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REVIEW ®

Small-World Brain Networks

DANIELLE SMITH BASSETT and ED BULLMORE

Many complex networks have a small-world topology characterized by dense local clustering or cliquishness
of connections between neighboring nodes yet a short path length between any (distant) pair of nodes due to
the existence of relatively few long-range connections. This is an attractive model for the organization of brain
anatomical and functional networks because a small-world topology can support both segregated/specialized
and distributed/integrated information processing. Moreover, small-world networks are economical, tending to
minimize wiring costs while supporting high dynamical complexity. The authors introduce some of the key
mathematical concepts in graph theory required for small-world analysis and review how these methods have
been applied to quantification of cortical connectivity matrices derived from anatomical tract-tracing studies
in the macaque monkey and the cat. The evolution of small-world networks is discussed in terms of a selec-
tion pressure to deliver cost-effective information-processing systems. The authors illustrate how these tech-
niques and concepts are increasingly being applied to the analysis of human brain functional networks derived
from electroencephalography/magnetoencephalography and fMRI experiments. Finally, the authors consider
the relevance of small-world models for understanding the emergence of complex behaviors and the resilience
of brain systems to pathological attack by disease or aberrant development. They conclude that small-world
models provide a powerful and versatile approach to understanding the structure and function of human brain

systems. NEUROSCIENTIST 12(6):512-523, 2006. DOI: 10.1177/1073858406293182

KEY WORDS Small-world network, Graph theory, Human brain functional networks, Functional magnetic resonance imaging

What Is a Small-World Network?

The basic idea of a small-world network is immediately
familiar to many of us from personal experience. We
each have a social network of friends, relatives, and
acquaintances. Our close friends and relatives are likely
to constitute a cluster or clique of social contacts; for
example, two of my close friends are likely to be friends
with each other as well as with me. However, we may
also have had the apparently surprising experience of
traveling in a distant country or working in a strange city
and discovering that some of the new people we meet in
such a remote location are socially connected to people
we already knew (friends of friends). It appears that
social networks, as well as being locally clustered or
cliquish, are remarkably extensive: The number of per-
sonal friendships mediating a social connection between
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any two people can be surprisingly small given the size
and geographical dispersion of the global population.

These qualitatively familiar concepts were translated to
a more quantitative physical basis in an influential article
by Watts and Strogatz (1998; Fig. 1). They constructed a
simple computer model of a regular network or lattice, in
which each node of the network was connected by a line
or edge to each of its four nearest neighbors. This network
structure or topology is highly clustered or cliquish by
design, but to get from one node to another node on the
opposite side of the lattice, one must traverse a large num-
ber of short-range connections. In other words, although
the path length (or number of mediating edges) between
neighboring nodes is short, the path length between dis-
tant nodes is long, and so the minimum path length aver-
aged over all possible pairs of nodes in the network is
also long. Watts and Strogatz investigated the change in
network topology (measured in terms of local clustering
and minimum path length) that resulted from randomly
rewiring some of the lattice edges to create long-range
connections between distant nodes. If many lattice edges
were randomly rewired, the network naturally assumed
the topological characteristics of a random graph (short
path length and low clustering). But importantly, they
found that the existence of even a few long-range connec-
tions greatly reduced the minimum path length of the net-
work without affecting its local clustering to the same
extent. Thus, they defined algorithmically for the first time
a class of networks with topological properties similar to
social networks, demonstrating both the high clustering of
a lattice and the short path length of a random graph,
which they called small-world networks.
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Fig. 1. Small-world diagram (Watts and Strogatz 1998).
The computational model of small-world networks pro-
posed by Watts and Strogatz (1998) began by connecting
nodes with their nearest neighbors, producing a regular
graph that had a high clustering coefficient and a high
average path length. With a probability P, edges were then
randomly rewired. When P was equal to unity, all edges
were randomly rewired, and thus the network was per-
fectly random, having a short average path length and
clustering coefficient. However, when P was between 0
and 1, there existed some dense local clustering, charac-
teristic of regular networks, and some long-range connec-
tions, characteristic of random networks (i.e., the resultant
graph was a small-world network with high clustering and
low path length). Reprinted by permission from Macmillan
Publishers Ltd: Nature 1998;393:440-2. Copyright 1998.

In the 8 years since small-world networks were
described quantitatively in this way, there has been a
remarkable profusion of studies seeking to clarify their
mathematical properties and/or to explore their suitability
as models of real-life networks. For example, the distinc-
tive combination of high clustering and short path length
has been reported in social networks of professionally col-
laborating actors or scientists; in infrastructural networks
such as the Internet, power supply grids, or transport sys-
tems; and in biochemical systems such as cellular net-
works of protein-protein or gene-gene interactions.
Small-world topology has been demonstrated empirically
in complex networks at physical scales ranging from
molecular to macroeconomic and in scientific contexts as
diverse as ecology, computing, and linguistics (for a thor-
ough review, see Boccaletti and others 2006).

Why Should We Think about the Brain as a
Small-World Network?

There are empirical and theoretical reasons a priori why
small worlds present an attractive model for brain net-
work connectivity. Later, we will review the mathemati-
cal methodology and empirical findings in more detail;
first, we briefly rehearse the main theoretical motivations.

1. The brain is a complex network on multiple spatial
and time scales. This fact alone might motivate a
small-world analysis of brain networks given the
widespread occurrence of small-world properties in
so many other complex networks and over a wide
range of physical scales.

2. The brain supports both segregated and distributed
information processing. Network architecture is
regarded as a key substrate for sensorimotor and cog-
nitive processing, which may be localized discretely
in specialized regions or represented by coherent
oscillations in large-scale distributed systems. Small-
world topology comprises both high clustering (com-
patible with segregated or modular processing) and
short path length (compatible with distributed or inte-
grated processing).

3. The brain likely evolved to maximize efficiency and/
or minimize the costs of information processing.
Small-world topology is associated with high global
and local efficiency of parallel information processing,
sparse connectivity between nodes, and low wiring
costs. Small-world networks can operate dynamically
in a critical state, facilitating rapid adaptive reconfigu-
ration of neuronal assemblies in support of changing
cognitive states.

Mathematical Concepts

Complex systems can be better understood when we
describe them mathematically as graphs. For graph
analysis, the N individual components or agents com-
prising the system are called nodes and the K relations or
connections between them are called edges (Fig. 2).
The edges of a graph can be directed or undirected:
An undirected graph simply summarizes symmetric rela-
tions (such as correlations) between nodes, whereas a
directed graph additionally models the causal relation-
ships between nodes. Edges can also be categorized as
weighted or unweighted: In an unweighted graph, all the
edges are assumed to indicate relations of equivalent
strength between nodes, whereas a weighted graph can be
used to differentiate stronger and weaker connections.
Each node of a graph can be described in terms of the
number of edges that connect to it: This is called the
degree of a node, k. The nearest neighbors of a node are
directly connected to it by a single edge. In a directed
graph, we can distinguish between the in-degree (num-
ber of afferent edges) and the out-degree (number of
efferent edges) of a node. The degree distribution of a
graph is the probability distribution of k. Random graphs
have an exponential degree distribution: P(k) ~ e
(Albert and Barabdasi 2002). Several complex systems,
such as the Internet and World Wide Web (WWW), have
been found to have a power law distribution of the form
P(k) ~ k', which implies a greater probability that nodes
with a very large degree will exist in the graph (Albert
and Barabdasi 2002). Thus, the power law degree distri-
bution of the WWW is compatible with the existence of
a few major hubs such as Google or Yahoo!, to which
very many other sites are linked. Many physically
embedded networks, such as transport or infrastructural
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Fig. 2. Graph scheme: path length, clustering, average
degree. Nodes are usually depicted by circular objects.
Edges are the connections between these nodes. A, The
path length between the two yellow nodes is defined as
the fewest number of edges that must be traversed to get
from one to the other. In this case, five edges must be fol-
lowed, and therefore the path length between these two
nodes is five. B, A high clustering coefficient means that
if two nodes are both connected to a third node, then they
are probably also connected to each other. The calculation
of the clustering coefficient takes into account the number
of connected triangles (shown here with yellow nodes and
dashed edges). C, The degree of a node is equal to the
number of edges connected to it. A hub is defined as a
node that has a degree larger than the average degree.
The average degree in this network is 3.3, and therefore,
both nodes with degree 6 are hubs (shown in yellow).

systems, have an exponentially truncated power law dis-
tribution of the form P(k) ~ K" e which implies that
the probability of highly connected hubs will be greater
than in a random graph but smaller than in a scale-free
network with a power law degree distribution (Amaral
and others 2000).

The two key metrics of small worldness introduced by
Watts and Strogatz (1998) are the clustering coefficient C
and the minimum path length L. The path length between
any two nodes is simply defined as the minimal number
of edges that must be traversed to form a direct connec-
tion between the two nodes of interest (Watts and Strogatz
1998; Fig. 2). The clustering coefficient of a node is a
measure of the number of edges that exist between its
nearest neighbors (Schank and Wagner 2005); if all the
nearest neighbors of an index node are also nearest neigh-
bors of each other, then C will have its maximum normal-
ized value (1). The minimum path length and clustering
coefficient of the whole graph are estimated simply by
averaging L. and C, foreach of the i =1, 2, 3, ... N nodes
it comprises. To evaluate the properties of a real-life net-
work, these parameters must be compared to the mean

clustering coefficient and path length estimated in a ran-
dom graph with the same number of nodes, edges, and
degree distribution as the network of interest. In a ran-
dom graph, the average minimum path length is typi-
cally short, L, ~ In N/In([K/N] — 1), and the average
clustering coefficient is typically small, C__, ~ (K/N)/N
(Albert and Barabasi 2002). For a small-world network,
by definition, we expect the ratio A = L/L__, to be
approximately 1 and the ratio y = C/C,, to be greater
than 1. Therefore, a simple scalar measure of small
worldness can be defined as ¢ = /A, which will be
greater than 1 if the network has the characteristic prop-
erty of greater-than-random clustering and near-random
path length (Humphries and others 2006).

More recent methodological work has developed
alternative metrics of complex networks that can be
related to C and L and may have some technical or con-
ceptual advantages. For example, we can define the
global efficiency of information transmission by a net-
work as inversely proportional to the average minimum
path length, Eglob ~ 1/L (Latora and Marchiori 2001).
Unlike path length, global efficiency can be measured in
networks that are not composed of a single, large group
of interconnected nodes. Global efficiency may also be
preferable to path length as a metric of brain network
topology because it is more immediately related to the
functional efficiency of the system for information trans-
mission between any two nodes via multiple parallel
paths. This is attractive, compared to the more serial
metric of path length, because the brain is known to
instantiate parallel processing. We can also define the
local efficiency or fault tolerance of a network as pro-
portional to the clustering coefficient, £, . ~ C. Both
these efficiency measures can be compared to the maxi-
mum global and local efficiency of an ideal network, in
which all possible connections between nodes are pres-
ent and thus normalized to the range 0 < (E,,,, E\ ) < 1.

Another potentially important metric for brain network
analysis is some measure of cost. One simple cost func-
tion is the sum of edges between regions in the graph
(Latora and Marchiori 2003); a costly network will have
many edges. Many small-world networks in biology and
sociology have been shown to have the economic prop-
erty of delivering high global and local efficiency at
relatively low cost (Latora and Marchiori 2003).

Several recent reviews provide a more extensive con-
sideration of the mathematical basis of graph analysis of
small-world networks (Albert and Barabasi 2002; Costa
and others 2006). There are also a number of generally
accessible books describing the existence and character-
istics of small-world networks in common experience
(Buchanan 2003; Watts 2004a, 2004b).

Brain Anatomical Networks

The first graphical analyses of mammalian cortical net-
works, in the early 1990s, preceded the mathematical
development of the small-world model but identified
many features of anatomical connectivity that would
later be recognized as compatible with it.
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Fig. 3. Cortical connectivity maps (Stephan and others 2000). Left, A schematic map of the parcellation scheme of
the macaque cortex used in Stephan and others (2000), showing the lateral aspect (A), medial aspect (B), and ventral
aspect (C). Right, Graphical depictions of the functional connectivity in the macaque cortex constructed using nonmetric
multidimensional scaling, a method that places nodes in close proximity if the connection between them is strong and
places nodes far apart if the connection between them is weak. Data fit to distances (A) and data fit to square distances
(B) show high clustering mostly between PC, PB, FA, FCBm FB, Pep, PF, PEm, PG, TE, TEO, and OB (frontal and pari-
etal regions). Sparse connections arise between, for example, IA, FL, IB, TH, and 11, suggesting small-world topology.
Reprinted from Philos Trans Roy Soc Lond B Biol Sci, 355, Stephan KE, Hilgetag CC, O'Neill MA, Young MP, Kotter R,
Computational analysis of functional connectivity between areas of primate cortex, 111-126, 2000, with permission from

the Royal Society, London.

Felleman and Van Essen compiled an anatomical con-
nectivity matrix from the prior tract-tracing literature that
summarized 305 axonal connections between 32 areas of
the visual cortex in the macaque monkey (Felleman and
Van Essen 1991). Most connections were shown to be
reciprocal (242 of the total), and the overall connection
density (0.31) was somewhat sparse. Differentiation of
these connections with respect to the laminar structure of
the cortex was used to produce a hierarchy of 10 levels
of cortical processing, which showed multiple segregated
parallel processing streams with fewer connections
between streams. Segregation of the ventral and dorsal
streams was confirmed (Young and others 1995), whereas
hierarchical graphical measures showed that the ventral

cluster was more clearly segregated than the dorsal cluster,
whose nodes maintained more efferent edges (Hilgetag
and others 2000; Costa and Sporns 2005).

Young and colleagues likewise considered anatomical
connectivity matrices drawn from tract-tracing studies of
the macaque monkey and the cat (Fig. 3; Young 1992,
1993). The connectivity matrix for the macaque visual
cortex comprised 301 connections between 30 areas in the
primate visual cortex, and connections were numerically
coded as 0 (weak or absent) through 2 (strong and recip-
rocal). The topology of these connections was visualized
using a multivariate technique called nonmetric multidi-
mensional scaling (NMDS), which plots strongly con-
nected areas in close proximity while maximizing the
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Table 1. Global Topological Parameters for Small-World Networks in Anatomical Connectivity Matrices

Data L Cc A Y Egiob E oc Cost
Macaque visual cortex 1.73 0.53 1.04 1.47 — — —

Macaque whole cortex 2.38 0.46 1.17 3.06 0.52 0.70 0.18
Cat cortex 1.81 0.55 1.06 1.77 0.69 0.83 0.38

Macaque visual cortex and whole cortex data are similar to those introduced by Felleman and Van Essen (1991) and
Young (1993); cat cortex data are similar to those introduced by Scannell and others (1999). Classical small-world
parameters, path length L and clustering C (A and v after scaling by random network parameters) are as summarized
by Sporns and Zwi (2004). Economic small-world parameters, global and local efficiency (Eglob and E, ), and cost are

as reported by Latora and Marchiori (2003).

graphical distance between nonconnected areas. Thus, the
resulting graph demonstrated strong interconnectivity of
cortical areas comprising dorsal and ventral clusters with
relatively few anatomical connections between these seg-
regated processing streams. The results were summarized
in terms of four organizing principles of the macaque
visual cortex: 1) there are two segregated (dorsal and ven-
tral) streams, 2) both streams are organized hierarchically,
3) the two streams converge in the same areas of the tem-
poral and frontal association cortex, and 4) neighboring
areas innervate each other strongly whereas distant areas
are less likely to be connected, that is, networks are char-
acterized by dense local clustering and a few long-range
connections.

A similar approach was taken to the analysis of an
anatomical connectivity matrix derived from tract-tracing
studies in the cat. This matrix comprised a total of 1139
corticocortical connections between 65 cortical areas
(average degree k =17.5; Scannell and others 1995, 1999),
which were numerically coded as either strong/dense
(3), intermediate (2), or weak/sparse (1). The topology of
the matrix was visualized using NMDS, and this showed
four distinct clusters of strong local interconnectivity—
designated visual, auditory, somatosensorimotor, and
frontolimbic—with relatively sparse connectivity between
clusters. The connectional topology was modeled by 1)
nearest-neighbor and 2) next-door-but-one rules, both of
which would generate regular or near-regular graphs. The
nearest-neighbor and next-door-but-one models predicted,
respectively, 26.1% and 56.6% of the real connections in
the visual cluster, 27.9% and 61.6% in the auditory clus-
ter, 18.2% and 44.4% in the somatosensorimotor cluster,
and 20.2% and 50.2% in the frontolimbic cluster; globally,
these two models predicted only 19.5% and 47.8% of the
known anatomical connections. These results indicated
that cortical connectivity was not well modeled as a regu-
lar graph (even within clusters or subgraphs).

Small-World Brain Anatomical Networks

The first nervous system to be formally quantified as a
small-world network was at the microscopic scale of the
neuronal network of Caenorhabditis elegans, which has
been exactly described in terms of the 2462 synaptic con-
nections between each of 282 constituent neurons. Using
graph theoretical measures, the complete nervous system
of C. elegans was shown to be neither random nor regular

but a small-world network, with an average path length of
L =2.65 and an average clustering coefficient of C = 0.28
(Watts and Strogatz 1998). Microscopic neuronal systems
in the medial reticular formation of the vertebrate brain
have also been shown to have small-world architecture
(Humphries and others 2006).

In the study by Hilgetag and others (2000), the larger
scale macaque and cat cortical connectivity matrices
described above were formally shown to have small-
world properties, that is, relatively high clustering (y>> 1)
and short path lengths (A ~ 1) compared to random net-
works (see Table 1). The same anatomical data have also
been analyzed in terms of the economic small-world
parameters—global and local efficiency and cost—and
have high global efficiency and high local efficiency or
fault tolerance at low cost (Latora and Marchiori 2003;
see Table 1).

Why Do Brain Anatomical Networks Have
Small-World Properties?

Given the strong empirical evidence that brain anatomi-
cal connectivity is sparse, locally clustered, and with a
few long-range connections mediating short path lengths
between any pair of regions, it is reasonable to ask why
this small-world architecture has evolved.

We suppose that brain network architecture has likely
evolved to maximize the complexity or adaptivity of
function it can support while also minimizing costs.
Below, we review some of the evidence that small-world
topology is associated with low wiring costs and high
dynamical complexity, suggesting that small-world
brain network topology could indeed have been selected
to optimize the economic problem of cost-effective
information processing.

Wiring Costs and Small-World Brain Networks

Several aspects of brain structure are compatible with a
selection pressure to minimize wiring costs: the segrega-
tion of white and gray matter, separation of visual cortical
areas, scaling of the number of areas/neuronal density
with brain size (Ringo 1991; Changizi 2001), organiza-
tion of cortical areas and basal ganglia, existence of topo-
graphic maps, ocular dominance patterns, dimensions of
axonal and dendritic arbors, and the fraction of gray
matter occupied by axons and dendrites (Chklovskii and
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others 2002; Stepanyants and others 2002; Chklovskii
2004). However, it is evident that the complete minimiza-
tion of wiring would allow only local connections (Sik
and others 1995) and not long-distance connections, lead-
ing to delayed information transfer and metabolic energy
depletion (Allman 1998; Koch and Laurent 1999; Buzsaki
and others 2004). To counteract this effect, the brain also
minimizes energy costs by adding several long-distance
connections, creating a small-world network (Karbowski
2001). The simultaneous minimization of wiring and
energy costs may explain the cluster structure as well as
long-range connectivity found throughout neural systems
(Sik and others 1995; Hilgetag and Grant 2000; Sporns
and others 2000; Buzsdaki and others 2004; Zhigulin 2005).

Dynamical Complexity and Computational
Small-World Networks

The dynamic consequences of a small-world brain
anatomical network were first explicitly studied by
Sporns and others in 2000. The interconnected regions of
the macaque visual cortical network and cat cortical net-
work were each separately injected with uncorrelated
noise in a computational model that was allowed to run
dynamically. After a period of time, the covariances of the
dynamic processes between regional nodes were esti-
mated (Sporns and others 2000, 2002) and thresholded to
create an unweighted and undirected graph of computa-
tionally simulated network activity. The graphs showed
high complexity, dense local clusters of connections,
sparse interconnections between clusters, abundance of
reciprocal connections and cycles, minimal wiring, and
global and local efficiency (Vragovic and others 2005).
Furthermore, it was shown that these graphs could easily
match an input stimulus, produce a highly degenerate out-
put stimulus, and allow both functional segregation and
integration, all necessary for proper brain function
(Sporns and others 2004). Sporns has corroborated this
link between small-world topology and dynamical com-
plexity by a different but complementary experimental
approach (Sporns and others 2000). Instead of starting
from an anatomical connectivity matrix with known
small-world properties and simulating its complex
dynamics, he has also started from a random graph and
allowed its topology to evolve computationally to maxi-
mize the complexity of its dynamics. It turns out that
computational graphs evolved for complexity have small-
world topology (Fig. 4).

A strong relationship between small-world topology
and dynamic complexity is confirmed by many other stud-
ies. Information propagates faster on many small-world
networks of undirected uniformly coupled identical oscil-
lators (Barahona and Pecora 2002; Hong and Choi 2002)
with few exceptions (Atay and others 2006), allowing bet-
ter computational power (Lago-Fernandez and others
2000) and increased stochastic resonance (Gao and others
2001), possibly due to its associated feedback system (Lu
and others 2004). Synchronizability of these systems is
found by computing the Laplacian spectrum (Barahona
and Pecora 2002; Nishikawa and others 2003; Atay and

Biyikoglu 2005), and their robustness can be determined
via edge removal (Lu and others 2004). Small-world
topology has been associated with synchronizability S ~ 0.1,
which marks a critical point in the dynamics of coupled
oscillators, defining the transition from disordered to
globally coherent oscillations as S becomes greater than
0.1. Pulse-coupled leaky integrate and fire oscillators show
similar behavior (Masuda and Aihara 2004). Nonidentical
Hodgkin-Huxley neurons coupled by excitatory synapses
show fast responses in random networks, coherent oscilla-
tions in regular networks, and both fast responses and
coherent oscillations in small-world networks (Lago-
Fernandez and others 2000).

Brain Functional Networks

The first evidence for small-world properties of a brain
functional network was provided by analysis of histori-
cal neuronographic data, which identified a functional
connection between regions of macaque cortex by the
propagation of strychnine-induced epileptiform activity
(Kotter and Sommer 2000; Stephan and others 2000).
The functional network so defined had a short path
length, L=2.17, and high clustering, C = 0.38. However,
most subsequent studies of brain functional networks
have been based on human electroencephalography
[EEG], magnetoencephalography [MEG], or functional
MRI (fMRI).

From Functional Connectivity to
Undirected Graph

For the anatomical and computational brain networks so
far considered, it has been fairly straightforward to decide
whether to draw an edge in the graph between any pair
of regions or nodes. For the anatomical networks, we can
refer to the literature on definitive tract-tracing studies
to know if a certain axonal connection exists; for the
computational networks, the exact topology is known by
design. However, if we want to apply the same tools to
analysis of brain functional networks, we will usually first
have to derive an undirected graph from the data by apply-
ing a binary threshold to some continuous measure of
association or functional connectivity (Friston 1994)
between two neurophysiological time series recorded in
distinct regional locations.

For instance, using EEG or fMRI, we can record a time
series from each of several regions and then estimate the
functional connectivity between a given pair of regional
time series in terms of their mutual information, correla-
tion, or partial correlation. We can also estimate func-
tional connectivity in a restricted frequency range using
coherence measures in the Fourier domain or correlations
estimated in the wavelet domain (Fig. 5). However func-
tional connectivity is estimated, the resulting matrix of
pairwise associations will usually be binarized such that
any association greater than threshold is represented as a
line between the relevant regional nodes in a brain func-
tional network (whereas any association less than thresh-
old is represented as an absence of an edge between
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Fig. 4. Networks of high complexity (Sporns and others 2002). Types of graphs that represent high entropy, high inte-
gration, and high complexity along with the binary matrices used to create them (Sporns and others 2002). A, Left,
A graph selected for high entropy in which nodes act fairly independently of each other. Right, A graph selected for high
integration in which nodes are very dependent on each other for their dynamics. B, Three graphs (N = 16, N = 32, and
N = 64) selected for high complexity in which nodes are both segregated and integrated simultaneously. The small-world
properties of the macaque visual cortex are most like those emergent from a graph of high complexity. Parameters for
the random, macaque visual cortex and high complexity graphs are respectively: average path lengths of 1.70, 1.77,
1.80 and clustering coefficients of 0.315, 0.554, 0.519 (Sporns and others 2000). Reprinted from Behav Brain Res,
20;135(1-2), Sporns O, Tononi G, Edelman GM, Theoretical neuroanatomy and the connectivity of the cerebral cortex,

69-74, 2002, with permission from Elsevier.

nodes). It follows that the reported topology of brain func-
tional networks could depend considerably on the number
of regions included, the chosen measure of association,
and the thresholding rule (see Table 2 for a comparison).
The relative merits of the various methodological options
remain to be fully evaluated.

The first graph theoretical analysis of MEG data was
reported by Stam (2004), who measured activity at 126
MEG sensors in five healthy individuals studied in a rest-
ing state with eyes closed. The pairwise association

between activity at different sensors was estimated using
the synchronization likelihood, which is a measure of
nonlinear as well as linear coupling between two time
series, after the raw data had been filtered into classical
EEG frequency bands (5, 0, o, B, ). The resulting func-
tional connectivity matrices were thresholded (using a
range of threshold values of the synchronization likelihood)
to create a set of undirected graphs depicting brain func-
tional networks specific to each of the frequency bands.
It was reported that graphs from the o band (8-13 Hz) and
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Table 2.

Small-World Parameters for Functional Brain Networks in the Macaque and Healthy Human

Data Connectivity Metric N k d (o L A Y o
Macaque cortex Tract-tracing (binary) 39 6.1 0.15 0.38 217 1.01 246 2.44
(Stephan and

others 2000)

Human MEG Synchronization likelihood 126 15 0.12 ~05 ~50 -~18 -~42 -23
(Stam 2004)

Human EEG Synchronization likelihood 28 5 0.18 ~-04 ~41 10 -~2.0 -2.0
(Micheloyannis

and others 2006)

Human fMRI (Eguiluz Correlation 31,503 13.4 4.3-10* 014 114 292 325 111
and others 2005)

Human fMRI (Salvador, Partial correlation 90 5.7 0.06 025 282 1.09 2.08 1.91
Suckling, Coleman,

and others 2005)

Human fMRI (Achard Wavelet correlation 90 4.5 0.05 053 249 1.09 237 218

and others 2006)

N = number of nodes; kK = mean degree; d = connection density; C = clustering coefficient; L = path length; 1 = path
length scaled to random graph; y = clustering coefficient scaled to random graph; o = scalar small-worldness measure;
MEG = magnetoencephalography; EEG = electroencephalography; fMRI = functional MRI. For those studies that did not
provide these exact values in the text, ballpark values were taken from their figures and are preceded by a “~”, for exam-
ple (Stam 2004; Micheloyannis and others 2006). Furthermore, two networks in Eguiluz and others (2005) could not be
compared to random networks (because their k was smaller than In(N)) and therefore were not included.

B band (13-30 Hz) had regular, lattice-like topology
whereas graphs from low- and high-frequency bands (5, 6
< 8 Hz or y> 30 Hz) showed small-world properties.

A comparable study from the same group (Micheloyannis
and others 2006) was based on EEG data recorded from
28 sensors in 14 subjects performing a working memory
task. Functional connectivity was estimated using
the synchronization likelihood, after the data had been
filtered into classical frequency bands, then thresholded
to create frequency-specific brain functional networks.
However, in this case, there was evidence for small-world
topology in all frequency bands. It is an interesting ques-
tion to consider whether brain functional networks
demonstrate small-world topology consistently across
the full bandwidth of EEG/MEG signals or whether this
topology is restricted to specific frequency intervals. The
currently available data are inconclusive on this point.

Small-World Analyses of fMRI Data

Salvador and colleagues reported the first demonstration
of small-world properties in brain functional networks
derived from fMRI data. Functional MRI time series were
recorded from five healthy volunteers in 90 cortical and
subcortical regions during a no-task or resting state
(Salvador, Suckling, Coleman, and others 2005; Salvador,
Suckling, Schwarzbauer, and others 2005). Functional con-
nectivity was estimated between each possible pair of time
series using the partial correlation coefficient, and the con-
nectivity matrix was probabilistically thresholded to create
a sparse, undirected graph with A = 1.09 and y = 2.08.
Multivariate analysis of the functional connectivity matrix,

using hierarchical cluster analysis and metric multidimen-
sional scaling, demonstrated many of the same features
previously described by multivariate analysis of anatomical
connectivity matrices, including dense local connections
between regions comprising visual, somatosensorimotor,
and auditory-verbal clusters, and relatively sparse connec-
tivity between functionally segregated dorsal and ventral
components of the visual cortex.

The bandwidth of fMRI is narrow (approximately
0.01-1.0 Hz) compared to the physiological bandwidth of
the brain and the instrumental bandwidth of EEG/MEG
(approximately 0.01-100 Hz). This necessarily limits the
extent to which fMRI can be used to investigate the fre-
quency dependency of small-world brain functional net-
works. However, functional connectivity between fMRI
time series can be estimated by coherence or partial
coherence in the Fourier domain, which has demonstrated
that long-range connections (e.g., between the frontal and
parietal cortex) are stronger at frequencies less than 0.1
Hz (Salvador, Suckling, Schwarzbauer, and others 2005).
An alternative mathematical approach is to decompose
the fMRI time series into frequency bands using the
wavelet transform (rather than the Fourier transform) and
then estimate functional connectivity between regions in
terms of the correlation between wavelet coefficients.

Wavelet-based functional connectivity analysis was
introduced by Achard and colleagues who reported small-
world properties of fMRI networks at all frequencies in
the range from 0.007 to 0.45 Hz but most saliently in the
frequency interval 0.03 to 0.06 Hz (A = 1.08 and y = 2.38;
Figs. 5 and 6; Achard and others 2006). At a regional level
of analysis, clustering was negatively correlated with the
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Wavelet correlation matrices

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

scale 4 scale 6

Threshold

Small world brain functional networks

Fig. 5. Wavelet correlation matrices (Achard and others 2006). Method for defining brain graphs from functional MRI
using a wavelet analysis to extract frequency-specific information. Scale 1 contains information about functional activity in
the highest frequency range, 0.23 to 0.45 Hz, whereas scale 2 contains 0.11 to 0.23 Hz, scale 3 contains 0.06 to 0.11 Hz,
scale 4 contains 0.03 to 0.06 Hz, scale 5 contains 0.01 to 0.03 Hz, and scale 6 contains 0.007 to 0.01 Hz. Rows 1 and 2,
The average magnitude and distribution of correlations vary throughout the scale, with the highest average correlation
being in scale 4 at 0.45 and the lowest average correlation in scale 1 at 0.12. Row 3, The correlation matrices are then
thresholded to create binary matrices. Row 4, A high threshold creates a sparse matrix and a graph with few connections
(right), whereas a low threshold creates a denser matrix and a graph with a high average degree; small-world features are
most clearly visible at an intermediate threshold (middle). Reprinted from J Neurosci, 26(1), Achard S, Salvador R, Whitcher
B, Suckling J, Bullmore E, A resilient, low-frequency, small-world human brain functional network with highly connected
association cortical hubs, 63-72, 2006, with permission from the Society for Neuroscience.

physical distance of connections to a node: For example, areas as either highly specialized (locally clustered
areas of the unimodal association cortex had highly connections) or integrative (long-distance connections;
clustered, mostly short-range connections, whereas Sporns and Zwi 2004).

areas of the heteromodal association cortex had less The degree distribution of a complex network poten-
clustered, more long-range connections. A similar obser- tially provides an important clue to the processes con-
vation has been made in analysis of anatomical connectiv- straining its formation and growth. For example, the
ity matrices and proposed as a new way to classify cortical power law degree distribution of the WWW is compatible

520 THE NEUROSCIENTIST Small-World Brain Networks



80 Sensorimotor
70 T E
0
5
< 60 - 2
£ z
8 50 - 5
- [
g 2
40 1 s
> E
30 1 gl - . 3 *
) Y . >
%0 Inferior temporal \ Orbitofrontal 9o 4 -
Temporal pole +
T T T T T T
T T T T T T T 1
0 20 40 60 80 100 00 05 10 15 20 25 30 35
Anterior-Posterior log(k)
C
Random Scale free Brain
1.0
o 0.8 o [
N N N
a o b
Q Q Q
5 061 G G
=] =] =]
© © ©
3 0.4 1 > a
Q Q Q
2 o <
S 02 3 3
0.0
T T T T T T T T T T T T T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
Proportion of nodes attacked Proportion of nodes attacked Proportion of nodes attacked

Fig. 6. Small-world functional brain networks (Achard and others 2006). Anatomical map of a small-world human brain
functional network created by thresholding the scale 4 wavelet correlation matrix representing functional connectivity in
the frequency interval 0.03 to 0.06 Hz. A, Four hundred five undirected edges, ~10% of the 4005 possible interregional
connections, are shown in a sagittal view of the right side of the brain. Nodes are located according to the y and z coor-
dinates of the regional centroids in Talairach space. Edges representing connections between nodes separated by a
Euclidean distance <7.5 cm are red; edges representing connections between nodes separated by Euclidean distance
>7.5 cm are blue. B, Degree distribution of a small-world brain functional network. Plot of the log of the cumulative prob-
ability of degree, log(P(k)), versus log of degree, log(k). The plus sign indicates observed data, the solid line is the best-
fitting exponentially truncated power law, the dotted line is an exponential, and the dashed line is a power law.
C, Resilience of the human brain functional network (right column) compared with random (left column) and scale-free
(middle column) networks. Size of the largest connected cluster in the network (scaled to maximum; y axis) versus the
proportion of total nodes eliminated (x axis) by random error (dashed line) or targeted attack (solid line). The size of the
largest connected cluster in the brain functional network is more resilient to targeted attack and about equally resilient to
random error compared with the scale-free network. Reprinted from J Neurosci, 26(1), Achard S, Salvador R, Whitcher
B, Suckling J, Bullmore E, A resilient, low-frequency, small-world human brain functional network with highly connected
association cortical hubs, 63-72, 2006, with permission from the Society for Neuroscience.

with its growth by creation of new nodes, which preferen- WWW, but there is more probability of a hub in the
tially form connections to existing hubs. One fMRI study brain than in a random graph. The hubs of this network
has reported a power law degree distribution for a func- were predominantly regions of the heteromodal and uni-
tional network of activated voxels (Eguiluz and others modal association cortex.

2005). But the degree distribution of whole-brain fMRI Truncated power law degree distributions are wide-
networks of cortical regions has also been described as spread in complex systems that are physically embedded
an exponentially truncated power law (Achard and oth- or constrained, such as transport or infrastructural net-
ers 2006), meaning broadly that the probability of very works, and in systems in which nodes have a finite life span,
highly connected hubs is less in the brain than in the such as the social network of collaborating Hollywood
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movie stars. The existence of a truncated power law degree
distribution in brain functional networks could likewise
reflect the formative constraints of age of regions
(Dorogovtsev and Mendes 2000), metabolic cost of main-
taining long-range connections (Xulvi-Brunet and
Sokolov 2002), or an upper limit on the number of con-
nections that a single region can accommodate (Albert and
Barabdsi 2000). More generally, it is known from compu-
tational studies that small-world networks can be created
in a multitude of ways: by randomly rewiring links of a
regular graph (Watts and Strogatz 1998), adding new links
to it with a probability P (Newman and Watts 1999), or let-
ting sites connect locally to geographically nearby sites
(Ozik and others 2004). Plausible growth processes have
also included spatial development (Kaiser and Hilgetag
2004a), accelerated growth (Krapivsky and others 2000),
nodes provided with an initial attractiveness (Dorogovtsev
and others 2000; Jeong and others 2003), growth con-
straints such as aging and cost (Amaral and others 2000;
Dorogovtsev and Mendes 2000), competitive nodes
(Bianconi and Barabdsi 2001), penalizing distance while
adding volume and growth-direction constraints (Kaiser
and Hilgetag 2004b), pruning (Humphries and others
2006), stochastic dynamics (Humphries and others 2006),
and local addition, rewiring, or removal of nodes or edges
(Albert and Barabasi 2000). It will be interesting in the
future to measure developmental changes in small-world
brain networks as a way to better understand which of these
possible growth rules are most important biologically.

Emergent Properties and Pathology of
Small-World Networks

The topology of a brain network dictates not only its pos-
sible physical dynamics but also its emergent properties.
For example, small-world networks have been shown to
allow higher rates of information processing and learning
than random graphs do (Simard and others 2005). This
suggests that changes in cognitive state or cognitive
capacity might be associated with (potentially rapid)
changes in the configuration of brain functional networks.
Currently, little is known about the cognitive correlates of
normal variation in small-world parameters of fMRI or
EEG/MEG networks, but Stam and colleagues (2006)
have reported that cognitive decline due to Alzheimer dis-
ease is associated with increased path length (or reduced
global efficiency) of EEG networks in the § band.

The functional resilience of brain networks to patho-
logical attack can be modeled by deleting one or more
nodes from the network and reestimating its small-world
parameters. Deletion of any node might be expected to
increase path length (reduce global efficiency), but dele-
tion of hubs will have especially detrimental effects on
overall network performance. Achard and colleagues
(2006) measured path length of a brain functional net-
work as it was degraded by random deletion of nodes and
by targeted attack on the association cortical hubs. They
found that the brain network was as resilient to random
attack, and more resilient to targeted attack, than a compa-
rable graph with a power law degree distribution (Fig. 6).

This suggests that the truncated power law degree distri-
bution of brain networks, as well as possibly reflecting
physical constraints on network growth, might also reflect
a selection pressure favoring network topologies that are
functionally resistant to local pathological attack. It is
likewise plausible that this degree distribution might be
important in limiting the synchronizability of the network
to less than the critical threshold for globally coherent
oscillations manifest clinically as epileptic seizures
(Percha and others 2005).

Conclusion

Nervous systems are anatomically connected as
small-world networks at macro and micro scales. This is
a fit topological solution to the problem of economically
delivering complex or adaptive network dynamics. In
humans, there have been several recent reports of small-
world brain functional networks measured using fMRI
or MEG/EEG, but there is much still to learn about the
(presumably small-world) topology of human brain
anatomical networks; the relationships among graphical
parameters of brain networks, their development, and
emergent properties; and the impact of neuropsychiatric
disorders and drugs on small-world brain networks.
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