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NONEQUILIBRIUM THERMODYNAMICS: A POWERFUL TOOL 
FOR SCIENTISTS AND ENGINEERS

TERMODINÁMICA DE NO EQUILIBRIO: UNA PODEROSA 
HERRAMIENTA PARA CIENTÍFICOS E INGENIEROS

HANS CHRISTIAN ÖTTINGER
ETH Zürich, Department of Materials, Polymer Physics, CH-8093 Zürich, Switzerland, hco@mat.ethz.ch

RESUMEN: Se presenta el marco general de referencia de la termodinámica fuera de equilibrio con énfasis en los conceptos fundamentales en lugar de 
detalles matemáticos. Se centra la atención en la mecánica estadística subyacente y en las consecuencias para las técnicas de simulación termodinámicamente 
guiadas. La utilidad y la madurez de este marco general se ilustran mediante la revisión de un gran número de aplicaciones recientes lejos del equilibrio, 
donde se aplican las reglas de no linealidad. Por último, se ofrecen algunas perspectivas prometedoras para el futuro de la termodinámica de no equilibrio.

ABSTRACT: We present the two-generator framework of nonequilibrium thermodynamics with a strong emphasis on fundamental notions 
rather than mathematical details. The underlying statistical mechanics and the implications for thermodynamically guided simulation techniques 
are sketched briefly. The usefulness and maturity of the framework are illustrated by reviewing a large number of recent far-from-equilibrium 
applications, where nonlinearity rules. Finally, we offer some promising perspectives for the future of nonequilibrium thermodynamics.

1.  INTRODUCTION

Thermodynamics occurs in the curriculum 
of every scientist or engineer. A typical course 
on thermodynamics is restricted to equilibrium 
phenomena. In most modern courses, thermodynamics 
is presented together with statistical mechanics; in 
many cases, statistical mechanics is even presented in 
the beginning of the course, as if thermodynamics could 
be derived from statistical mechanics. Historically, 
thermodynamics has of course been developed well 
before statistical mechanics, based on a multitude 
of experimental observations condensed into the 
fundamental laws of equilibrium thermodynamics. 
Moreover, thermodynamics has the beautiful geometric 
structure associated with Legendre transformations 
between pairs of conjugate extensive and intensive 
variables (“contact structure”) and is a full-fledged 
theory in its own right.

Whereas thermodynamics usually is not among the 
most popular courses, its laws and tools eventually 
prove useful to most scientists and engineers. In many 
applications, however, one would like to go beyond 
equilibrium thermodynamics. A typical example is 
provided by transport phenomena [1] which play a 
most important role in biology, chemical engineering, 
materials processing, mechanical engineering, and 
many other fields. Relaxation phenomena occurring 

in many areas of application also belong to the world 
of nonequilibrium thermodynamics. Simplification 
by coarse-graining the description and focusing 
on the essence of a problem is an important key 
to successful engineering. A general course on 
statistical nonequilibrium thermodynamics would 
hence be at least as useful as a course on equilibrium 
thermodynamics.

The purpose of this article is to address the question “is 
nonequilibrium thermodynamics ready for scientists and 
engineers?” Should a corresponding course occur in a 
state-of-the-art curriculum in science and engineering? 
To answer these questions we describe a lucent 
framework of nonequilibrium thermodynamics and its 
statistical-mechanical foundations. We then provide a 
number of recent applications of this framework. We 
finally offer some conclusions and an outlook.

This article may be considered as a continuation of the 
compact review [2] presenting modern nonequilibrium 
thermodynamics to applied scientists and engineers. 
We hence focus on collecting the literature on the new 
developments mainly of the last 10 years.

2.  GENERIC FRAMEWORK

Time-evolution equations for nonequilibrium systems 
possess a well-defined thermodynamic structure in 
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which reversible and irreversible contributions are 
constructed separately. The reversible contribution 
is assumed to be of the Hamiltonian form (driven 
by the gradient of energy) and hence requires an 
underlying geometric structure which reflects the idea 
that the reversible time evolution should be “under 
mechanistic control.” The remaining irreversible 
contribution is assumed to be driven by the gradient of a 
nonequilibrium entropy. Our discussion is based on the 
GENERIC (“general equation for the nonequilibrium 
reversible-irreversible coupling”) framework for 
closed nonequilibrium systems [3-5] (see also the brief 
summary in [6] adapted for our purposes here),

dx E SL M
dt x x

δ δ
δ δ

= ⋅ + ⋅ ,   (1)

where x represents the set of independent variables 
required for a complete description of a given 
closed nonequilibrium system, E and S are the total 
energy and entropy expressed in terms of the system 
variables x, and L and M are certain linear operators, 
or matrices. The so-called Poisson matrix L and the 
friction matrix M can also depend on x so that the 
fundamental evolution equation (1) can be highly 
nonlinear. The two contributions to the time evolution 
of x generated by the total energy E and the entropy S 
in (1) are the reversible and irreversible contributions 
to dynamics, respectively. Because x typically contains 
position-dependent fields, such as the local mass, 
momentum and energy densities of hydrodynamics, 
the state variables are usually labeled by continuous 
(position) labels in addition to discrete ones. A matrix 
multiplication, which can alternatively be considered 
as the application of a linear operator, hence implies 
not only summations over discrete indices but also 
integrations over continuous labels, and the gradient 
δ /δ x typically implies functional rather than partial 
derivatives. Equation (1) is supplemented by the 
complementary degeneracy requirements

0SL
x

δ
δ
⋅ =      (2)

and

0.EM
x

δ
δ
⋅ =      (3)

The requirement that the entropy gradient δ S /δ x is in 
the null-space of the Poisson matrix L in (2) expresses 
the reversible nature of the first contribution to the 

dynamics, irrespective of the particular form of the 
Hamiltonian. The requirement that the energy gradient 
δ E/δ x is in the null-space of the friction matrix M 
in (3) expresses the conservation of the total energy in 
a closed system by the irreversible contribution to the 
dynamics. Furthermore, it is required that the matrix 
L is antisymmetric, whereas M is Onsager-Casimir 
symmetric (see Section 3.2 of [5] for details) and 
positive-semidefinite. Finally, the Poisson bracket that 
can be associated with the antisymmetric matrix L is 
assumed to satisfy the Jacobi identity, which expresses 
the time-structure invariance of the reversible dynamics 
[7] and can be conveniently and rigorously tested by 
using symbolic mathematical tools [8,9].

Equations (1)-(3) lay the foundations of nonequilibrium 
thermodynamics. These equations can be obtained 
along three different lines of thinking.

(i) One possibility is to start from the wealth of problems 
and systems that have been treated successfully since 
the early work of Newton (1687), Fourier (1822), Ohm 
(1826), and Fick (1855) on the transport of momentum, 
energy, charge, and mass, respectively. In particular, all 
the knowledge of linear irreversible thermodynamics 
[10] must be contained in the fundamental evolution 
equation (1). Moreover, the highly nonlinear processes 
in chemical reactions and the Boltzmann equation 
should also be described by (1)-(3).

(ii) An important guideline in the formulation of (1)-
(3) in [3,4] was the elegance of geometric structures. 
From the landscapes of energy and entropy, reversible 
and irreversible contributions to dynamics are obtained 
by converting gradient vectors of the landscapes 
into tangent vectors of trajectories. As the existence 
of a general variational principle seems to conflict 
with the degeneracy of the Poisson matrix implied 
by (2) (according to the mathematical theory behind 
variational principles [11]), the GENERIC structure 
(1)-(3) seems to provide the appropriately strong and 
general setting of nonequilibrium thermodynamics.

(iii) The separation of reversible and irreversible 
contributions to nonequilibrium dynamics reflects 
a separation of slow and fast degrees of freedom. 
The projection-operator formalism carrying out the 
latter separation [12-16] provides the proper tool for 
laying the statistical foundations of nonequilibrium 
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thermodynamics. Indeed, our fundamental equations 
(1)-(3) arise naturally from projection-operator 
techniques.

Whereas each of the above arguments may be plausible or 
appealing, the combination of the arguments (i), (ii), and 
(iii) makes the GENERIC framework fully convincing. 
Note that energy and entropy are the fundamental 
concepts of nonequilibrium thermodynamics. In cases 
where a nonequilibrium temperature can be introduced 
in a meaningful way, at least locally, one may be able 
to combine the two generators E and S into a single 
one (a “nonequilibrium free energy”). The possibilities 
and limitations of the single-generator approach have 
been discussed in the textbook [17] and in the detailed 
comparison to the double-generator approach [18-20].

3.  SECOND LAW

“Does your theory fulfi l l  the second law of 
thermodynamics?” is a famous killer question. In 
modeling dynamic systems, it may not always be clear 
what exactly this question means. The GENERIC 
framework offers a very clear and simple formulation of 
the second law valid for nonequilibrium thermodynamics,

0,dS S SM
dt x x

δ δ
δ δ

= ⋅ ⋅ ≥    (4)

which follows directly from the chain rule by using 
(1) and (2).

Equation (4) shows clearly that all entropy production 
arises from irreversible dynamics and that a nonnegative 
entropy production is a simple consequence of the 
positive-semidefiniteness of the friction matrix. 
Note that this is a very strong version of the second 
law because it does not make any use of a particular 
functional form of the entropy. The second law (4) 
holds on the time scales of the slow variables and, in 
view of the assumption of a clear separation of time 
scales, is not affected by the fluctuation theorem which 
relates positive and negative entropy fluctuations on 
much shorter time scales [21].

4 .   NONEQUILIBRIUM STATISTICAL 
MECHANICS

By eliminating the fast degrees of freedom, the 
projection-operator formalism [12-16] produces 

equations of the GENERIC form (1)-(3) (see Chapter 
6 of [5] and [22-24]). The fast degrees result in noise 
and friction felt by the slow variables, where these two 
effects are found to be intimately related according to 
the fluctuation-dissipation theorem (see Section 1.6 
of [25]). As a result of the projection procedure, well-
defined statistical expressions for the thermodynamic 
building blocks E, S, L, M in (1)-(3) arise (see 
Section 6.1.4 of [5]). Evaluation of these expressions 
should be the Holy Grail of computer simulations 
for nonequilibrium systems [24]. The counterpart 
in equilibrium statistical thermodynamics is the 
determination of partition functions (or their partial 
derivatives) by Monte Carlo simulations to obtain 
thermodynamic information in terms of the free energy.

A cornerstone of nonequilibrium statistical mechanics 
is the nonequilibrium ensemble. It is a probability 
density on the larger space of more microscopic 
states, parametrized by the more macroscopic state 
variables taking values from a smaller space (to avoid 
awkward formulations, we simply refer to microscopic 
and macroscopic states from now on). The ideas of 
microcanonical, canonical, and mixed ensembles are 
taken over from equilibrium statistical mechanics, 
but now with a much larger and less universal set 
of thermodynamic nonequilibrium variables. The 
energy E and the Poisson matrix L of the coarse-
grained description can be obtained by simply 
averaging their miscroscopic counterparts by means 
of the nonequilibrium ensemble. As at equilibrium, 
the evaluation of the entropy S is a matter of counting 
microscopic states or, more generally, of properly 
normalizing the ensemble.

The friction matrix M is the only building block that 
requires dynamic material information. According to 
the fluctuation-dissipation theorem, it can be obtained 
from the time-correlation functions of fluctuations. 
More precisely, one needs to evaluate the time-integral 
of two-time correlations of the fluctuations of the 
macroscopic variables resulting from the elimination 
of fast microscopic degrees of freedom. The explicit 
expression for the friction matrix is known as the 
Green-Kubo formula (see, for example, (3.47) or 
(6.73) of [5] or (3) of [24]).

The respective role and potential of Monte Carlo, 
molecular dynamics, and Brownian dynamics 
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simulations in thermodynamically guided simulations 
for nonequilibrium systems has been elaborated in [24]. 
Dynamic simulations should run only over a fraction of 
the characteristic slow time scales, just sufficiently long 
to evaluate the decay of two-time correlations on the 
fast time scales. Initial conditions should be obtained by 
Monte Carlo sampling from nonequilibrium ensembles. 
Thermostats and similar devices should be unnecessary 
for such short simulations.

5.  RIGOR AND LIMITATIONS

Equilibrium thermodynamics is a theory of remarkable 
rigor and generality. Can a similar statement be made 
about nonequilibrium thermodynamics?

The rigor of equilibrium thermodynamics stems from 
the fact that it deals with infinitely slow variables. 
The fact that certain variables do not change in time is 
related to fundamental symmetries (see Chapter 21 of 
[26]). In nonequilibrium thermodynamics, slow and 
fast variables are separated only by a finite factor, which 
makes nonequilibrium thermodynamics less rigorous 
than its equilibrium counterpart for the infinitely 
slow variables and the choice of good variables much 
less clear-cut. In terms of elegance and generality of 
the geometric approach, however, nonequilibrium 
thermodynamics is by no means inferior to the famous 
equilibrium theory.

It may be worthwhile to point out that nonequilibrium 
thermodynamics is not the theory of everything that is 
not at equilibrium. To justify the use of nonequilibrium 
thermodynamics for a particular problem, one needs to 
identify a proper set of slow variables (a system) that can 
be employed to describe the problem in a self-contained 
way. In other words, the problem must be amenable to 
coarse graining. From a statistical mechanics point of 
view, the same problem occurs as the need to justify 
the existence of a proper nonequilibrium ensemble 
and the applicability of the Green-Kubo formula. By 
insisting on accounting for increasingly finer details, or 
when processes on the shortest time and length scales 
have a crucial impact on the large-scale features of a 
problem, the use of nonequilibrium thermodynamics 
becomes impossible. For problems related to the deepest 
understanding of life it may even be philosophically 
desirable that any attempt of a thermodynamic 
description is doomed to failure.

6.  APPLICATIONS

In addition to the many famous applications of linear 
irreversible thermodynamics (such as chemical 
reactions, diffusion, osmotic pressure, heat conduction, 
propagation of sound, electrokinetic effects, 
thermoelectric effects, thermokinetic effects, dielectric 
relaxation, polarizable media in electromagnetic fields, 
magneto-plasmas, superfluids, and viscoelastic fluids), 
a number of applications of nonlinear irreversible 
thermodynamics have been compiled in Appendix E 
of the textbook [5]. Those advanced applications are 
from the fields of complex fluids (reptation model for 
entangled linear polymers [27-31], pompon model for 
branched polymers [32,33], polymer blends [34-39], 
colloidal suspensions [40-42], and two-phase systems 
[43-46]), relativistic hydrodynamics [47-51], discrete 
formulations of hydrodynamics for simulations [52-
55], and thermodynamically guided simulations [56-
65] (see also the review article [24] offering “four 
lessons and a caveat” for good simulations in the 
context of nonequilibrium statistical mechanics).

Several basic transport phenomena have been 
generalized to the nonlinear regime. For example, 
diffusion through polymeric and nanocomposite 
membranes has been modeled by means of the 
GENERIC framework [66,67]. Also a comprehensive 
discussion of the multiscale thermodynamics and 
mechanics of heat flow goes beyond linear irreversible 
thermodynamics [68]. Significant progress in applying 
nonequilibrium thermodynamics to increasingly 
more complex fluids has, for example, been made 
with rheological modeling of suspensions of red 
blood cells [69], a biological problem of obvious 
importance. Thermodynamics has also contributed 
to the understanding of gas flow in the smallest of 
channels, as in microfluidics, and of aerodynamics of 
satellites and space stations in the outer limits of our 
atmosphere [70-72].

Whereas the original development of nonequilibrium 
thermodynamics has mainly been pushed in the 
context of complex fluids, the general framework is 
by no means restricted to fluids. Also crystallization 
phenomena, including polymer crystallization, have 
been better understood with the help of the methods of 
modern nonequilibrium thermodynamics and statistical 
mechanics [73-80]. Plasticity and viscoplastic solids 
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are further topics in which important issues have 
been clarified by means of thermodynamics [81-87]. 
By combining thermodynamics with a thoughtful 
characterization of the microstructure, valuable 
insight into continuum damage mechanics has been 
gained [88]. Structural glasses are another challenging 
problem in physics and materials science for which 
nonequilibrium phenomena are widely believed to play 
an important role. Promising new ways to approach 
this long-standing challenge are suggested by the 
GENERIC framework [6,89,90].

Most of the applications of nonequilibrium 
thermodynamics deal with the modeling of bulk systems. 
To solve the resulting bulk equations one typically needs 
boundary conditions. The usefulness of linear irreversible 
thermodynamics for obtaining boundary conditions has 
been shown by Waldmann in his famous 1967 article 
[91]. Brenner and Ganesan [92] asked the very deep 
question “Are conditions at a boundary ‘boundary 
conditions’?” Nonequilibrium thermodynamics actually 
provides the powerful language for expressing the 
physics at the boundary consistently [93,94], thus going 
well beyond the mathematics of boundary conditions. An 
illustrative example is provided by the thermodynamic 
formulation of wall slip [95]. Within linear irreversible 
thermodynamics, a general description of the dynamics 
of interfaces has been developed by Bedeaux and 
coworkers [96-98]. The main challenge is to generalize 
the concept of local equilibrium, which is known to be 
a key ingredient to the nonequilibrium thermodynamics 
of bulk systems, to lower-dimensional interfaces [99-
101]. The analysis of the fully nonlinear thermodynamic 
behavior of complex interfaces within modern 
nonequilibrium thermodynamics is a very active field 
of research [102-106].

7.  FUTURE

The previous section gives many important applications 
of the modern framework of nonequilibrium 
thermodynamics. The following two predictions for a 
promising future of nonequilibrium thermodynamics 
seem to be rather safe:

Prediction 1: The more complex the problems of 
interest become, the more useful the framework of 
nonequilibrium thermodynamics will turn out to 
be. In the presence of many structural variables and 

many transport and relaxation processes, the focus 
on the basic thermodynamic building blocks (E, S, L, 
M), including consistency conditions such as (2) and 
(3), and the possibility to use well-defined tools of 
statistical mechanics to obtain these building blocks 
render modeling efforts much more efficient and help 
to avoid inconsistencies.

Prediction 2: The theory of quantum dissipation 
[107,108] will play an increasing role in various 
branches of quantum technology, such as quantum 
computing, quantum information processing, quantum 
communication, quantum cryptography, quantum 
simulation, quantum metrology, quantum sensing, and 
quantum imaging. After gaining a deep understanding 
of its geometric structure, modern nonequilibrium 
thermodynamics suggests the proper form of the 
equations also for coupling quantum systems to 
classical environments [109-112]. A most remarkable 
result is that thermodynamics imposes nonlinearity 
on quantum master equations, contrary to the almost 
universal presupposition of linear quantum master 
equations in present-day applications.

8.  CONCLUSION

We have sketched the GENERIC framework of 
nonequilibrium thermodynamics and its statistical 
foundations, emphasizing the geometric structure 
of the approach. This short exposition shows 
that there exists an elegant unified approach to 
nonequilibrium systems. The power of the framework 
is demonstrated by sketching a variety of applications 
in which nonequilibrium thermodynamics contributes 
significantly to our state-of-the-art knowledge.

In short, the question asked in the introduction can 
now be answered very convincingly: “Nonequilibrium 
thermodynamics is definitely ready for scientists and 
engineers!”’ The more interesting question now is: 
“Are scientists and engineers ready for nonequilibrium 
thermodynamics?” I hope that this article shows them 
why they should be. Researchers in academia should 
be increasingly motivated to use the tools of statistical 
nonequilibrium thermodynamics to gain understanding 
by coarse graining. These researchers should then 
become the pioneering teachers of inspiring courses 
on nonequilibrium thermodynamics for the next 
generation of scientists and engineers.
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