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Abstract The blood flow through a tapered artery with a stenosis is analyzed, assuming the blood

as tangent hyperbolic fluid model. The resulting nonlinear implicit system of partial differential

equations is solved analytically with the help of perturbation method. The expressions for shear

stress, velocity, flow rate, wall shear stress and longitudinal impedance are obtained. The variations

of power law index m, Weissenberg number We, shape of stenosis n and stenosis size d are discussed
different type of tapered arteries.
� 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Blood flow is now well known to the physiologists as one of
the major mechanisms due to its applications in arterial
mechanics. In particular, blood flows in arteries is an impor-

tant field of research because arterial diseases are a major
cause of death in most of western countries. In the recent past,
several theoretical and experimental studies [1–5] have been

carried out to analyze the arterial flow characteristics of blood.
Chakravarty and Sannigrahi [6] developed a nonlinear mathe-
matical analytically to study the flow characteristics of blood
through an artery in the presence of multistenoses when it is

subjected to whole body acceleration. The unsteady non-
Newtonian blood flow and mass transfer in symmetric and
non-symmetric stenotic arteries are numerically simulated by

Valencia and Villanueva [7]. Effect of stenosis on solitary
waves in arteries has been studied by Bakirtas and Demiray

[8]. Myers and Capper [9] studied exponential taper in arteries,

and an exact solution has been evaluated to see its effect on
blood flow velocity waveforms and impedance. The pulsatile
flow of blood through a catheterized artery is analyzed by San-

kar [10], assumed the blood as a two-fluid model. As the sem-
inal contribution to the study of shear thinning viscoelastic
nature of blood, Thurston [11] developed an extended Maxwell
model which is applicable to one-dimensional flow. Some

researchers [12–18] investigated that for blood flowing through
small vessels, there is erythrocyte-freeplasma (Newtonian)
layer adjacent to the vessel wall and a core layer of a suspen-

sion of all erythrocytes (non-Newtonian). Further recent liter-
ature can be viewed through Refs. [20–25].

Motivated from the extensive literature available on blood

flow through arteries, the purpose of the present investigation
is to discuss the tangent hyperbolic fluid [19] model for blood
flow through a tapered artery with mild stenosis. The govern-
ing equations along with the boundary conditions of stenosed

symmetric artery have been solved by regular perturbation
method. The expressions for velocity, resistance impedance,
wall shear stress and shearing stress at the stenosis throat have
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been examined. The graphical behavior of different type of
tapered arteries has been discussed at the end of the article.

2. Formulation of the problem

We are considering the cylindrical coordinates r; h; zð Þ in which
r ¼ 0ð Þ as the axis of the symmetry of the tube. We are consid-

ering the flow of an incompressible hyperbolic tangent fluid of
constant viscosity g0 and density q in a tube having length L
and take �u and �w are the velocity component in �r and �z direc-

tion respectively. The geometry of the stenosis which is
assumed to be symmetric can be described as [4].

h zð Þ ¼ d zð Þ 1� g bn�1 z� að Þ � z� að Þn� �� �
;

a 6 z 6 aþ b;

¼ d zð Þ; otherwise ð1Þ
with

d zð Þ ¼ d0 þ nz; ð2Þ
where d zð Þ is the radius of the tapered arterial segment in the
stenotic region, d0 is the radius of the non-tapered artery in

the non-stenotic region, n is the tapering parameter, b is the
length of stenosis, n P 2ð Þ is a parameter determining the
shape of the constriction profile and referred to as the shape

parameter (the symmetric stenosis occurs for n ¼ 2) and a indi-
cates its location as shown in Fig. 1. The parameter g is given
by

g ¼ d�n
n

n�1

d0b
n n� 1ð Þ ; ð3Þ

where d denotes the maximum height of the stenosis located at

z ¼ aþ b

n
n

n�1
:

The equations governing the steady incompressible tangent
hyperbolic fluid are given as
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The constitutive equation for tangent hyperbolic fluid is
defined as [19]eS ¼ �PIþ �s; ð7aÞ

�s ¼
�
g1 þ g0 þ g1ð Þ tanh C_c

� �m� �
_c

	
; ð7bÞ

in which �s is the extra stress tensor, g1 is the infinite shear rate
viscosity, g0 is the zero shear rate viscosity, C is the time

constant, m is the power law index and _c is defined as

_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

X
i

X
j
_cij _cji

r
¼

ffiffiffiffiffiffiffiffi
1

2
P

r
; ð8Þ

where P ¼ 1
2
trac grad Vþ grad Vð ÞT� �2

. Here P is the second

invariant strain tensor. We consider the constitution Eq. (7),
the case for which g1 ¼ 0 because we cannot find the solution
at the infinite shear rate viscosity. The component of extra
stress tensor therefore, can be written as

�s ¼ g0 ðC _cÞm� �
_c ¼ g0 ð1þ C _c� 1Þm� �

_c

¼ g0 1þmðC _c� 1Þ� �
_c: ð9Þ

Defining the non-dimensional variables

r¼ �r

d0
; z¼ �z

b
; w¼ �w

u0
; u¼ b�u

u0d
; p¼ d20�p

u0bg0
; h¼

�h

d0
; We ¼ Cu0

d0
;

Re¼ qbu0
g0

; eSrr ¼ b�srr
u0g0

; eSrz ¼ d0�srz
u0g0

; eSzz ¼ b�szz
u0g0

; eShh ¼ b�shh
u0g0

; ð10Þ

where u0 is the velocity averaged over the section of the tube of
the width d0.

Making use of Eqs. (9) and (10) into Eqs. (4)–(6), the

appropriate equations describing the steady flow of an incom-
pressible tangent hyperbolic fluid in the case of mild stenosis

d�
d0
� 1

� �
, subject to the additional conditions [4]
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can be written as

@u

@r
þ u

r
þ @w

@z
¼ 0; ð13Þ

@p

@r
¼ 0; ð14Þ

@p

@z
¼ 1

r

@

@r
r m� 1ð Þ @w

@r

� �
þWem

@w

@r

� �2
 !" #

: ð15Þ

The corresponding boundary conditions are

@w

@r
¼ 0 at r ¼ 0; ð15aÞ

w ¼ 0 at r ¼ h zð Þ; ð15bÞ

where

h zð Þ ¼ 1þ nzð Þ 1� g1 z� rð Þ � z� rð Þnð Þ½ �;
r 6 z 6 rþ 1; ð16ÞFigure 1 Geometry of the stenosis in the artery.
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and

g1 ¼
dn

n
n�1

n� 1ð Þ ; d ¼ d�

d0
; r ¼ a

b
; n0 ¼ nb

d0
; ð17Þ

where n ¼ tan/ð Þ; / is called tapered angle and for converg-
ing tapering / < 0ð Þ, non-tapered artery / ¼ 0ð Þ and the

diverging tapering / > 0ð Þ (as shown in Fig. 2).

3. Solution of the problem

3.1. Perturbation solution

To get the perturbation solution we expand w; p and Q by tak-
ing We as a perturbation parameter as follows

w ¼ w0 þWew1 þO Weð Þ2; ð18Þ
p ¼ p0 þWep1 þO Weð Þ2; ð19Þ
Q ¼ Q0 þWeQ1 þO We2

� �2
: ð20Þ

With the help of Eqs. (18)–(20), the solutions for velocity
field and pressure gradient for small We can be written as
follows

w r; zð Þ ¼ dp

dz
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4
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3ð1�mÞh8
 !

; ð21Þ
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h4
þWe

512mQ2

5h7

� �
: ð22Þ

The pressure drop Dp ¼ p at z ¼ 0 and Dp ¼ �p at z ¼ Lð Þ
across the stenosis between the section z ¼ 0 and z ¼ L is
obtained from (22) as done by [4]

Dp ¼
Z L

0

� dp

dz

� �
dz: ð23Þ

3.2. Resistance impedance

With the help of Eq. (23), the resistance impedance is defined

as

~k ¼ Dp
Q

¼ 4
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where
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�We
128mQ
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; ð25Þ

Eq. (24) gives
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3.3. Expression for the wall shear stress

The nonzero dimensionless shear stress is given by

eSrz ¼ @w

@r

� �
ð1�mÞ þWem
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" #

: ð27Þ

The expression for wall shear stress can be calculated as

eSrz ¼ @w

@r

� �
ð1�mÞ þWem

@w

@r

� �2
" #�����

r¼h

: ð28Þ

Invoking Eq. (21) into (28), we obtain

eSrz ¼ 4Qð1�mÞR zð Þ þ 16WemQ2 R zð Þð Þ2
h i

; ð29Þ

where
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2ð1�mÞ �

16WemQ
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The shearing stress at the stenosis throat i.e. the wall shear

at the maximum height of the stenosis located at z ¼ a
b
þ 1

n
n

n�1

i.e. ~ss ¼ eSrz

���
h¼1�d

is defined as
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; ð30Þ

where
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The final expression for the dimensionless resistance to k,
wall shear stress Srz and the shearing stress at the throat ss by

k¼ 1

3
1� b
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Srz ¼ ð1�mÞR zð Þ þ 4WemQ R zð Þð Þ2
h i

; ð33Þ

ss ¼ ð1�mÞJþ 4WemQ Jð Þ2
h i

; ð34Þ

where

k ¼
~k
k0

; Srz ¼
eSrz

s0
; ss ¼ ~ss

s0
; k0 ¼ 3L; s0 ¼ 4Q:Figure 2 Geometry of the axially stenosed tapered artery for

different tapered angle.
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4. Graphical results and discussion

The quantitative effects of the power law index m, Weissenberg
number We, the stenosis shape n and maximum height of the

stenosis d for converging tapering, diverging tapering and
non-tapered arteries for tangent hyperbolic fluid are observed
physically through Figs. 3–15. Figs. 3–6 are prepared to see the

variation of shear stress for different parameters of interest,
and we notice that the impedance resistance increases for con-
verging tapering, diverging tapering and non-tapered arteries
when we increase n and L while decreases with the increase

of We and m. We also observed that resistive impedance in a
diverging tapering appears to be smaller than those in converg-
ing tapering because the flow rate is higher in the former than

that in the latter, as anticipated and impedance resistance
attains its maximum values in the symmetric stenosis case
n ¼ 2ð Þ. Figs. 7–10 show how the converging tapering, diverg-

ing tapering and non-tapered arteries influence on the wall
shear stress Srz. It is observed that with an increase in m and
We shear stress increases while decreases with an increase in

d and n, the stress yield diverging tapering with tapered angle
/ > 0, converging tapering with tapered angle / < 0 and non-
tapered artery with tapered angle / ¼ 0. Figs. 11 and 12 are
prepared to see the variation of the shearing stress at the steno-

sis throat ss with d. It is analyzed through figures that shearing
stress at the stenosis throat increases with an increase in m and
decreases with an increase in We. It can also be depict that

shearing stress at the throat ss possess an inverse variation to
the flow resistance k with respect to power law index m, Weis-
senberg number We. Finally the variation of axial velocity for

m;We; d and n for the case of a converging tapering, diverging
tapering and non-tapered arteries is displayed in Figs. 13–16.
From Figs. 13–16 we observed that with an increase in

We;m and n velocity profile decreases while increases with
an increase in d. It is also seen that for the case of converging
tapering velocity gives larger values as compared to the case of
diverging tapering and non-tapered arteries. Trapping phe-

nomena have been discussed through Figs. 17–20. Fig. 17
shows the stream lines for different values of the power law
index m. It is observed that with an increase in m size of the
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trapping bolus increases but the number of trapping bolus

decreases. Stream lines for different values of the stenosis
shape n are prepared in Fig. 18. It is analyzed that the size
of the trapping bolus increases when we increase the n. Figs. 19

and 20 are plotted to see the stream lines for different values of
height of the stenosis d and Weissenberg number We. It is seen
that the size and number of the trapping bolus increase with an

increases in height of the stenosis d and the size of the trapping
bolus increases while number of tapping bolus decreases with
an increase in the Weissenberg number We. Fig. 21 shows
the streamlines for tapered angle /. It is seen that the number

of trapped bolus and size of trapped bolus increases for the
case of the diverging tapering ð/ > 0Þ as compared to converg-
ing tapering ð/ < 0Þ, and non-tapered artery ð/ ¼ 0Þ.
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