
 

 A series of Mittag-Leffler functions, behaviour of which is close to the solution of 

fractional logistic equation is introduced. 

 

 A fractional integro-differential equation (modified fractional logistic equation) with 

differential operator of Caputo type is represented, which is proven to be satisfied by the 

series of Mittag-Leffler functions. 

 

 The order of the modified fractional logistic equation is determined based on the study of 

the asymptotic behaviour of the solution. 
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Abstract

In the article [B. J. West, Exact solution to fractional logistic equation, Phys-

ica A: Statistical Mechanics and its Applications 429 (2015) 103–108], the

author has obtained a function as the solution to fractional logistic equation

(FLE). As demonstrated later in [I. Area, J. Losada, J. J. Nieto, A note

on the fractional logistic equation, Physica A: Statistical Mechanics and its

Applications 444 (2016) 182–187], this function (West function) is not the

solution to FLE, but nevertheless as shown by West, it is in good agreement

with the numerical solution to FLE. The West function indicates a com-

pelling feature, in which the exponentials are substituted by Mittag–Leffler

functions. In this paper, a modified fractional logistic equation (MFLE) is

introduced, to which the West function is a solution. The proposed fractional

integro–differential equation possesses a nonlinear additive term related to

the solution of the logistic equation (LE). The method utilized in this article,

may be applied to the analysis of solutions to nonlinear fractional differential

equations of mathematical physics.
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1. Logistic equation

The logistic equation, which is mentioned on occasion as the Verhulst

model, is a population growth model introduced and published by Pierre

Verhulst [1]. The model represents a well-known nonlinear differential equa-

tion in the field of biology and social sciences:

dN (t)

dt
= kN (t)

(
1− 1

Nmax

N (t)

)
, t ≥ 0 , (1)

where k is the rate of maximum population growth constrained to be a real

positive number, N (t) is the population and Nmax is the carrying capacity,

i.e. the maximum attainable value of population. By dividing both side of Eq.

(1) by Nmax and defining u = N (t) /Nmax as the normalization of population

to its maximum sustainable value, the differential equation

du

dt
= ku (1− u) , t ≥ 0 , (2)

is obtained, for which there is an exact closed form solution

u (t) =
u0

u0 + (1− u0) e−kt
, t ≥ 0 , (3)

where u0 is the initial state at the time t = 0. The sigmoidal behavior of

the solution to the logistic equation has been also used to model the tumor

growth [2] and so forth. Since the logistic growth is one of the most versatile

models in natural sciences, the fractional logistic equation would be a relevant

problem to be dealt with.
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The Laplace transform method cannot directly lead up to a solution of

such a nonlinear fractional differential equation. In [3, 4], the authors rep-

resented some creative techniques to approximate the solution to FLE. The

authors of the article [5] have analysed the FLE in the sense of a recently de-

fined fractional derivative, which is mentioned as Caputo–Fabrizio fractional

derivative [6], and represented the solution by utilizing numerical methods.

In [7], the authors have studied the FLE with the Grünwald–Letnikov frac-

tional derivative and assumed the solution to be in the form of a fractional

Taylor series, where the coefficients in the series are evaluated by a recursive

relation. The Carleman embedding technique has been employed by Bruce

J. West (see [8]) to construct a solution to fractional logistic equation

CDβ
t w (t) = kβw (1− w) , β ∈ (0, 1] , (4)

with the initial condition w (0) = u0, where CDβ
t denotes the Caputo frac-

tional differential operator with the fractional order, β, restricted to 0 <

β ≤ 1. The proposed solution, which has been obtained by West [8] and is

mentioned as West function (WF), is

w (t) =
∞∑

n=0

(
u0 − 1

u0

)n
Eβ
(
−nkβtβ

)
, β ∈ (0, 1] , (5)

where Eβ denotes the so–called one parameter Mittag–Leffler function, but

nonetheless in [9], the authors have illustrated that the WF is not the solution

to fractional differential equation (4) except the case, where the fractional

order, β, is equal to one. However, as demonstrated in [8], the WF has been

shown to be in good agreement with the numerical solution of the FLE.

The discussion on the FLE is motivated by the relevance of the model to a

wide range of applications and by the mathematical difficulties involved in the
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analysis of nonlinear fractional equations emerging in mathematical biology.

The aim of this article is to investigate what equation may be satisfied by

the WF (for the case k = 1), i.e. the goal is to seek for an equation which

could be satisfied by

w (t) =
∞∑

n=0

(
u0 − 1

u0

)n
Eβ
(
−ntβ

)
, (6)

In this regard, the fractional integro–differential equation

CDβ
t w (t) = w (t) (1− w (t)) + u0

t−β

Γ (1− β)

+

∫ ∞

0

∫ ∞

0

(
u (s)u (z)− u2 (s)

)
lβ (s, t)lβ (z, t) ds dz , (7)

with the initial condition w (0) = u0 is represented and proved to be satisfied

by the function described in (6). In Eq. (7), which is called as modified

fractional logistic equation (MFLE), the function u is the solution to the

logistic equation (2) for the case k = 1. Thus, Eq. (7) has an additive term

related to the solution of the classical logistic equation. The function lβ (s, t)

is the unique solution to the equation

CDβ
t lβ (s, t) = − ∂

∂s
lβ (s, t) , (8)

with the initial condition

lβ (s, 0) = δ (s) , (9)

where δ (s) stands for the Dirac’s delta function, and the boundary condition

lβ (0, t) =
t−β

Γ (1− β)
, (10)
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and furthermore ∫ ∞

0

lβ (s, t) ds = 1 . (11)

The Laplace transform of the function lβ (s, t) is

∫ ∞

0

e−λslβ (s, t) ds = Eβ
(
−λtβ

)
, λ > 0 . (12)

Further details about lβ (s, t) can be observed in, for instance, [10, 11].

Some necessary preliminaries about asymptotic behaviour of Mittag–

Leffler function, Eβ (z), will be briefly discussed in section 2. Section 3 is

entirely devoted to the solution of the fractional integro–differential equation

(7), and fractional order estimation of which will be discussed in section 4.

2. Mittag–Leffler function

The so-called one parameter Mittag-Leffler function Eβ (z) is defined as

a power series, denoted by

Eβ (z) =
∞∑

k=0

zk

Γ (βk + 1)
, β > 0 z ∈ C . (13)

which was first introduced by G. M. Mittag-Leffler and could be considered

as the generalization of the exponential function due to the replacement of

Γ (k + 1) by Γ (βk + 1) in the exponential series formula (for instance, see

[12, 13]). It could be obviously perceived that Eβ (0) = 1. In this note, the

main focus of attention will be the function

Eβ
(
−λzβ

)
=
∞∑

k=0

(−1)kλk
zkβ

Γ (kβ + 1)
, (14)

which provides the Laplace transform of lβ (see Eq. (12)). It is appropriately

pointed out that the asymptotic behaviour of the Mittag-Leffler function
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Eβ
(
λzβ
)
, for 0 < β < 2 and z ∈ R+, could be stated as follows [13, 14, 15, 16]

Eβ
(
λzβ
)

=
1

β
exp

( z
λβ

)
−

n∑

k=1

z−kβ

λkΓ (1− kβ)

+O
(∣∣λzβ

∣∣−1−n
)
, n ∈ N , λ > 0 , z → +∞ , (15)

and

Eβ
(
λzβ
)

= −
n∑

k=1

z−kβ

λkΓ (1− kβ)

+O
(∣∣λzβ

∣∣−1−n
)
, n ∈ N , λ < 0 , z → +∞ . (16)

Furthermore the following inequality is held true for all non-negative real

numbers, i.e. z ∈ [0,∞) (e.g., see [13, theorem 1.6]):

For 0 < β < 2, there exists a constant C (β) such that

0 ≤
∣∣Eβ

(
−zβ

)∣∣ ≤ C (β)

1 + zβ
, 0 < β < 2 , (17)

where C (β) is a real positive constant.

By the Riemann-Liouville fractional order derivative Dβ
z , the following

formula could be obtained (see [17, formula 2.2.53]) for the fractional deriva-

tive of Mittag-Leffler function

Dβ
zEβ

(
µzβ
)

=
z−β

Γ (1− β)
+ µEβ

(
µzβ
)
, β ∈ R+ , µ ∈ C . (18)

3. Modified fractional logistic equation

In [8], the author has utilized the Carleman embedding technique to

construct an infinite–order system of linear fractional differential equations

equivalent to the nonlinear fractional differential equation (4) and has ob-

tained a solution in terms of a weighted sum over the Mittag–Leffler functions
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(see Eq. (5)). The authors in [9] indicated later that the Carleman embed-

ding technique solves integer–order differential equations, not the fractional

ones. Nonetheless, for β = 1, the WF results in the solution to classical

logistic equation. As illustrated in Figure 1, it is observed that the WF in

(6), is in good agreement with the numerical integration of fractional logistic

equation

CDβ
t w (t) = w (1− w) , β ∈ (0, 1] . (19)

Figure 1 shows the graph of the numerical solution to the fractional logistic

equation (19) and the WF represented in (6) for the fractional order β = 0.7.

The MATLAB code fde12.m [18], which implements the predictor–corrector

method of Adams-Bashforth-Moulton type described in [19], is used in order

to represent the numerical solution of Eq. (19). The WF is numerically

evaluated by means of the MATLAB code ml.m [20], which is based on the

numerical inversion of the Laplace transform of Mittag–Leffler function [21].

In this section, the goal is to demonstrate that the WF, which has been

expressed in (6), is the solution to fractional integro–differential equation

(7):

Referring to Eqs. (2) and (3) , it can be observed that the solution to classical

logistic equation u̇ = u (1− u) is as follows

u (t) =
u0

u0 + (1− u0) e−t
, t ≥ 0 , (20)

The function u in (20) can be rewritten as below

u (t) =
u0

u0 + (1− u0) e−t

=
∞∑

k=0

(
u0 − 1

u0

)k
e−kt . (21)
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Figure 1: Comparison of the West Function (WF) expressed in Eq. (6) and the numerical

integration of the FLE (Eq. (19)), for β = 0.7 and u0 = 0.75 .

By using Eqs. (12) and (21), the function w (t), represented in (6), can be

appropriately expressed in terms of lβ (s, t)

w (t) =
∞∑

k=0

(
u0 − 1

u0

)k
Eβ
(
−ktβ

)

=
∞∑

k=0

(
u0 − 1

u0

)k ∫ ∞

0

e−kslβ (s, t) ds

=

∫ ∞

0

∞∑

k=0

(
u0 − 1

u0

)k
e−kslβ (s, t) ds

=

∫ ∞

0

u (s) lβ (s, t) ds . (22)
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From equation (6), it could be obtained that

w2 (t) =
∞∑

k=0

∞∑

i=0

(
u0 − 1

u0

)k+i
Eβ
(
−itβ

)
Eβ
(
−ktβ

)

=
∞∑

k=0

∞∑

i=0

(
u0 − 1

u0

)k+i∫ ∞

0

e−kslβ (s, t) ds

∫ ∞

0

e−izlβ (z, t) dz

=

∫ ∞

0

∫ ∞

0

∞∑

k=0

∞∑

i=0

(
u0 − 1

u0

)k+i
e−kse−izlβ (s, t) lβ (z, t) dsdz

=

∫ ∞

0

∫ ∞

0

u (s)u (z) lβ (s, t) lβ (z, t) dsdz . (23)

The substitution of (23) for the term w2 (t) in (7) leads to

CDβ
t w (t) =

u0t
−β

Γ(1− β)
+ w −

∫ ∞

0

∫ ∞

0

u2 (s) lβ (s, t) lβ (z, t) dsdz

=
u0t
−β

Γ(1− β)
+ w −

∫ ∞

0

(
u2 (s) lβ (s, t)

∫ ∞

0

lβ (z, t) dz

)
ds , (24)

and by referring to (8) and (11), it is eventually obtained from the equation

(24) that

CDβ
t w (t) =

u0t
−β

Γ(1− β)
+ w −

∫ ∞

0

u2 (s) lβ (s, t) ds

=
u0t
−β

Γ(1− β)
+

∫ ∞

0

(
u (s)− u2 (s)

)
lβ (s, t) ds

=
u0t
−β

Γ(1− β)
+

∫ ∞

0

u′ (s) lβ (s, t) ds

=
u0t
−β

Γ(1− β)
+ u (s) lβ (s, t)|∞s=0 −

∫ ∞

0

u (s) ∂slβ (s, t) ds

=
u0t
−β

Γ(1− β)
+

(
0− u0

t−β

Γ (1− β)

)
+

∫ ∞

0

u (s) CDβ
t lβ (s, t) ds

= CDβ
t

∫ ∞

0

u (s) lβ (s, t) ds

= CDβ
t w (t) . (25)
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Figure 2: Comparison of the West Function (WF) expressed in Eq. (6) and the numerical

integration of the FLE (Eq. (19)), for β = 0.9 and u0 = 0.75 .

Therefore the function w (t), expressed in (6), satisfies the fractional differ-

ential equation (7). Figure 2 illustrates the graphs of the WF and numerical

solution to (19) and shows that the WF is in good agreement with the numer-

ical solution of FLE. Specifically, as mentioned in [8], the WF and numerical

solution to FLE coincide for β = 1. As it is obvious from Eq. (6), the

solution to MFLE is obtained by means of a series of Mittag–Leffler func-

tions. Thus, series of Mittag–Leffler functions seem to play an interesting

role in the context of fractional logistic equations. The properties of series

of Mittag–Leffler functions have been studied in [22].

4. Estimation of the fractional order

The determination of the order of fractional differential equations is an

issue, which has been analysed and discussed in recent years [23, 24] and it

has a wide range of applications in physical phenomena such as fractional

diffusion equations. In [24], fractional order estimation has been conducted
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for some classes of linear fractional differential equations. In this section, the

relationship between the fractional order and the asymptotic behaviour of

the solution to MFLE is proved. The solution to (7) could be asymptotically

expressed by referring to (16):

w (t) =
∞∑

k=0

(
u0 − 1

u0

)k
Eβ
(
−ktβ

)

= 1 +
∞∑

k=1

(
u0 − 1

u0

)k
Eβ
(
−ktβ

)
, (26)

and for large t, by using the Eq. (16), w (t) will be approximately equal to

w (t) ≈ 1 +
∑

k≥1

(
u0 − 1

u0

)k∑

s≥1
(−1)s+1

(
1

ktβ

)s
1

Γ (1− βs)

≈ 1 +
∑

k≥1

∑

s≥1
(−1)s+1

(
u0 − 1

u0

)k
t−sβ

ks
1

Γ (1− βs)

≈ 1 +
t−β

Γ (1− β)

∑

k≥1

(
u0 − 1

u0

)k
1

k

+
∑

s≥2
(−1)s+1 t−sβ

Γ (1− βs)
∑

k≥1

(
u0 − 1

u0

)k
1

ks
, (27)

Remark. By observing the Eq. (27), it is obviously found that the function

w (t) has the limit w∞ = 1, which is independent of the fractional order, β,

as time tends to infinity.

Figure 3 shows that the solution to MFLE is asymptotically independent

of the fractional order, β, and its limit is equal to one as t goes to infinity.

For u0 ≥ 1
2
, Eq. (27) is as follows

w (t) ≈ 1 +
t−β

Γ (1− β)
lnu0 +

∑

s≥2
(−1)s+1 t−sβ

Γ (1− βs)
∑

k≥1

(
u0 − 1

u0

)k
1

ks
, u0 ≥

1

2
(28)
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Figure 3: The graph of the WF for β = 0.7, β = 0.8, β = 0.9 .

As t tends to infinity, by neglecting the third term of the right-hand side of

(28), the function w (t) is asymptotically equal to

w(t) ≈ 1 +
t−β

Γ(1− β)
lnu0 , u0 ≥

1

2
. (29)

Therefore, by using the asymptotic behaviour of the function w (t), the order

of the fractional integro–differential equation (7) is determined

lim
t→+∞

tw′ (t)

1− w (t)
= β . (30)

5. Conclusion

A fractional integro–differential equation is represented, to which the WF

expressed in (6) is a solution. The proposed fractional integro–differential

equation is called modified fractional logistic equation (MFLE) and its solu-

tion is in the form of a series of Mittag–Leffler functions.
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