. These
are harmful to enhance the diversity of vit or xit, and limit the
performance of PSO especially for high dimensional systems.

As a promising evolutionary algorithm, bat algorithm (BA), pro-
posed in [23], integrates the advantageous of PSO, harmony search and
simulated annealing algorithm. Optimization problems about economic
dispatch and CEED problem solved by BA have been reported in several
literatures. For example, in [24], the economic dispatch problem was
realized by chaotic BA, but it is a single objective optimization problem
and does not include emission objective. In [25], BA was introduced to
deal with the CEED problem, but the price penalty factor was used to
convert the MOP to a single-optimization problem, so the POF could not
be formed. In [26], a multiobjective BA (SALBA) was applied to dy-
namic environmental/economic dispatch problem. However, there are
several drawbacks in the proposed algorithm: ① All the dimensions of
each generated solution are updated simultaneously, that is, it cannot
update each single dimension of a solution separately, which is very
important for enhancing the global search ability of algorithm. ② The
update for velocity, loudness and pulse emission is the same as original
BA, which cannot be well suitable to MOP problem. As for the opti-
mization model in [26], several important constraints are not included
in the model such as voltage magnitude constraints and line flow
constraints. In [27], the CEED problem was solved by BA, but the POF is
generated by varying the weights of the two objectives and power flow
constraints are not included in the CEED model. In [28], an improved
BA was proposed to solve the CEED problem considering the uncertain
of wind power, and the local random walk in original BA was replaced
by mutation operator. However, it does not change the fact that all the
dimensions in a solution are updated simultaneously, which would
limit the performance of the proposed algorithm.

1.2. Contributions

In this paper, a Multiobjective Hybrid Bat Algorithm (MHBA) is
proposed to solve the CEED problem including power flow constraints.
The main contributions of this paper is listed as follows:

(i) A new multiobjective hybrid bat algorithm (MHBA) is proposed, which
is especially suitable for high dimensional systems. The performance of
MHBA is improved in the following aspects compared with the
existing multiobjective BA in [25–29]. ① An elitist nondominated
sorting method with external archive [30–32] is introduced to
generate POF, which overcomes the drawbacks of weighted sum
method. ② In order to increase the learning ability of population,
the comprehensive learning strategy [38] is modified to update the
velocity. ③ The random walk in original BA is replaced by the
random black hole model proposed in [35]. This replacement is
meaningful in enhancing the global search ability and accelerating
convergence speed. More importantly, in MHBA, each dimension in
current solution can be updated individually due to the replace-
ment. This is essentially different from the original BA, and is key
for MHBA to obtain better solutions for high dimensional systems
compared with other algorithms. ④ To avoid premature con-
vergence and increase the diversity of population, the loudness and
pulse emission rate in multiobjective BA are replaced by chaotic
map.

(ii) The CEED of large-scale systems with power flow constraints are ef-
fectively solved by the proposed algorithm. The integrating of random
black hole model can greatly increase the random search efficiency,
which make MHBA be more suitable for large-scale systems. The
reason is given as follows: ① In MHBA, each dimension in current
solution is updated individually with a probability p, and the up-
date parameter is different for each step. This gives each individual
the chance to alter the search direction in every iteration, and
hence increases the diversity of solutions. But as for other

algorithms, for example, PSO, all the dimensions in velocity vit and
position xit are updated simultaneously with the same parameters in
each iteration step. ② Each dimension in current solution not only
can be absorbed by a black hole, but also can escape from the black
hole because the speed of individuals is all remained in the process.
This is meaningful in preventing premature convergence problem.
③ Different from the original random black hole model, the effec-
tive radius rd in the model is treated as a piecewise parameter. This
is helpful in enlarging search area for individuals at the beginning
with a relatively large value of rd, and improving the solution
qualities with a relatively small value of rd for the rest steps of
iteration. The IEEE 118-bus system and IEEE 300-bus system are
used in the simulation to demonstrate the effectiveness of the
proposed algorithm in solving large-scale systems. The results show
that RCBA has great advantages in dealing with the CEED of large-
scale systems with power flow constraints compared with other
algorithms.

The remainder of this paper is organized as follows. Section 2 de-
scribes the CEED problem including power flow constraints. Section 3
explores the approaches to improve the performance of BA for MOP and
proposes the multiobjective optimization algorithm: MHBA. Section 4
gives the simulation results of the standard IEEE 30-bus system, IEEE
118-bus system and IEEE 300-bus system, and demonstrates the effec-
tiveness of MHBA in dealing with the CEED of large-scale systems
compared with other algorithms. Section 5 summarizes several con-
clusions and gives some future research directions.

2. Problem formulation

The CEED problem is aimed at minimizing fuel cost and emission
simultaneously while satisfying various equality and inequality con-
straints. The objectives and constraints of CEED problem are formulated
as follows.

2.1. Objectives

2.1.1. Objective 1: minimization of fuel cost
The total fuel cost including valve point effects is expressed as below

[1]:

∑= + + + −
=

F P a P b P c d e P P( ) [ | sin( ( ))|],
i

N

i i i i i i i i i
1

2 min

(1)

where N is the number of generators; = …P P P P P( , , , );N i1 2 and Pimin are the
active power output and the minimum active power output limit of the
i-th generator, respectively; F(·) is the total fuel cost; a b c d, , ,i i i i and ei are
fuel cost coefficients of the i-th generator.

2.1.2. Objective 2: minimization of emission
The main emission caused by fossil fuels, such as nitrogen oxides

(NOx) and sulfur oxides (SOx), is described as follow [9]:

∑= + + +
=
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where E(·) is the total emission; α β γ ε, , ,i i i i and λi are emission coefficients
of the i-th generator.

2.2. Constraints

2.2.1. Generation capacity constraints
The active power output Pi and reactive power output Qi of the i-th

generator should be restricted by lower and upper limits ( = …i N1, , ):

⎧
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where Pimax is the maximum active power output limit of the i-th gen-
erator; Qimin and Qimax are the minimum and maximum reactive power
output limits of the i-th generator, respectively.

2.2.2. Power balance constraint
The total active power covers the total power load demand Pd and

transmission line losses Ploss, which is described as:

∑ = +
=

P P P .
i

N

i d
1

loss
(4)

The transmission line losses are calculated by solving the following
power flow equations [33,34,39]:

∑− − + =
=
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where Pdi and Qdi are the active and reactive load demand at bus i,
respectively; Vi and Vj are the voltage magnitudes at buses i and j, re-
spectively; = −θ θ θij i j (θi and θj are the voltage angles at buses i and j,
respectively); Gij and Bij are the transfer conductance and susceptance
between buses i and j, respectively; Nbus is the number of buses. After all
the voltage magnitudes and angles are obtained, the real Ploss is cal-
culated as

∑= + −
=

P g V V V V θ[ 2 cos ],
k

N

k i j i j ijloss
1

2 2
line

(7)

where is the conductance of the k-th line connecting buses i and j; Nline
is the number of transmission lines.

Most existing literatures on CEED do not consider power flow
constraints [3,11,13,16–18]. This would result in the failure or mis-
match when the methods are applied to practical systems. For example,
reactive power, which is omitted in existing studies, may have great
effect on active power and should be included in the research.

2.2.3. Voltage magnitude constraints
The voltage magnitude should be controlled between the lower and

upper bounds for secure operation:

⩽ ⩽ = …V V V i N, 1, , .i i i
min max

bus (8)

2.2.4. Line flow constraints
The security constraint of power for transmission line is restricted

by

⩽ = …S S i N, 1, , ,ti ti
max

line (9)

where Sti is the line flow at the i-th line, and Stimax is the upper limit line
flow at the i-th line.

2.2.5. Ramp rate limits
The power output of units cannot change instantaneously, and is

limited by the ramp rate limits:

⎧
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where URi and DRi are the up ramp rate and down ramp rate limits of
the i-th unit, respectively; Pi0 is the previous output power.

2.2.6. Prohibited operating zones
Prohibited operating zones exist in thermal units due to the effect of

shaft bearing, vibration of machines, etc. This would lead to dis-
continuous input-output characteristic curves which is described as
follows:
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where = …k m m2, , ; is the number of POZs for the i-th thermal unit; Pi mU,
and Pi mL, are the upper and lower limits of the m-th POZ for the i-th
thermal unit, respectively.

3. The implementation of MHBA

This section is devoted to enhancing the performance of multi-
objective BA and proposing the multiobjective optimization algorithm:
MHBA.

3.1. Introduction of multiobjective bat algorithm

BA was first proposed in 2010 [23]. It simulates the behavior of bats
hunting for prey. Based on the original BA, a multiobjective BA was
proposed in [29]. According to [23,29], the frequency fi, velocity vi and
position xi of virtual bats are described as follows:

= + −f f f f μ( ) ,i min max min (12)

= + −+v v x x f( ) ,i
t

i
t

i
t

b
t

i
1 (13)

= ++ +x x v ,i
t

i
t

i
t1 1 (14)

where fi is the frequency of pulse emitted by the i-th virtual bat;
∈μ [0,1] is a random number with uniform distribution; fmin and fmax

are the minimum and maximum frequency, respectively; vit and xit are
the velocity and position of the i-th virtual bat at time step t, respec-
tively; xbt is the global best position at time step t.

For local search, the random walk is defined to generate a new
solution around the current best solution xbt , and is described as

̂= ++x x ϕA ,i
t

b
t t1,new (15)

where ̂ = ∑=A A N( )/
t

i
N

i
t

p1
p is the average loudness at time step t (Np is

the number of population) and ∈ϕ [0,1] is a random number. The pulse
emission rate ri and loudness Ai are updated as follows:

= − −+r r τt(1 exp( )),i
t

i
1 0 (16)

=+A ξA ,i
t

i
t1 (17)

where ∈ +∞τ (0, ) and ∈ξ [0,1] are both constants.
In order to generate the POF, the weighted sum method is in-

troduced in the existing multiobjective BA [29]. There are several
drawbacks about this method:

(i) The weighted sum method is used, which works only for convex
Pareto front and requires the program to be run as many times as
the number of nondominated solutions in POF.

(ii) For a general MOP, POF is always needed, which is described by
nondominated solutions. This means that all the nondominated
solutions, rather than only one single global best solution, are
optimal solutions. But for the update of velocity and random walk
in [29], only one global optimal solution is needed. Therefore, the
update for velocity (13) and random walk (15) are not suitable to
MOP now.

(iii) The search ability of multiobjective BA completely depends on
random walk (15). So the convergence speed slows down greatly if
the algorithm traps into local optima. Moreover, all the dimensions
of +xit 1,new in (15) are updated simultaneously, that is, it cannot
update each single dimension in +xit 1,new separately, which is
harmful to enhance the global search ability.

(iv) From the pseudo code in [29], we can see that the random walk
will be executed and the new solutions will be accepted only when
“ > rrand i” and “ < < ∗A f x f xrand & ( ) ( )i i ” are satisfied,
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respectively. However, according to (16) and (17), →r ri
0 and

→A 0i as → ∞t . Therefore, the chance for executing random walk
and accepting new solutions is decreased greatly as the iteration
going on, which has bad effect on increasing the diversity of po-
pulation and avoiding premature convergence of BA.

3.2. Multiobjective hybrid bat algorithm: MHBA

Different strategies are introduced to overcome the above draw-
backs and the pseudo code for MHBA is given in this subsection.

3.2.1. An elitist nondominated sorting method with external archive
To overcome the first drawback, an elitist strategy and non-

dominated sorting method are employed in generating the POF.

Definition 1 (Pareto Dominance “≺”). In a minimization MOP, let F x( )i

denote the i-th objective function, ∈ …i n{1, , }f . A feasible solution ′x is
said to dominate another feasible solution ″x (denoted by ′ ≺ ″x x ) if and
only if ′ ⩽ ″F x F x( ) ( )i i for ∀ ∈ …i n{1, , }f and
∃ ∈ … ′ < ″i n F x F x{1, , }: ( ) ( )f i i .

In NSGA-II [37], an elitist nondominated sorting method was pro-
posed. All the feasible solutions are employed to generate fronts with
different ranks denoted byF F…, , n1 p (np is the number of ranks), and the
dominance relationship is F F F F≺ ≺ …≺ n1 2 3 p. The new population
for NSGA-II completely depends on the ranked fronts. Of course, the
feasible solutions inF1 are chosen preferentially, but if the size ofF1 is
smaller than the number of population, solutions inF2 are selected next
and so on.

Different from NSGA-II, in our algorithm, only the first non-
dominated set is generated, which is saved in the external archive as in
[30–32]. This scheme is shown in Algorithm 1 (xnon denotes the new
generated solution, Sea denotes the nondominated solutions saved in
external archive and “%” denotes comment).

Algorithm 1. Update scheme for external archive

1: Import data for xnon and Sea
2: if ≺xnon a set of members in Sea then
3: Delete these members from Sea
4: Add xnon to Sea
5: else
6: if Any member in ≺S xea non then
7: Discard xnon
8: else % nondominated with each other
9: Add xnon to Sea
10: end if
11: end if

If the number of nondominated solutions in Sea is larger than the
predefined value, the crowding-distance sorting method is introduced
to delete the redundant solutions. According to [37], the crowding-
distances are calculated for all individuals, and then the nondominated
solutions are listed in descending order by the crowding-distances. If
the number of nondominated solutions is larger than the size of po-
pulation Np, the nondominated solutions ranked in top Np are chosen
and the rest are all deleted. For example, suppose that total ten non-
dominated solutions are obtained in Fig. 1(a) and only five of them are
needed. The result is shown in Fig. 1(b) when the crowding-distance
sorting method in [37] is used. In Fig. 1(b), the remained five non-
dominated solutions are not evenly distributed, because the solutions
ranked in last five, i.e., …x x, ,5 9, are deleted simultaneously. The draw-
back of this method is that when one solution is deleted, it does not
consider the influence on crowding-distance generated by its neighbors.
In order to make up the deficiency, a modified crowding-distance
sorting strategy [39] is introduced and shown in Algorithm 2.

Algorithm 2. The modified crowding-distance sorting strategy

1: Get the set of nondominated solutions
2: Get the number of the nondominated solutions which will be

deleted (denoted by Ndel)
3: while >N 0del do
4: Calculate all the crowding-distances
5: Delete the nondominated solution who has the smallest

crowding-distance
6: = −N N 1del del
7: end while

With the strategy of Algorithm 2, only one nondominated solution is
deleted in each iteration, and after this, the new crowding-distances
will be calculated again. Fig. 2 shows the process with the same data in
Fig. 1(a) by Algorithm 2. Only the nondominated solution with the
smallest crowding-distance is deleted at each step. Therefore, a more
evenly distribution along the Pareto front is obtained in Fig. 2(e) than
that in Fig. 1(b).

3.2.2. A modified comprehensive learning strategy
To overcome the second drawback in Section 3.1, the comprehen-

sive learning strategy in [38] is modified and then applied to the update
of velocity (13).

In the original BA, the update of velocity depends on xbt , which is the
only global best solution during the whole iteration. However, as stated
previously, the set of best solutions for MOP, i.e., the POF, consists of
many nondominated solutions rather than only one. So how to choose

Fig. 1. (a) Demo exemplars; (b) crowding-distances sorting by NSGA-II 2.

Fig. 2. The result using Algorithm 2: (a) x9 is deleted; (b)x6 is deleted; (c) x8 is deleted;
(d) x2 is deleted; (e) x5 is deleted.
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the nondominated solutions is very crucial to MOP. At the same time, in
(13), each individual only can learn from the global best solution and
itself, but cannot learn from others. Therefore, another effective ap-
proach of enhancing the performance of BA is to share the information
of other individuals.

In [38], a comprehensive learning strategy was proposed. Its main
characteristic is that each dimension of a particle is capable of learning
from different pbests (the best solution found by each particle) or the
gbest (the global best solution).

Based on this idea, we form the following update rule for velocity vi:

= − + + − ∗ −

+ −

+v f x ω v c η i v r

c η i v r

( gbest ) (1 ( ,:)) (pbest )

( ,:)(gbest ) ,

i
t

i i
t

i i
t

fi i
t

i
t

1
mop 1 1

2 mop 2 (18)

where gbestmop is a randomly selected solution inF ω; i1 is the weighted
coefficients; c1 and c2 are the acceleration constants; r1 and r2 are
random numbers between 0 and 1; η is an ×N NP n random matrix
which consists of 0 and 1 (Nn is the dimension of MOP); pbestfi is a
compound solution whose dimensions are randomly selected in all
pbests if <rand Pc, otherwise pbestfi is the best solution found by the
particle itself (rand is a random number between 0 and 1, and Pc is a
predefined threshold value).

There are mainly two differences between (5) in [38] and (18):

(i) The frequency fi is included in (18), which is suitable to BA.
(ii) In (18), each individual learns from pbestfi and gbestmop simulta-

neously rather than learns from one of them.

By this means, each individual is able to learn not only from all
individuals but also from the nondominated solutions, which is a sig-
nificant step to enhance the learning ability of population.

3.2.3. The random black hole model
To overcome the third drawback in Section 3.1, the random walk

(15) is replaced by the random black hole model [35].
According to [35], a random black hole is generated around the

current gbest in each iteration of the algorithm. Each particle is re-
garded as a star and influenced by the gravity of generated black hole,
which is treated as an approximate real solution because the real so-
lution is kept unknown during the whole iteration process.

The schematic of random black hole model is shown in Fig. 3, where
rd is the radius of random black hole around gbest; gbestn is the n-th
dimension of gbest; ∈l [0,1] is a random value which denotes the at-
traction of random black hole to a star; ∈p [0,1] is a predefined
threshold value; +xi nt, 1 is the n-th dimension of xi at time step +t 1; the
grey point xit is the solution at time step t, and the blue point +xit 1 is the
solution at time step +t 1 generated by (14). After the new solution

+xit 1 (the blue point) is generated, a new black hole (the red point) is
formed around gbest (the yellow point), and the random number l as-
sociated with +xi nt, 1 is generated. If ⩽l p, the n-th dimension +xi nt, 1 is
captured by the black hole which is described as below:

= + ∗+x r κgbest ,i n
t

n d,
1 (19)

where ∈ − +κ [ 1, 1] subjects to uniform distribution.
The above explanation is suitable to single objective optimization.

In our algorithm, the gbest is randomly chosen from F1 for increasing
the diversity of solution for MOP. Through this way, the global search
ability of proposed algorithm can be greatly improved. The process for

random black hole model is displayed in Algorithm 3.

Algorithm 3. The process for random black hole model

1: Randomly assign a value for gbest from F1

2: for each dimension in +xit 1 do
3: Generate a random value for l
4: if ⩽l p then
5: Update a dimension for +xit 1 by (19)
6: end if
7: end for

Algorithm 4. The pseudo code for MHBA

1: Initialize x v A r f f N, , , , , ,i i i i pmin max and Nmax
2: Initialize the parameters of comprehensive learning strategy
3: Get the fitness values according to xi
4: Get nondominated solutions
5: while t < Max number of iterations do
6: while <j Np do
7: Update pbest and gbest
8: Update frequency, velocity and position by (12), (18) and

(14)
9: if >rand rj then
10: Run Algorithm 3 to update xi
11: end if
12: Check constraints
13: if <rand Aj then
14: Accept new solutions
15: end if
16: Update rj and Aj by (20)
17: end while
18: Calculate nondominated solutions
19: Update external archive Sea by Algorithm 1
20: if the size of >S Nea max then
21: Execute Algorithm 2
22: end if
23: end while
24: Post process results and visualization

3.2.4. Chaotic map
In order to overcome the fourth drawback in Section 3.1, chaotic

map is used. It is a powerful strategy for metaheuristic methods to in-
crease the diversity of population and then avoid premature con-
vergence by replacing random parameters or variables with chaotic
sequences, which is helpful for algorithms to carry out overall searches
[40–42]. For example, in [43], the pulse emission rate r and loudness A
were both replaced by different chaotic maps, which brings better
performance than the original BA.

In this paper, the tent map in [43] is adopted to replace the loudness
A and pulse emission rate r simultaneously, which is defined as below:

= ⎧
⎨⎩

<
− ⩾+u

u u
u u

/0.7 if 0.7,
10(1 )/3 if 0.7.k
k k

k k
1

(20)

In this way, the chance for executing random walk and accepting
new solutions is improved greatly, which is beneficial to avoid pre-
mature convergence.

3.2.5. The proposed MHBA
According to the above analysis, the multiobjective hybrid bat al-

gorithm (MHBA) is proposed and the pseudo code is shown in
Algorithm 4.

The main differences between MHBA and the existing multi-
objective BA are listed as follows:Fig. 3. The schematic of random black hole model.
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(i) The pbest and gbest are updated before executing (18) (see lines 7
and 8).

(ii) The random walk is replaced by the random black hole model, i.e.,
Algorithm 3 (see line 10).

(iii) The procedure “Accept new solutions” is executed only when
<rand Aj (see lines 13 and 14). The condition “ < ∗f x f x( ) ( )i ” (see

line 12 in [29]), which is inappropriate to calculate Pareto dom-
inance relationship, is deleted in this procedure.

(iv) Chaotic map is applied to the update of rj and Aj (see line 16).
(v) The external archive and modified crowding-distance sorting

strategy are introduced to obtain POF (see lines 19–22).

3.3. The parameter turning in MHBA

There are several parameters in MHBA. Among them, the most
important parameters are c c,1 2 (see (18)) and rd. Parameters c1 and c2
determine the learning weight from the best solutions found by other
individuals (pbestfi) and nondominated solutions (gbestmop). The value
of rd determines the search area of individuals. At the beginning of
iteration, rd should be assigned with a relatively big value for enlarging
the search area because nearly all the random generated solutions are
far away from the real solution (although it is unknown to us). But as
iteration goes on, a relatively good solution is obtained, so the search
area should be reduced. This means that rd should be decreased.

In (12), the minimum value of frequency is always set to 0 [23,29],
and the maximum value of frequency is determined by different sys-
tems. For the update of velocity vit (see (18)), the weight coefficient ωi
which is in (0, 1), can be set to 0.5 at the initial stage; c1 and c2 should
be adjusted with ωi and rd, and can be assigned a value in (0, 10) at the
initial stage. Because ωi is relatively fixed, the emphasis of parameter
turning is focused on c c,1 2 and rd.

The following shows the parameter turning process. The effective
radius rd, which determines the search area of individuals, is the most
important parameter in MHBA. At the initial stage, rd can be assigned a
value in (0, 10) generally. Then a simulation result would be generated.
The value of rd should be changed according to the result, and may
exceed the range of (0, 10) determined by different systems. This pro-
cess could be repeated several times until a relatively good result is
obtained. Next, c1 and c2 would be modified with the same process.
Three values (i.e., r c,d 1 and c2) are obtained after the two processes. If
the simulation result is acceptable, the process of parameter turning is
finished. Otherwise, the above two steps should be repeated until a
satisfying result occurs.

Algorithm 5. The process for dealing with equality constraint

1: Acquire solution P= { …P P, , N1 }
2: If the index of slack bus is not 1, exchange the slack bus with P1
3: Let =P 0loss , calculate the error by (4) (i.e., −∑=P Pd i

N
i1 )

4: if error>P1max or error<P1min then
5: if error>P1max then
6: =P P /31 1

max

7: Assign power to { …P P, , N2 } with their maximum capacity
one by one until the remained power is satisfied

8: end if
9: if error<P1min then

10: =P P1 1
min

11: Assign power to { …P P, , N2 } with their minimum capacity
one by one until the remained power is satisfied

12: end if
13: end if
14: Put the slack bus back to its original place

3.4. Implement MHBA to CEED problem

Special attentions should be paid to several steps in Algorithm 4 for
applying MHBA to CEED problem:

(i) When initializing xi, the value of xi subjects to not only the in-
equality (3) but also the equality (4). If (4) is not satisfied, the
solutions with initialized xi may be very small, which is likely to
dominate any other solutions generated by the whole iteration in
Algorithm 4. This will fail to obtain the POF. Algorithm 5 gives the
detailed steps for dealing with equality constraint. In the third
step, Ploss is set to 0 because the losses are calculated by MATPO-
WER.

(ii) For the 12th line in Algorithm 4, constraints (3)–(10) are all sa-
tisfied by the usage of MATPOWER [36], and constraint (11) is
realized by Matlab program.

(iii) Parameters in Algorithm 4 should be adjusted according to dif-
ferent scenarios in order to acquire better performance.

(iv) The fuzzy set theory is introduced to get the best compromise so-
lution. Interested readers are referred to [46] for details.

4. Examples and results

In this paper, the units of active power, cost, emission and run time
are MW, $/h, ton/h and second (s), respectively. The “run time” in the
following tables represents the consumed time for the run which ob-
tains the best fuel cost shown in each table.

4.1. Case 1: simulation for the standard IEEE 30-bus system

The CEED problem is solved by the proposed MHBA on the standard
IEEE 30-bus 6-generator system. The parameters of generator fuel cost
and emission come from [14]. The number of population for MHBA is
40. The parameter rd and threshold p for the random black hole model
are 0.01 and 0.5, respectively, and the learning probability Pc is 0.1. The
total load demand is 283.4 MW. To compare the performance with
other works, this case does not include valve point effects.

In this case, total 100 nondominated solutions are generated as
shown in Fig. 4. The two extreme solutions are (607.39, 0.220857) and
(643.376, 0.194209), respectively. We can see the obtained non-
dominated solutions well depict the POF of the CEED problem with
IEEE 30-bus system. The comparison results with other algorithms are
shown in Tables 1 and 2.

Table 1 shows the comparison results of the best fuel cost for IEEE
30-bus system with different algorithms. Among the algorithms, MHBA
obtains the smallest value of fuel cost (i.e., 607.3900$/h), which is
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605 610 615 620 625 630 635 640 645

E
m

is
si

on
(t

on
/h

)

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0.225

X: 607.39
Y: 0.220857

X: 643.376
Y: 0.194209

X: 616.435
Y: 0.200526

Best compromise
solution

Fig. 4. Simulation result for case 1 with MHBA.
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much superior to the values obtained by FSBF and NSBF. The difference
of the values between MHBA and FSBF/NSBF is about 12$/h, which
means a great savings (about 100000 $) in a year. MHBA also outper-
forms NSGA-II+DCD and NSGA-II+DCD+CE in terms of the best fuel
cost. Table 2 show the best values of emission for this case. It can be
seen that all the five algorithms have nearly the same best value of
emission. From the above comparison, a better solution is achieved by
MHBA.

As for the comparison of run time, RCBA has overwhelming ad-
vantage in the listed algorithms. From the last line of Table 1, the run
time for generating the 100 nondominated solutions is about 74.609 s,
which is much smaller than the consumed time of other algorithms.
Thanks for the integrating of random black hole model and chaotic
map, the proposed MHBA can have such better performance.

To further disclose the superiority of RCBA, a statistical results for
the two values (i.e., the best solution of cost and emission) with ten runs
are provided in Table 3. The maximum, minimum and average value of
best cost by MHBA are 607.5692$/h, 607.3897$/h and 607.4492$/h,
respectively. All these values are smaller than the corresponding values
obtained by the other listed algorithms in Table 1. As for the best
emissions, the four algorithms have nearly the same value, i.e.,
0.1942 ton/h. It should be pointed out that, in [45], the objective
function of emission is defined as:

∑= + +
=

−E P α P β P γ( ) [10 ( )],
i

N

i i i i i
1

2 2

(21)

and the item ε λ Pexp( )i i i is omitted. Totally, even the maximum value of
best cost obtained by MHBA is smaller than the minimum values ob-
tained by the other three algorithms, and all the four methods have
nearly the “same” minimum emissions. It indicates that whether for the
quality or for the stability of the best solutions, MHBA has an absolute
advantage among the listed algorithms.

Based on the above analysis, MHBA has excellent performance in
dealing with CEED problem for IEEE 30-bus system.

4.2. Case 2: simulation for the standard IEEE 118-bus system

The proposed MHBA is applied to the standard IEEE 118-bus system
with 19 units in this subsection. The parameters including unit char-
acteristics and coefficients (cost and emission) are taken from [44]. The
unit characteristics contains ramp rate level, startup costs, shut down
costs, active power output constraints, etc., and the load demand is
3668MW. In this case, the number of population for MHBA is also set to
50. The minimum and maximum frequency of pulse emission rate are 0
and 0.01, respectively. The parameter rd and threshold p for the random
black hole model are 1 and 0.5, respectively, and the learning prob-
ability Pc is 0.1. The following simulations all include ramp rate limit in
this case. For the comparison purpose, the simulation results without/
with POZs are given separately in Sections 4.2.1 and 4.2.2, respectively.
At last, all the aforementioned constraints in Section 2 are included in
the simulation which is shown in Section 4.2.3.

4.2.1. No POZs are included in the simulation
Fig. 5 shows the POFs which have the best fuel cost and emission in

ten runs. The best two extreme solutions in Fig. 5 are (10186.8, 5.5417)
and (11433.3, 5.5117), respectively. The detailed comparison results
including best fuel cost and best emission in ten runs are represented in
Tables 4 and 5, respectively. In Table 4, the best fuel cost obtained by
MHBA is 101186.8$/h which is much less than the other relative va-
lues. Accordingly, the best emission obtained by MHBA is 5.5417 ton/h
which is also the smallest value among the listed emissions. In Table 5,
the best value emission generated by MHBA is about 5.5117 ton/h and
NSGA-II+DCD+CE acquires the best value. Although MHBA does not
achieve the optimum value of best emission, but the difference is only
0.093 ton/h (the increased percentage is about 1.68%). By contrast, the
difference best fuel cost between MHBA and NSGA-II+DCD+CE in
Table 4 is about 1246.6$/h (the decreased percentage is about
12.28%). Hence, majority of the solutions generated with NSGA-II
+DCD+CE are dominated by the solutions in Fig. 5. The best com-
promise solution can give the evidence. As shown Fig. 5, the best
compromise solution obtained by MHBA is (10634.2, 5.5191), but for
NSGA-II+DCD+CE, the solution is (16205.3, 5.7848) (see [45]). Ob-
viously, MHBA achieves better compromise solution than NSGA-II
+DCD+CE.

Table 4 also gives the comparison result of execution time. For

Table 1
Best solutions of fuel cost for case 1 (Power: MW, Cost: $/h, Emission: ton/h, Run time: s).

Items MHBA FSBF [34] NSBF [34] NSGA-II
+DCD [45]

NSGA-II+DCD
+CE [45]

P1 10.94 19.43 17.80 11.44 11.44
P2 29.85 37.26 33.66 30.29 30.57
P3 58.29 68.57 72.92 60.43 59.84
P4 99.48 59.19 59.08 97.95 98.02
P5 51.81 60.85 57.66 51.56 51.52
P6 36.20 40.61 44.74 35.18 35.46
Loss 3.204 2.51 2.46 3.45 3.47
Cost 607.3900 619.3679 619.6086 608.1283 608.1247

Emission 0.2208 0.2015 0.2027 0.2199 0.2198
Run time 74.6098 181.721 208.965 – –

Table 2
Best solutions of emission for case 1 (Power: MW, Cost: $/h, Emission: ton/h).

Items MHBA FSBF [34] NSBF [34] NSGA-II
+DCD [45]

NSGA-II+DCD
+CE [45]

P1 40.94 41.19 40.47 41.00 41.02
P2 45.15 46.62 45.33 46.10 46.16
P3 53.30 54.21 54.39 55.28 54.46
P4 40.51 38.48 39.21 38.94 39.00
P5 54.25 54.31 54.54 54.46 54.48
P6 52.14 51.60 52.46 50.88 51.57
Loss 2.92 3.01 3.00 3.28 3.31
Cost 643.3760 645.6193 644.4141 645.3998 645.6472

Emission 0.1942 0.1942 0.1942 0.1942 0.1942

Table 3
Statistical results for the best fuel cost and emission with ten runs for case 1 (Cost: $/h,
Emission: ton/h).

Algorithm Items Maximum Minimum Average

MHBA Best cost 607.5692 607.3897 607.4492
Best emission 0.1942 0.1942 0.1942

NSGA-II [45] Best cost – 608.13 –
Best emission – 0.1942 –

NSGA-II+DCD Best cost – 608.13 –
[45] Best emission – 0.1942 –

NSGA-II+DCD+CE Best cost – 608.12 –
[45] Best emission – 0.1942 –

Fig. 5. (a) POF of the best fuel cost without POZs for case 2. (b) POF of the best emission
without POZs for case 2.
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MHBA, the consumed time is about 104.797 s. But for the other five
algorithms, the minimal execution time is about 806 s which is obtained
by NSGA-II+DCD. The most time-consuming algorithm is RCGA whose
consumed time exceeds 31806 s. Thanks to the usage of the random
black hole model, MHBA can have such better performance in speed.
For other algorithms, all the dimensions in a solution are updated si-
multaneously. But MHBA can realize the update for each single di-
mension in every solution (the schematic is shown in Algorithm 3)
because of the integrating of random black hole model. This strategy is
more suitable for high dimensional system. Moreover, the random black
hole model is also helpful in enlarging global search ability and ac-
celerating convergence speed. The current group best solution is treated
as the base point of random black hole generated at each iteration. This
is meaningful for individuals to find more accurate solutions, and the
reason is given as follows:

Table 4
Best solutions of fuel cost in ten runs for case 2 without POZs (Power: MW, Cost: $/h, Emission: ton/h, Run time: s).

Items MHBA MNSGA -II [9] NSGA -II [9] RCGA [9] NSGA-II+DCD [45] NSGA-II+DCD+CE [45]

P1 787.58 611.29 640.18 673.52 623.95 691.44
P2 499.45 62.23 54.08 73.06 50.67 68.45
P3 10.00 89.07 83.84 76.07 89.25 89.24
P4 30.00 298.65 285.21 299.99 297.64 297.08
P5 231.01 40.07 40.49 40.00 40.07 40.07
P6 1.00 5.32 1.44 1.02 4.97 1.45
P7 3.00 9.50 12.74 17.65 20.32 20.57
P8 30.00 31.86 30.03 30.00 30.36 30.64
P9 5.00 41.87 48.72 10.39 48.81 24.15
P10 27.81 195.86 151.96 138.69 185.46 102.17
P11 20.00 197.05 190.13 199.99 197.07 194.79
P12 399.21 395.26 394.83 399.59 399.18 396.96
P13 398.85 398.51 397.63 399.95 398.78 399.90
P14 598.30 582.46 590.54 599.99 570.08 599.47
P15 1.00 3.02 3.99 3.68 1.52 1.52
P16 625.27 658.53 672.04 690.62 631.74 690.24
P17 152.11 243.36 240.91 228.31 265.22 222.73
P18 5.00 10.79 36.10 5.31 7.36 5.28
P19 4 5.70 6.96 8.30 4.04 4.79
Loss 160.58 212.5 213.90 228.50 198.56 213.03
Cost 10186.8 11552.0 11577.5 11509.7 11451.2 11396.8

Emission 5.5417 13.7960 14.1910 14.9726 13.4788 15.0395
Run time 104.797 825.875 838.171 31806.1 806 1142

Table 5
Best solutions of emission in ten runs for case 2 without POZs (Power: MW, Cost: $/h, Emission: ton/h).

Items MHBA MNSGA -II [9] NSGA -II [9] RCGA [9] NSGA-II+DCD+CE [45] NSGA-II+DCD+CE [45]

P1 299.12 330.36 314.74 310.33 3221.12 321.08
P2 482.28 436.53 396.63 425.52 397.62 430.21
P3 10.00 89.83 82.98 89.99 88.88 89.57
P4 30.00 299.49 299.49 299.99 292.13 292.13
P5 40.00 394.78 395.52 399.99 389.20 399.51
P6 1.00 5.68 8.83 1.66 8.81 5.11
P7 3.22 8.78 22.66 18.70 18.95 18.15
P8 240.00 239.60 236.20 239.99 239.39 239.82
P9 5.00 40.01 49.48 49.98 49.44 49.24
P10 146.19 197.99 199.66 199.95 198.21 199.94
P11 200.00 194.05 198.92 199.99 194.89 198.63
P12 399.95 303.40 340.86 291.42 300.93 295.67
P13 400.00 385.21 386.81 399.83 399.91 384.51
P14 599.86 157.57 174.59 167.68 171.33 165.63
P15 1.00 3.78 4.89 1.64 1.29 4.16
P16 699.49 310.37 303.70 307.75 312.47 300.89
P17 300.00 291.66 276.89 292.74 296.32 289.17
P18 5.00 46.15 38.28 49.98 49.61 49.33
P19 5.01 39.74 39.80 26.84 37.83 38.96
Loss 199.12 107.1 103 106.0 101.42 103.79
Cost 11433.0 18311.0 17993.4 18227.5 17948.6 18343.2

Emission 5.5117 5.5466 5.4950 5.4876 5.4451 5.4230

Table 6
Statistical results for the best fuel cost and emission with ten runs for case 2 without POZs
(Cost: $/h, Emission: ton/h).

Algorithm Items Maximum Minimum Average

MHBA Best cost 10226.3 10186.8 10205.2
Best emission 5.5121 5.5117 5.5119

NSGA-II [45] Best cost – 11440.8 –
Best emission – 5.4164 –

NSGA-II+DCD [45] Best cost – 11451.2 –
Best emission – 5.4451 –

NSGA-II+DCD+CE [45] Best cost – 11396.8 –
Best emission – 5.4230 –
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① The search area is enlarged for the use of the effective radius rd in
random black hole model. An appropriate value of rd is helpful not
only in enlarging the search area but also in accelerating con-
vergence speed.

② It helps to find more accurate solutions. If the current group best
solution is a local optimal solution, the random black hole would
help individuals escape from the local optima. But if the current
group best solution is near to the real global optimum (although it is
unknown), the random black hole model can help to execute a
complete search around the current group best solution.

To further disclose the superiority of MHBA, Table 6 gives the sta-
tistical results for the best fuel cost and emission with the ten runs. The
best cost values (maximum, minimum and average values) obtained by
MHBA are smaller than all the minimum values of fuel cost generated
by the other three algorithms.

Therefore, MHBA outperforms the other listed algorithms in all
comparison items except the minimum emission for the IEEE 118-bus
system.

4.2.2. POZs are included in the simulation
The parameter of POZs comes from [9], and all the other parameters

are the same as in Section 4.2.1. The following comparison results are
also based on ten runs.

Fig. 6 shows the two POFs which have best fuel cost and best
emission including POZs. The best fuel cost is 10208.1$/h and the best

emission is 5.5119 ton/h. Both the two values are a little bigger than
the corresponding values in Fig. 5 for the effect of POZs. Table 7 shows
the comparison results of best fuel cost with other algorithms. MHBA
gets the optimal value of fuel cost in the listed algorithms. The de-
creased percentages compared with MNSGA-II, NSGA-II and RCGA are
16.6%, 26.0% and 14.2%, respectively. As for the run time, MHBA is
much superior to other listed algorithms. The consumed time for MHBA
is about 105.885 s, which is much smaller than the other algorithms.
The best solutions of emission with other algorithms are shown in
Table 8. For MHBA, the value of best emission is about 5.5119 which is
also the smallest in the listed algorithms. Therefore, MHBA outperforms
other listed algorithms in terms of the two best values.

To further show the superiority of MBHA, the statical results for the
best cost and emission with ten run are given in Table 9. The minimum/
average values of the best cost and emission are all a little bigger than
the relative values as shown in Table 6 because of the existing of POZs.
Even the maximum values of best fuel cost and emission in Table 9 are

Table 7
Best solutions of fuel cost in ten runs for case 2 with POZs (Power: MW, Cost: $/h,
Emission: ton/h, Run time: s).

Items MHBA MNSGA-II [9] NSGA-II [9] RCGA [9]

P1 831.62 661.11 652.05 825.00
P2 406.22 158.57 300.50 150.00
P3 10.00 68.77 66.82 80.99
P4 30.08 299.34 232.64 229.98
P5 235.76 41.29 101.62 40.00
P6 1.00 8.75 8.78 1.00
P7 3.00 6.27 18.62 22.98
P8 104.19 31.94 30.60 30.00
P9 5.00 39.28 32.01 39.99
P10 20.00 196.55 122.00 132.35
P11 20.00 159.66 88.37 199.99
P12 363.83 391.21 322.58 324.88
P13 398.63 399.68 383.36 399.99
P14 599.17 433.54 555.77 562.95
P15 1.00 1.31 2.91 1.00
P16 698.46 652.24 666.42 549.97
P17 100.00 285.50 217.14 224.88
P18 6.38 15.17 8.09 5.00
P19 4.00 7.08 33.09 4.00

Loss 170.33 189.32 170.93 157.1
Cost 10208.1 11904.1 12862.4 11655.8

Emission 5.5391 11.9724 13.0403 13.0098
Run time 105.885 1762.45 1781.69 63638.3

Table 8
Best solutions of emission in ten runs for case 2 with POZs (Power: MW, Cost: $/h,
Emission: ton/h).

Items MHBA MNSGA-II [9] NSGA-II [9] RCGA [9]

P1 303.59 316.79 311.37 300.00
P2 484.82 452.19 386.74 450.00
P3 10.01 68.53 89.76 89.99
P4 30.00 246.66 174.62 249.99
P5 40.30 347.02 348.12 388.01
P6 1.30 9.38 9.80 9.99
P7 3.00 8.51 22.99 22.99
P8 240.00 238.16 234.40 239.96
P9 6.53 49.80 39.64 499.99
P10 136.17 199.96 199.98 199.99
P11 200.00 199.18 199.44 199.99
P12 400.00 279.95 350.61 250.41
P13 400.00 399.67 399.96 372.41
P14 600.00 157.96 220.42 149.54
P15 1.00 1.78 3.89 4.994
P16 700.00 451.47 451.07 450.00
P17 300.00 282.65 289.00 255.32
P18 5.69 45.12 5.23 49.99
P19 4.00 19.04 31.43 39.99

Loss 198.42 105.90 100.56 105.70
Cost 11413.0 17541.7 16910.6 18240.6

Emission 5.5119 6.0496 6.3309 5.7111

Table 9
Statistical results for the best fuel cost and emission with ten runs for case 2 with POZs
(Cost: $/h, Emission: ton/h).

Algorithm Items Maximum Minimum Average

MHBA Best cost 10222.6 10208.1 10221.2
Best emission 5.5150 5.5119 5.5126

Fig. 7. (a) POF of the best fuel cost with all constraints for case 2. (b) POF of the best
emission with all constraints for case 2.

Fig. 6. (a) POF of the best fuel cost with POZs for case 2. (b) POF of the best emission with
POZs for case 2.
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smaller than the relative values obtained by other algorithms in Tables
7 and 8.

4.2.3. All the listed constraints are included in the simulation
Compared with Section 4.2.2, the valve point effects are included in

the simulation and the parameters are taken from [9,54]. Other para-
meters are the same as in Section 4.2.2. Ten runs are also executed for
this simulation.

Fig. 7 shows the POFs which have the best fuel cost and best
emission. The best fuel cost is 10537.6$/h, which is a little larger than
that in Fig. 6 (i.e., 10208.1$/h) because the valve point effects are

included in the simulation. The best emission is 5.5117 ton/h, which is
nearly the same as in Fig. 6 (i.e., 5.5119 ton/h).

Tables 10 and 11 show the comparison results with other algorithms
for the best solutions of fuel cost and emission, respectively. It should
be pointed out that the data in [9] is obtained without considering
POZs. Even under this situation, MHBA gets the best values of fuel cost
and emission compared with other listed algorithms. In Table 10, the
optimal fuel cost obtained by MHBA is 10537.6$/h, and the minimum
value by the other algorithms is 11944.0$/h. The decreased percentage
is about 11.77%. In Table 11, the optimal emission obtained by MHBA
is 5.1117 ton/h, which is also the smallest among the four algorithms.
As for the run time, MHBA has obviously advantageous than other
listed algorithms. In Table 10, the run time for MHBA is 109.664 s. For
the other three algorithms, the smallest run time is 867.342 s, which is
about 7.9 times than that obtained by MHBA.

Table 12 gives the statistical results for the best fuel cost and
emission with ten runs. The maximum value of fuel cost is 10864.54$/
h, which is even smaller than the best solution obtained by MNSGA-II
(i.e., 11944.0$/h, see Table 10). The maximum value of emission
generated by MHBA is 5.5142 ton/h, which is also the smallest com-
pared with the best emissions obtained by the other three algorithms in
Table 11. All these demonstrate the effectiveness of MHBA in solving
CEED for IEEE 118-bus system considering practical constraints.

4.3. Case 3: simulation for the standard IEEE 300-bus system

The IEEE 300-bus system with 57 units is used in this subsection.
The fuel cost coefficients, emission coefficients and active power output
limits of units are all adapted from [44]. Other parameters of IEEE 300-
bus system comply with MATPOWER. The emphasis here is to show the
effectiveness of MHBA for large-scale system, so the constraints in-
cluding ramp rate limit and POZs are omitted in this case, and the
transmission line losses are assumed to be zero. The total load demand
is 23525.85MW. To better show the simulations, ten runs are also
executed for this case. In this case, the effective radius rd is treated as a
piecewise parameter. At the steps of 1 to 200, rd is set to 50, and at the
rest of iteration, rd is set to 1. Other parameters of RCBA are the same as
in case 2.

Fig. 8 shows the POFs of best fuel cost and best emission with ten
runs. The best two extreme solutions are (62879.2, 11.6701) and
(66317.4, 11.5385), respectively. The detailed active power outputs of

Table 11
Best solutions of emission in ten runs for case 2 with all constraints (Power: MW, Cost:
$/h, Emission: ton/h).

Items MHBA MNSGA-II [9] NSGA-II [9] RCGA [9]

P1 300.05 318.55 309.40 299.24
P2 499.49 406.68 413.20 429.01
P3 10.00 80.82 84.30 83.29
P4 30.00 297.83 284.14 283.87
P5 40.00 396.48 395.50 399.73
P6 1.02 8.39 6.53 9.87
P7 3.00 22.85 22.85 22.16
P8 239.76 232.41 238.81 236.78
P9 5.65 43.54 49.86 44.70
P10 126.86 199.39 178.82 199.21
P11 200.00 198.89 194.30 199.48
P12 400.00 330.96 320.01 362.94
P13 399.49 390.69 389.45 371.46
P14 600.00 177.04 159.18 168.44
P15 1.66 4.80 3.02 1.88
P16 700.00 316.59 347.36 282.91
P17 300.00 263.65 288.18 296.96
P18 6.37 47.78 48.76 49.15
P19 4.65 34.53 37.94 31.69

Loss 200.05 103.95 103.69 104.86
Cost 12222.9 18482.0 18533.6 18795.7

Emission 5.5117 5.5210 5.5390 5.5630

Table 12
Statistical results for the best fuel cost and emission with ten runs for case 2 with all
constraints (Cost: $/h, Emission: ton/h).

Algorithm Items Maximum Minimum Average

MHBA Best cost 10864.54 10537.64 10720.84
Best emission 5.5142 5.5117 5.5126

Fig. 8. (a) POF of the best fuel cost for case 3. (b) POF of the best emission for case 3.

Table 10
Best solutions of fuel cost in ten runs for case 2 with all constraints (Power: MW, Cost:
$/h, Emission: ton/h, Run time: s).

Items MHBA MNSGA-II [9] NSGA-II [9] RCGA [9]

P1 876.82 647.70 619.24 657.56
P2 483.11 52.96 95.49 56.72
P3 10.95 88.71 89.43 83.98
P4 31.11 295.43 299.84 295.47
P5 250.00 41.97 40.39 40.36
P6 1.00 7.01 2.91 3.99
P7 3.00 16.57 10.56 17.01
P8 30.00 30.89 33.21 30.11
P9 5.00 47.87 33.63 46.01
P10 20.00 171.92 198.87 152.79
P11 20.00 192.81 191.02 199.62
P12 385.48 399.75 386.31 399.86
P13 396.17 399.46 395.33 384.55
P14 599.63 581.20 548.72 597.15
P15 1.00 1.18 1.09 2.93
P16 698.72 602.69 661.36 651.21
P17 30.00 271.81 252.20 239.03
P18 5.00 6.76 5.97 23.03
P19 4.21 6.16 4.80 5.50

Loss 198.07 194.93 202.46 218.98
Cost 10537.6 11944.0 12043.8 12039.2

Emission 5.5446 13.5930 13.2770 14.2840
Run time 109.664 870.523 867.342 31938.32
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the 57 units for the two extreme solutions are shown in Tables 13 and
14, respectively. The run time for IEEE 300-bus system is about 265 s,
which is even much less than those for IEEE 118-system obtained by
other algorithms. This also demonstrates the superiority of RCBA in
terms of the random search efficiency. The loss in Tables 13 and 14
accounts for about 2.01% and 5.23% of the total active power output,
respectively. Table 15 gives the statistical results for the best fuel cost
and emission with ten runs. All the data shows that the CEED for IEEE
300-bus is well solved by RCBA.

In the following, we put the emphasis on the usage of an important
parameter, that is, the effective radius rd through IEEE 300-bus system.
Generally, the value of rd should be changed with different systems. If
the search range of individuals is relatively large, rd should be assigned
with a relatively large value, and vice verse. For this case, several si-
mulations with different values of rd are performed to illustrate what

value that rd should have, and the simulation results are shown in
Table 16.

In Table 16, the differences of fuel cost between the two extreme
solutions are 2159.4$/h, 1919.0$/h and 2072.4$/h when rd is 0.001,
0.1 and 1, respectively. But when rd is set to 20, 50 and 100, the dif-
ferences are 3152.2$/h, 3000.2$/h and 2237.2$/h, respectively. The
former differences are all smaller than the latter, which clearly shows
that a larger range of fuel cost is obtained with a relatively large ef-
fective radius. Meanwhile, the difference obtained with the value 100
of rd is smaller than those with 20 and 50. And hence, it is reasonable
for rd to be in the range of (1, 100).

Fig. 9 shows the POFs with different values of rd. Better smoothness
is obtained in Fig. 9(a) and (b) than that in Fig. 9(c) or (d). This means
that a relatively small value of rd is beneficial to generate POF. The
reason is that a relatively small search area is formed with a relatively
small rd. This helps perform a thorough search in the area by in-
dividuals. But if rd is too small at the beginning of iteration, the search
area is relatively small, which is harmful for random search.

Based on the above analysis, a piecewise manner is proposed for rd.
To obtain a relatively large search area, rd should be assigned with a
relatively large value. As iteration goes on, rd should be decreased to an
appropriate value. For this case, rd is set to 50 at the steps of 1 to 200.
After this, rd is set to 1.

Table 15
Statistical results for the best fuel cost and emission with ten runs for case 3 without POZs
(Cost: $/h, Emission: ton/h).

Algorithm Items Maximum Minimum Average

MHBA Best cost 63411.2 62897.2 63149.5
Best emission 11.5632 11.5385 11.5529

Table 16
The two extreme solutions of POF with different values of rd for case 3 (Cost: $/h,
Emission: ton/h).

rd 0.001 0.1 1

Left (63032.3, 11.6348) (63179.0, 11.6729) (63317.2, 11.6427)
Right (65191.7, 11.5794) (65098.8, 11.6115) (65389.6, 11.5876)

rd 20 50 100
Left (63008.5, 11.6360) (63156.7, 11.6409) (62839.9, 11.6243)
Right (66160.7, 11.5495) (66156.9, 11.5509) (65076.2, 11.5431)

Fig. 9. (a) POF when rd is 0.1. (b) POF when rd is 1. (c) POF when rd is 20. (d) POF when rd
is 50.

Table 13
The best solution of fuel cost with ten runs for case 3 (Power: MW, Cost: $/h, Emission:
ton/h, Run time: s).

Units Output Units Output Units Output

P1 464.1060 P20 1191.9413 P39 1238.3642
P2 30.0111 P21 600.0000 P40 241.7455
P3 158.9477 P22 1927.5783 P41 396.0250
P4 20.5789 P23 479.9002 P42 373.7095
P5 25.0000 P24 302.8914 P43 188.8349
P6 1551.2870 P25 20.5789 P44 487.1919
P7 278.3228 P26 526.3353 P45 556.6738
P8 269.7550 P27 229.4327 P46 20.7548
P9 751.8381 P28 332.9978 P47 846.4540
P10 91.8085 P29 372.9751 P48 15.0789
P11 180.9106 P30 296.8753 P49 159.1250
P12 25.5789 P31 686.1086 P50 477.5703
P13 446.9643 P32 225.3648 P51 398.7751
P14 154.7756 P33 610.4855 P52 90.0360
P15 225.7937 P34 540.4389 P53 1106.0333
P16 222.9625 P35 142.9897 P54 715.8791
P17 131.0865 P36 94.6735 P55 620.7908
P18 188.8311 P37 478.8570 P56 21.4258
P19 1134.5317 P38 641.1964 P57 21.2532

∑Pi 24030.43 Loss 504.58
Cost 62897.2 Emission 11.6701 Run time 265.118

Table 14
The best solution of emission with ten runs for case 3 (Power: MW, Cost: $/h, Emission:
ton/h, Run time: s).

Units Output Units Output Units Output

P1 440.1843 P20 1238.5322 P39 1097.3666
P2 30.4980 P21 577.9914 P40 251.6531
P3 115.0420 P22 1968.6719 P41 407.5548
P4 20.0000 P23 592.6413 P42 383.1900
P5 27.0272 P24 322.5295 P43 191.9195
P6 600.6554 P25 109.2913 P44 592.7593
P7 274.5312 P26 599.3657 P45 581.4626
P8 309.5829 P27 247.0924 P46 13.7000
P9 774.1955 P28 332.6852 P47 1658.7119
P10 69.1177 P29 413.3995 P48 23.5977
P11 206.8483 P30 332.1506 P49 186.9400
P12 93.1053 P31 665.4951 P50 435.6961
P13 480.2329 P32 258.2336 P51 440.7719
P14 220.6048 P33 581.4698 P52 127.4313
P15 188.7268 P34 695.8082 P53 1075.0831
P16 255.8392 P35 192.2545 P54 718.6377
P17 98.1057 P36 95.9989 P55 615.7556
P18 226.5371 P37 589.8898 P56 62.5584
P19 967.8302 P38 724.0515 P57 24.1172

∑Pi 24825.12 Loss 1299.27
Cost 66317.4 Emission 11.5385 Run time 266.581
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5. Concluding remarks

In this paper, a novel multiobjective hybrid bat algorithm has been
presented and applied to CEED problem with IEEE 30-bus system, IEEE
118-bus system and IEEE 300-bus system. The comparison results show
the superiority of MHBA for dealing with large-scale systems compared
with other algorithms. To further enhance the performance of the
proposed algorithm, for each solution xi, the key parameter rd can be
assigned with different value, because the range of xi is different gen-
erally. If the same value of rd is used, the search area of partly in-
dividuals could be inappropriate. Moreover, the CEED is a bi-objective
optimization problem. It is worth studying the optimization problems
with more objectives. Renewable energies, such as wind power and
solar energy, are widely used now, and hence are necessary to be in-
cluded in CEED, which is left as an interesting future direction. The
CEED problem studied in this paper is a static MOP, so another inter-
esting direction is to study the dynamic economic/emission dispatch
problem with the penetration of renewable energies and plug-in electric
vehicles [47–49]. In addition, real-life case studies (see e.g., [50] and
references therein) can be included in the simulation in future research.
Finally, if the cost of emission in the trade market is considered
[51–53], the objective function of emission would be reshaped. This
will lead to a new direction.
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