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Abstract 

Breast cancer is one of the major causes of death for women in the last decade. Thermography is a 

breast imaging technique that can detect cancerous masses much faster than the conventional 

mammography technology. In this paper, a breast cancer detection algorithm based on asymmetric 

analysis as primitive decision and decision-level fusion by using Hidden Markov Model (HMM) is 
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proposed. In this decision structure, by using primitive decisions obtained from extracted features 

from left and right breasts and also asymmetric analysis, final decision is determined by a new 

application of HMM. For this purpose, a novel texture feature based on Markov Random Field 

(MRF) model that is named MRF-based probable texture feature and another texture feature based 

on a new scheme in Local Binary Pattern (LBP) of the images are extracted. In the MRF-based 

probable texture feature, we try to capture breast texture information by using proper definition of 

neighborhood system and clique and also determination of new potential functions.  Ultimately, our 

proposed breast cancer detection algorithm is evaluated on a variety dataset of thermography 

images and false negative rate of 8.3% and false positive rate of 5% are obtained on test image 

dataset.  

 

Keywords - Breast cancer, local binary pattern, MRF-based probable texture feature, hidden 

Markov model, decision-level fusion.  

 

1.  INTRODUCTION 

One of the most common malignancies and the main reason of death in women aged 45 to 55 is 

breast cancer. In 2010, the American cancer society announced that breast cancer has been the most 

common type of cancer amongst women (27%) and a major cause of cancer death among them [1]. 

There are several imaging techniques to detect breast cancer such as mammography, Magnetic 

Resonance Imaging (MRI), ultrasound, and thermography. The mammography imaging has some 

drawbacks such as to be invasive, painful, and improper for women with dense breasts, implants, 

fibrocystic breasts, or on hormone replacement therapy. However, experts believe that 

electromagnetic radiation because of the creation of mutations in genes can also be a triggering 

factor for cancerous growth [2]. Therefore, ultrasound method is recommended for these patients. It 

is a non-invasive imaging technique that is useful to determine type and form of mass; however this 

imaging depends on physician experience and knowledge. MRI also as mammography cannot 
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identify the difference between a cancerous lump and a benign cyst [3, 4]. Digital Infrared Thermal 

Imaging (DITI) is a non-invasive test in which there is no contact with the body of any kind, no 

radiation and also the imaging procedure is painless [5]. Researchers have suggested that if tumor is 

detected very soon in patient breast (tumor size less than 10 mm), the chance of cure will be 85% as 

opposed to 10% if the cancer is detected lately. Note that the thermography imaging detects tumor 

8-10 years earlier than mammography imaging [6]. 

One of the popular ways for separating the normal from abnormal breast is the application of 

asymmetric analysis in which the left and right breast features are compared together. In these 

algorithms, the comparison of left and right breasts is performed based on the extracted features 

from image or use of pixel temperature as a feature. For example, in [7], difference between 

histograms of pixel temperature of left and right breasts has been used as a measure for abnormality 

detection. Qi et al. [8] divided each breast thermography image into four quadrants and compared 

the mean, standard deviation, median, minimum and maximum temperatures for each quadrant of 

the breast and then specified the upper outer quadrant of breasts that was the most probable area for 

tumor growth. More than 1° C temperature difference between mean of each left breast quadrant 

with the right breast was marked with score 1 and temperature difference between 0.5 to 1 was 

determined with score 0.5. An index was created by adding the scores of four quadrants and the 

index greater than 1 indicated the presence of abnormality [9]. In [10], temperature distributions 

between the left and right breasts and Localized Temperature Increases (LTI) have been considered 

as a feature related to pixel temperature. LTI has been calculated as difference between the pixel 

temperature and corresponding background temperature. 

In other algorithms that have been proposed to separate the normal from abnormal breasts, there are 

three major steps as breast segmentation, feature extraction from the segmented regions and 

classification of breast regions. 

One of the useful methods to breast segmentation is done by identifying the left and right body 

boundaries using Canny or Sobel edge detector or even by using a simple thresholding and finally 
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two lower curves of the breasts are determined by means Hough Transform [8, 11, 12, 13]. Other 

techniques such as segmentation-based region growing [14] and Region Of Interest (ROI) cropping 

[15] have also been presented. In [16, 17], two color segmentation techniques, K-means and fuzzy 

c-means for regions with high metabolism have been introduced. Moreover, mathematical tools 

such as graph also have been used for the medical image segmentation. For example, in [18], a 

robust graph-based segmentation algorithm for the breast mass detection in the ultrasound images 

has been presented. 

The feature extraction is a significant section in all breast cancer detection algorithms. Wavelet 

transform [19], lyaupon exponent [17], fractal dimension [20], and mutual information [21] have 

been effective for feature extraction. Utilization of cumulative histogram [22], Bezier histogram [8], 

the first order moments such as mean, skewness and kurtosis [14, 15, 22], the second order 

statistical parameters namely co-occurrence matrix [23] are applied to define the features from the 

breast thermograph. To detect healthy and cancerous cases, different tools such as fuzzy clustering 

[13], artificial neural network [22], different similarity measures [14, 15, 22, 24] have been applied.  

In most of the above works, the aim of researches has been the classification of normal from 

abnormal images. However, false positive (FP) error rate that is related to the normal images which 

is predicted cancer incorrectly is major drawback of thermography images, and attention to reduce 

of FP error rate has been insignificant in the previous works. 

Our aim in this paper is to use asymmetry analysis for detecting the healthy and cancerous breasts 

from thermography images and also to reduce FP error rate by means of decision-level fusion. For 

this purpose, we define a novel texture feature based on Markov Random Field (MRF) model that is 

called MRF-based probable texture feature. In this feature, two modified versions of Local Binary 

Pattern (LBP) are applied to choose effective and appropriate cliques in the MRF model. Also, we 

introduce difference between co-occurrence levels (DCL) as a novel potential function in the MRF 

model for probable feature extraction. Also, to determine the cancerous cases from normal cases, a 

classification contemporary with decision level fusion by means of Hidden Markov Model (HMM) 
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is employed to fuse different extracted features from an image. This decision framework has been 

designed to reduce the FP error rate. 

The rest of this paper is organized as follows. Section 2 explains the principles of our proposed 

breast cancer detection structure in details. The experimental results of our proposed breast cancer 

detection and also conclusion are provided in sections 3 and 4, respectively. 

 

2.  Proposed Breast Cancer Detection Structure  

A DITI of a breast cancer patient and a healthy breast along with their temperature maps are shown 

in Fig. (1-a) and Fig. (1-b). Increasing the cellular consecutive dividing in the cancer cells makes 

the increase of metabolism and temperature in these cells and surrounding areas. These regions are 

seen as red spots in the DITI. Gray scale thermography imaging is applied in our proposed 

structure. Thus, all of images are converted from color format into gray scale by following equation 

[25].   

BGRgrayscale 07.071.021.0                                                                                                     (1) 

where R, G and B are the red, green and blue bands of color image, respectively.  

The block diagram of proposed breast cancer detection structure is shown in Fig. 2. The first step in 

our proposed structure is the segmentation of the breast in the gray scale thermography images. The 

breast segmentation is performed through a simple masking method. Since, our proposed structure 

is based on asymmetric analysis; a method with minimal error in the segmentation is desired. 

Therefore, it is performed based on ROI cropping with a unit mask [15, 26, 27].  

Note that all images have been resized to the same size before segmentation. The left and right 

breast segmentation of a gray scale thermograph is displayed in Fig. (3-a) and Fig. (3-b). All breast 

images have the similar sizes )400300(  after segmentation. In following, the feature extraction from 

each segmented breast including of proposed MRF-based probable texture feature and other texture 

features and also proposed two-stage decision structure including of asymmetric analysis and 

fusion-based classification using HMM will be described in details.      
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2.1.   Feature Extraction 

Asymmetric analysis is a popular method for detecting pathological cases in medical imaging 

particularly breast imaging. In this technique, the left and right breasts of each patient are compared 

with each other [7, 8, 15]. If asymmetry between the left and right breasts in each patient is more 

than a specified threshold, this will increase the probability of a cancer case in that patient. This 

analysis is rational due to in the most of patients; cancer starts from a breast and permeates to 

another breast and other region of the patient’s body. Also, cancer incidence in both breasts 

simultaneously is extremely scarce [28]. Therefore, the use of asymmetric analysis method is 

permitted [8, 15, 26]. A point that must be considered to get acceptable results with this method is 

effective features extraction. In this paper, two sets of features are extracted based on MRF and 

modified LBP from the images that are described in detail in following.  

 

2.1.1.   MRF-based Probable Texture Feature Extraction 

nX is a Markov random process if its different conditions confirm Markov chain and satisfy the 

following equation: 

)11,11|(),|(  nxnXnxnXnxnXPnkkxkXnxnXP                        (2) 

The above equation implies that each element is related only to its neighbors and any changes in the 

non-neighboring elements does not have any influence on that element. Markov chains that are 

extended to multiple dimensions are called MRF. MRF is a statistical model that has been useful in 

several areas of image processing such as segmentation, texture perception and classification, image 

restoration and compression [29-32]. The use of Markov model in the above applications has three 

important steps as follows: 1) Define neighborhood system and clique; 2) Determine potential 

function; and 3) Define minimum or maximum energy changes as a decision criterion. For example 

in [29], each pixel will be in mass segment if its neighbors belong to mass. Thus, the criterion for 

mass segmentation in the breast is to minimize energy changes or maximize similarity measure. 
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Note that in the previous works, MRF model was employed in the segmentation, classification or 

even restoration of breast images [30-32]. While, we have proposed a novel texture feature that is 

extracted based on the MRF model. Definitely, feature extraction by means of MRF model is 

different in comparison with the other applications of MRF as mentioned in the above. The block 

diagram of our proposed algorithm for MRF-based probable texture feature extraction is shown in 

Fig. 2. 

The coordinates of each pixel in an image is called “site” and these sites are associated with each 

other and define a neighborhood. A neighborhood system for “S” set is defined as follows:   

}{ siNN i                             N ii                         i jN Nj i                                     (3) 

where iN  is a set of adjacent sites, neighborhood relationship is mutual and a site is not consisting 

of its neighbors. In addition, a subset of the image sites makes a clique that each two cliques to be 

neighbors with each other. 

 

2.1.1.1. Our Proposed Neighborhood System and Clique  

Our images consist of 1,080,000 sites. These are divided into 120,000 blocks in our proposed MRF-

based probable texture feature extraction algorithm. Each block is a )33(  matrix whereby its 

center pixel is defined as jim ,  and other pixels are the eight neighboring ones. Two features are 

extracted from each block as cliques. In fact, in our algorithm, instead of selecting a subset of sites, 

two features are extracted from each block as cliques and stored in two matrixes that are called 

CM1 and CM2 clique matrixes. The extracted features from each clique instead of a subset of 

neighboring sites have two major advantages: Firstly, two values (two features) are extracted from 

each 9 pixels to reduce computational complexity. Secondly, always there is a level of noise in the 

images. Therefore, the use of these pixels (9 pixels in the neighborhood) may lead to the wrong 

decision about the whole neighborhood. Since, in our proposed neighborhood system, the clique 

selection is performed with the feature extraction from each neighborhood and all pixels in a 
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neighborhood have influence on this selection, as a result, this decreases the wrong decision making 

for a clique.  

In our algorithm, two different features are extracted from one block; thereby a similar arrangement 

is necessary to enumerate the image blocks. The enumeration is performed from left to right of each 

row and from the first to end row of the image. The arrangement of block is displayed in Fig. 4. The 

size of CM1 and CM2 matrixes are )400300(  and these two matrixes are replaced instead of the 

image matrix. In the next section, we describe our proposed neighborhood system and clique in 

detail.  

 

2.1.1.1.1.   Clique Matrix Definition Based on Modified LBP  

Local Binary Pattern (LBP) is one of the popular techniques used for image representation and 

image texture classification [33]. LBP operator combines the characteristics of statistical and 

structural texture analysis that was first proposed by Ojala et al. [34]. LBP operator begins to act 

with specifying a neighborhood for each pixel and determining the center pixel as index in each 

neighborhood. Binary label for each pixel that can be either 0 or 1 as follows: 

1

0

( )2
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P

p c
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P, R s g gLBP




                     
1 0

0 0
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 


                                               (4) 

LBP operator obtains texture feature through the sum of weighted codes. Thus, reading from left or 

right of binary codes in each neighborhood is significant [35]. In our algorithm, like Ojala method, 

LBP code for each neighborhood is achieved based on equation (4). However, in our proposed 

algorithm, two different features are extracted from each LBP code with a novel strategy. The first 

feature is related to the low frequency (intensity) information of the image that is called Local 

Binary Pattern-color (LBPc) and the second feature is related to the high frequency (edge) 

information of the image that is called Local Binary Pattern-edge (LBPe). The extracted LBPc 

features are stored in CM1 matrix (the first clique matrix) and the extracted LBPe features are 

stored on CM2 matrix (the second clique matrix). Therefore, two features are extracted from each 
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binary pattern in the neighborhood, instead of converting it to the decimal number. Reading LBPc 

codes from left or right in each neighborhood is not significant and this issue is also true in the 

majority of LBPe codes. The center pixel of each neighborhood ( jim , ) and its eight neighbors is 

shown in Fig. 5. LBPc is calculated by the sum of bits in each binary pattern as follow,  

1 1

,
( 1, )

1 1

i j
i j k

l k

LBPc m
m  

 

 
  
 
                                                                                                         (5) 

where jim ,  is the center pixel of neighborhood. Thus, there are nine color levels [0-8]. In this 

feature, the difference of gray levels between center pixel and its neighborhood is considered as 

distinguishing information. For instance, color level in two patterns (11110000, 10101010) and one 

pattern (11111000) are four and five, respectively. Therefore, LBPc is focused on color feature of a 

block and implies to color level of pixels in blocks. 

In the LBPe feature, the alteration between bits in each binary code is considered as an important 

feature. As previously mentioned, two patterns (11110000, 10101010) have similar LBPc feature. 

To distinguish these two different patterns, we define the LBPe feature. This feature is extracted 

based on any changes from 0 to 1 in each pattern. Thus, the change levels can vary in the range [0-

7]. For example, pattern “10101010” has seven change levels but patterns “11111111” or 

“00000000” have zero change level. The LBPe feature is defined as following:  





7

1

)()1(
i

iuiuLBPe                   (6) 

where u  is a vector that is defined based on introduced neighborhood in Fig. 5, as, 

]m j1,i,m 1j1,i,m 1ji,,m 1j1,i,m j1,i,m 1j1,i,m 1ji,,m 1j1,i[u                             (7)                                                              

Indeed, non-homogeneity of the pixels in a block is specified by LBPe. Therefore, LBPe has a 

higher value in the blocks that are related to different parts of image with intense edges. While, the 

blocks associated to the homogeneous areas of image have lower values of LBPe. Because, there 

are similar textures, fewer changes, and little edges in the image homogeneous regions. Thus, color 
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and edge levels related to each block of image are stored in the CM1 and CM2. An example of 

LBPc and LBPe calculation are displayed in Fig. 6. 

 

2.1.1.2. Potential Function Definition  

Selection of an appropriate potential function is crucial, when the MRF model is used as a tool in 

the image processing application. According to MRF model, the energy of each clique should be 

determined and each clique belongs to a class which its relevant energy is the minimum value.  

In our algorithm, it is not essential to compute the value of energy in each clique and compare them 

with other classes. Our aim is to determine the rate of energy alterations between cliques as a 

feature that extracted from left and right breasts. The more changes in the cliques indicate that 

breast texture is non homogeneous and breast texture have different segments and numerous edges. 

Therefore, these are considered to be abnormal breast specifications. In contrast, if the changes 

between cliques are low, i.e. the most of cliques have similar features in terms of edge. This issue 

represents a breast with uniform texture without edges (normal breast). Therefore, the aim is not to 

identify the breast lump but our goal is to extract those features able to express lump probability by 

a proper way. Thus, energy function is beneficial since it is able to identify the changes between 

cliques even too low. In this paper, we apply three different energy functions which can be 

considered more attention to the relationship between cliques and their relevant alterations in order 

to calculate the energy changes.  

 

2.1.1.2.1. First Proposed Potential Function - Entropy 

In some of the related works, Shannon entropy, mutual Information, and also different similarity 

measures have been used as the energy functions for segmentation or classification based upon 

MRF model [36]. Thus, we have used Tsallis entropy to extract the rate of energy changes between 

cliques in each CM1 and CM2 matrixes. In previous works, Shannon entropy has been effective for 

the identification of irregularity and chaos in the different models. However, in some applications 
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such as our application in which even little changes cannot be avoided, Shannon entropy is 

unsuccessful. The Tsallis and Shannon entropies are defined as: 

q

p
ropyTsallisent

q

i







1

1
                                                                                                                 (8)                          

 ii ppropyshannonent log                                                                                                        (9) 

where ip probability density function and q is a parameter that is selected based on the application. 

The “q” parameter in Tsallis entropy is helpful like an adaptive filter such a way that we will be 

able to identify even low changes in each matrix by the appropriate selection of q. Note that before 

computing entropy in each CM1 and CM2 matrix, these matrixes become the same scale in range 

[0,1]. Thus, energy changes between entries of clique matrixes are computed by Tsallis entropy. 

Euclidean distance measure is used to compare the energy changes between entries of clique 

matrixes of left and right breasts. Our first feature that is called TLBPc created from the comparison 

of energy changes between the CM1 matrix of left and right breasts in each image. In addition, if 

we compare those changes calculated by means of Tsallis entropy in the CM2 matrix of left and 

right breasts, the second feature is obtained that is named TLBPe. 

 

2.1.1.2.2. Second Proposed Potential Function - GLCM 

As indicated before, the CM1 and CM2 matrixes are composed of real numbers from 0 to 8 and 0 to 

7, respectively. With regard to small values of clique matrix elements, proper potential function 

should be selected that can be extracted little changes occurred between cliques. Since, the 

operators can be useful that are able to specify the relationship between pixels precisely. Thus, we 

use the gray level co occurrence matrix (GLCM) as the second potential function. 

GLCM represents the second order statistics based on neighboring pixels and it is a two 

dimensional array, which takes into account the specific position of a pixel relative to the other 

pixels. The GLCM is a tabulation of different combination of pixel brightness values occur in an 

image. This matrix with )88(   elements is constructed at a distance of d 1 for various directions 
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given as  180,90,45,0 [37]. In normal applications, the GLCM is used for feature extraction from 

image texture, while it has been used as an energy function in our application. By using GLCM, we 

are able to obtain the amount of changes occurred between pixels of CM1 and CM2 matrixes. We 

apply GLCM in four directions and d 1 . Therefore, four )88(  matrixes are obtained for each 

clique matrix and considered as a potential function. Ultimately, two new GLBPc and GLBPe 

features are obtained from the comparison of energy changes in the CM1 and CM2 matrixes that 

these energy changes are calculated by GLCM in the left and right breasts. 

 

 2.1.1.2.3. Third Proposed Potential Function – DCL  

DCL vector is defined as third potential function that is formed from GLCM based on a novel 

scenario. In fact, this novel energy function obtained from the difference between co-occurrence 

levels (DCL) in the GLCM matrix. The DCL vector has more attention towards the brightness level 

value between a pixel and its neighbors. In DCL, the value of pixel and its neighbors is not 

important, but difference values in the pixel brightness level with its neighbors is crucial. The first 

element of DCL vector is generated from the sum of all GLCM matrix entries, which their 

subtraction of row )(i  and column )( j  equals to 1. The second element is derived from total GLCM 

matrix entries, which the difference between i  and j  values is equal to 2. This method will 

continue to produce the seventh element of DCL vector. The DCL vector is formed as 

721 , ,..,k and kji   if
i,j

GLCM(i.j)DCL(k)                                                             (10) 

where GLCM is the co-occurrence matrix with 8 levels. In fact, DCL vector is created based on the 

rate of difference between the rows and columns of GLCM. Both DCL and GLCM are able to 

determine the changes occurred between cliques of an image. The process of DCL vector extraction 

from GLCM matrix is shown in Fig. 7. Two new DLBPc and DLBPe features are defined by 

applying the DCL as energy function in the CM1 and CM2 matrixes.  
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2.1.2. Texture Feature Extraction 

LBP is a popular technique used for image representation, classification and feature extraction. The 

modified LBP that we introduced in section (2.1.1.1.1) to select appropriate cliques in the MRF 

model; can extract valuable information from the texture feature of the images. Therefore, we use 

the LBPe and LBPc as tools for extraction of edge and intensity features. For this purpose, 

Euclidean distance of LBPc and LBPe histograms of left and right breasts are introduced as HLBPc 

and HLBPe texture features. Also, the sum of LBPe and LBPc codes in left and right breasts are 

called LBPcs and LBPes. Euclidean distance of LBPcs and LBPes of left and right breasts are used 

as two other effective features.  

Since, GLCM is a useful tool for texture feature extraction from the images. Therefore, we extract 

another texture feature from the left and right breasts based on GLCM. For this purpose, our last 

proposed texture feature is introduced based on comparison of GLCM matrixes of left and right 

breasts. This feature that is called Difference of GLCM Matrixes (DGM) is defined by sum of 

Euclidean distance of corresponding GLCM matrixes of left and right breasts in four directions.   

 

2.2. Primitive Decision Based on Asymmetric Analysis 

Normal images can be separated from the abnormal ones by means of any one of the aforesaid 

features individually and a simple classifier like a linear decision boundary. In order to choose a 

linear decision boundary in each feature, initially images are divided to test and train datasets. A 

decision boundary in each feature is selected based on images of training dataset by means of 

Leave-One-Out (LOO) cross-validation strategy. Using the decision boundary selection for each 

feature, the success rate and also error rate of each feature in the normal and cancer breast 

classification are specified. It means that we have identified the number of normal cases detected as 

normal (TN) as well as the number of cases predicted as the cancer (FP) wrongly and also the 

number of cancer cases diagnosed as cancer (TP) or normal cases incorrectly (FN). As regards 11 

features are extracted from each image, thus 11 primitive decisions are obtained for each image. 
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Certainly, the accuracy rate and FP error rate of breast cancer classification by each feature 

individually are not appropriate. Therefore, we should apply a further process for improving the 

classification results.  

 

2.3. Decision-level Fusion-based Classification using HMM 

However, our aim is to improve classification accuracy using decision level fusion so that the 

results of all features can be used for an image simultaneously. In our algorithm, a general decision 

will be achieved for an image by fusing the 11 primitive decisions that are mentioned in section 

(2.2). Thus, there are sequences of observation for each image and our aim is to determine the best 

decision for each image based on its observation. Since, we propose HMM as a tool that is able to 

merge different features and adopt the best decision for each image. 

 Each HMM is defined by states, state probabilities, transition probabilities, emission probabilities 

and initial probabilities [38-39]. The N states of model and also M observation symbols per state are 

defined by },...,,{ 21 Nssss   and },...,,{ 21 MvvvV  , respectively. If the observations are continuous 

then M is infinite. 

The state transition probability distribution }{ ijaA  , where ija the probability that the state at time 

1t  is js , is given when the state at time t  is is . The structure of this stochastic matrix defines the 

connection structure of the model. If a coefficient ija  is zero, it will remain zero even through the 

training process, so there will never be a transition from state is  to js . 

i}j|qp{qa t1tij     ,      Nji  ,1                                                                              (11) 

where tq  denotes the current state. The transition probabilities should satisfy the normal stochastic 

constraints,  

0ija ,    Nji  ,1 ,    




N

j
ija

1

1    ,        Ni 1                                                                   (12) 
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The observation symbol probability distribution in each state, )}({ kbB j where )(kb j is the 

probability that symbol kv  is emitted in state js . 

}|{)( jqvopkb tktj                        MkNj  1,1                                                        (13) 

where kv denotes the thk observation symbol in the alphabet, and to  the current parameter vector. 

The following stochastic constraints must be satisfied: 

0)( kb j ,        1 , 1j N k M    ,              




M

k
kjb

1
)( 1,    Nj 1                                 (14) 

And finally the initial state distribution   that is related to state in time 0t  [39]. 

The cancer and normal are two states and 11 extracted features are the possible observations in our 

HMM model. As previously mentioned, there is a decision boundary for each feature or 

observation. Thus, 11 possible observations are characterized for each image that can be larger or 

smaller from their corresponding decision boundaries. For this purpose, there are other hidden 

observations in each observation in our model. The observations which the numerical values are 

greater than their corresponding decision boundaries are called “main observations”. In contrast, 

hidden observations are smaller than their decision boundaries. The diagram of our HMM model is 

shown in Fig. 8. In this diagram, 11 main and hidden observations are shown by solid and dotted 

ellipses, respectively. Therefore, each image has its own unique model in terms of observation type. 

In fact, based on the extracted features of each image, the type of observations and model of image 

are determined.  

The operation of our proposed HMM model for classification contemporary with decision-level 

fusion is generally similar to other hierarchical decision structures such as decision tree, random 

forest and also other methods that perform the fusion in the feature or decision level [40-43]. But, 

they have the differences together in details and application. Generally, the decision tree is 

beneficial when some features have more accurate predictions than to other features. Also, the 

random forest selects a random subset of input features to construct each decision tree. However, 

this method is unable to achieve our aim due to choose the number of features to construct decision 
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tree. While, in our model, all features intervene to decision and the classification is performed in a 

parallel state and simultaneously. While, the classification based on random forest and decision tree 

is carried out hierarchically and the features are used to decide in different steps of the tree [42-43]. 

 

2.3.1. Transition Matrix Definition in our HMM model 

As previously mentioned the cancer and normal are two states and 11 extracted features are the 

possible observations in our application. As regards, cancer or normal diagnosis for an image 

should not have any effect on the previous or next image that is going to be evaluated. The state 

transition probabilities for both cancer and normal states are equal to 0.5. Therefore, transition 

matrix is defined as follows:  











5.05.0

5.05.0
A                                                                                                                                  (15) 

 

2.3.2. Emission Probabilities in our HMM Model 

The main stage of decision-level fusion is performed based on emission probability matrixes in our 

proposed HMM model. As regards, there are two different types of observation in our HMM model. 

Therefore, two emission probability matrixes are considered. 

The rate of TP determines the output probability of cancer state to main observations and output 

probability from cancer state to hidden observations are specified by the rate of FP in each feature. 

In addition, output probability of normal state to main observations is obtained by the rate of FN 

and to hidden observations is determined with the rate of TN (Fig. 8). Output probabilities of both 

states to main observations are shown in mB  matrix which the first row is related to cancer state and 

the second one is concerned to the normal state as follow:  











nm

nm

m

m

m

m

m

m

b

b

b

b

b

b

b

b

2

1

23

13

22

12

21

11

...

...
mB                                                                                                 (16) 
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The emission probabilities of normal and cancer states to hidden observations are displayed in hB  

matrix and its first and second rows are related to the cancer and normal, respectively, as follow:  











nh

nh

h

h

h

h

h

h

b

b

b

b

b

b

b

b

2

1

23

13

22

12

21

11

...

...
hB                                                                                                (17) 

Note that the output probabilities are obtained based on experimental results on the training dataset. 

Thus, there is an observation sequence and output probability for each image and our aim is to 

choose the optimal state or best decision for an image. 

 

2.3.3. Final Decision Determination  

Our goal is to determine the class of each image based on observation sequence and its output 

probabilities. Thus, we should calculate dependency probability of each image to cancer or normal 

class individually. This means that two conditional probabilities ( | )P c I  and ( | )P n I  are computed 

for image I . If ( | )P c I  for image I is more than ( | )P n I , then our image will be a cancer case. In 

contrast, if ( | )P n I  is greater than ( | )P c I , then image will be a normal case. The classification of 

image I in mathematical terms is carried out as follows: 

( | ) ( | )

( | ) ( | )

Normal P c I P n I
I

Cancer P c I P n I


 


      ,      

0 ( | ) 1

0 ( | ) 1

P c I

P n I

 

 
                                                                (18) 

After determining the number of main (m) or hidden (h) of observations, we will characterize their 

corresponding output probabilities. ( | )P c I  and ( | )P n I  are computed by taking the average of 

output probabilities for the normal and cancer states. In fact, ( | )P c I  is calculated by average of jb  

for the cancer state, and ( | )P n I  is obtained by taking the average of jb for the normal state. 

Therefore, ( | )P c I  and ( | )P n I  are defined as below:    

1

(1, )

( | )

N

j

k

B k

P c I
N




                                                                                                                       (19)    



 18 

1

(2, )

( | )

N

j

k

B k

P n I
N




                                                                                                                      (20) 

 where N is the number of extracted features ( 11N  ) and jB ( { , }j m h ) are the emission 

probabilities of normal and cancer states to the main and hidden observations. 

 

3.  Experimental Results 

We have studied 65 breast thermography images available and obtained from [20, 21, 24]. Although 

the images from these sources are varied in their resolutions and generally did not follow a unified 

protocol, our algorithm could separate cancer cases from normal ones without any problem. Our 

database is divided into training dataset consisting of 33 images and test dataset consisting of 32 

images for training (parameter tuning) and evaluation of our proposed structure.  

 

3.1. MRF-based Probable Texture Feature Extraction 

To determine clique in our proposed MRF-based probable texture feature, the image is divided into 

)33(  blocks so that two features were extracted from each block. Then, each extracted feature 

makes a clique matrix. Feature extraction from each neighborhood instead of choosing a subset of 

sites as clique is led to improve the classification performance. The size of blocks can be changed 

based on desirable sensitivity of feature extraction process. Two different sizes of blocks have been 

implemented in our database images. The rate of FP will be reduced if the images are divided into 

)55(  blocks. In fact, with increasing the block size, small changes of edge or color in the images 

are affected on the extracted features. In other words, with large blocks, the TN will be correctly 

diagnosed in some normal images that have small differences between their left and right breasts, 

while these images are predicted FP incorrectly with )33(   blocks. However, )55(   blocks are led 

to incorrectly diagnosis in some images related to situ or localized cancer or cancer in the early 

stage. As regards, wrong diagnosis of FN is irreparable. Therefore, the )33(   blocks are used in 

our application. As, the blocks have not any overlap, computational complexity of our algorithm is 
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low, while feature extraction from blocks with overlapping causes increasing the computational 

complexity severely. Since, the improvement of performance is too small by utilizing overlap 

blocks. Thus, the images are divided into )33(   blocks without any overlap. 

 

3.2. Primitive Decision Results 

 Leave-One-Out (LOO) cross-validation is an evaluation scheme repeatedly which trains an 

algorithm on the full dataset excluding only one example and then performs test on it. In our 

primitive decision algorithm, to select the decision boundary of each feature, LOO is applied on the 

35 images of training dataset. The feature mean of these images is considered as primitive decision 

boundary for each feature. The success rate of classification by means of each feature and the 

corresponding decision boundary on the test and training images is obtained in Table 1. In this 

table, the first six features (column F1 through column F6) are the MRF-based probable texture 

features that defined based on three different potential functions in our MRF. The columns F7 until 

F11 indicate the other texture features that described in section (2.1.2). The number of TN, TP, FN 

and FP are displayed in this table. Also the total of FP and FN (i.e. total of errors (TOE)) is 

specified in Table 1.   

In our MRF-based probable texture feature, Shannon entropy was used as potential function in the 

CM1 and CM2 matrixes but this entropy had no significant result. But, Tsallis entropy obtains 

better performance when is used as potential function in the MRF. The parameter q in the Tsallis 

entropy is success reason of Tsallis entropy relative to Shannon entropy. Both Tsallis and Shannon 

entropies can extract chaos and change of image. However, the parameter q in the Tsallis entropy is 

like a filter that can extract the small changes from image by selecting a proper value for q. In the 

Tsallis entropy 2q   has the best performance in the training dataset while with increment or 

reduction of parameter q, the number of errors is increased in TLBPc and TLBPe features.  

 

      3.3. Detection Results by Our HMM Classifier  
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To detect the breast cancer by our proposed fusion-based classifier, the introduced emission 

matrixes ( mB  and hB ) in our HMM model in section (2.3.2) should be determined. For this 

purpose, we compute the elements of mB  and hB  matrixes based on training images. The first and 

second rows of mB  matrix are related to the output probabilities of cancer and normal states to the 

main observation, respectively. The first and second rows of hB matrix are related to the output 

probabilities from cancer and normal states to the hidden observation, respectively. The rate of TP 

in the training dataset determines the output probability of cancer state to main observations and the 

output probability from cancer state to hidden observations are specified by the rate of FP in each 

feature. In addition, the output probabilities of normal state to the main and hidden observations are 

obtained by the rate of FN and TN, respectively. Therefore, the effectiveness of each feature is 

specified in mB  and hB  matrices. The obtained mB  and hB  matrixes from our training dataset are as 

following:    










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0.8
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0.3

0.7
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0.75

.25

0.75

0.2

0.8
Bm                             (21) 











0.69

0.31

0.85

0.15

0.77

0.23

0.85

0.15

0.69

0.31

0.77

0.23

0.76

0.24

0.92

0.08

0.92

0.08

0.92

0.08

0.69

0.31
Bh                              (22) 

It is obvious that almost all features have the same performance and efficiency approximately and 

our aim is the decision based on all features simultaneously.  

To evaluate our algorithm perfectly, we use some criteria such as Positive Predictive Value (PPV), 

Negative Predictive Value (NPV), Sensitivity (SEN) and Specificity (SPC) that are defined as 

following, 

FPTP

TP
PPV


                                                 (23)                                                                

FNTN

TN
NPV


                                         (24)         
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FNTP

TP
SEN


                                      (25)                                                           

TNFP

TN
SPC


                               (26)           

Table 2 obtains the fusion results of our breast cancer detection algorithm based on TP, TN, FP, 

TOE, PPV, NPV, SEN and SPC measures. According to Table 1, the least value of TOE for all 

features is four samples on the test dataset. By our decision-level fusion algorithm, the numbers of 

errors are reduced to two samples in our test dataset (Table 2). Also, Receiver Operating 

Characteristic (ROC) curve on the test and training datasets is shown in Fig. 9.  

Thermography image related to an FP case is shown in Fig. 10. This normal image has some 

segments with red color and sometimes pulmonary and respiratory problems or vascular pattern of 

the patient’s body are the reasons of the aforesaid red segments in the thermography images. The 

features that are extracted from color pixels of the images such as TLBPc, LBPcs, and GLBPc 

determine cancer class for this normal image, while this image is belonging for the normal class. 

Note that TLBPe and LBPes are diagnosed as normal for this image in a correct way. Therefore, it 

is essential to use different features simultaneously in order to improve the classification results. 

Table 3 obtains the middle results of our breast cancer detection algorithm for six selected samples 

from our dataset. The “h” and “m” are related to the hidden and main observations and probability 

of cancer and normal states are available in the hB  and mB  matrixes. All observations in the first 

row are “h”. It means that all features have acted correctly for this normal case. The value of energy 

changes must be less than decision boundaries for the normal cases. In other words, each 

observation has to be hidden for the normal cases if the feature related to its observation has been 

effective to this normal case. It is expected that the value of energy changes in each feature is 

greater than its decision boundary in the cancer cases. Therefore, if one feature is effective in the 

cancerous images, then its corresponding observation will be the main observation. The third and 

fourth rows of Table 3 refer to a cancerous and a normal sample. Although, the features F5 and F6 

have operated incorrectly for the third and fourth images, respectively. But, the final detection has 
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carried out correctly by using our decision-level fusion algorithm. The last two rows of Table 3 are 

related to an FP and an FN case. Since; the most features have been detected incorrectly. The final 

decisions made by our decision-level fusion algorithm also are incorrectly. Finally, with applying 

our decision-level fusion algorithm on the images of dataset, only 8 images of 65 images were not 

detected correctly and other images were assigned to true classes.  

 

4. CONCLUSION 

In our proposed breast cancer detection algorithm, normal and abnormal patterns were separated 

from each other through texture features that were defined for first time in this work. In this paper, 

we analyzed thermal breast images using MRF-based probable texture and LBP features to 

determine difference between the normal and abnormal cases. The results of this study indicated 

that useful features of texture can be extracted with MRF models, LBPc and LBPe. In addition, with 

asymmetric analysis and comparison of effective features from left and right breasts, the breast 

cancer was detected by our proposed decision-level fusion HMM-based algorithm.  
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Fig. 1: Thermography images along with their temperature maps, (a) Cancerous case, (b) Normal case. 

 

 

 

 

 

 

 

 

  

                                                            

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Block diagram of the proposed breast cancer detection structure. 
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                                                                   (a)                                                 (b) 

Fig. 3: Breast segmentation, (a) and (b) left and right breast segments of an image sample. 

 

 
 

Fig. 4: Enumeration of blocks and formation of clique matrixes. 
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Fig. 5: ( jim , ) and counting direction of its eight neighbors. 
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Fig. 6: LBPe and LBPc calculations from original LBP. 
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Fig. 7.  The process of DCL vector extraction from GLCM. 

 

Fig. 8: Our HMM model for decision-level fusion-based classification.  
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Fig. 9: ROC curves for test and training datasets. 

 

 

 

Fig. 10: A sample of normal thermography. 
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Table 1: Results of primitive decision by our proposed features. 

 

Performance 
measures 

Extracted features  

F1 

(TLBPc) 

F2 

(TLBPe) 

F3 

(DLBPc) 

F4 

(DLBPe) 

F5 

(GLBPc) 

F6 

(GLBPe) 

F7 

(LBPcs) 

F8 

(LBPes) 

F9 

(HLBPc) 

F10 

(HLBPe) 

F11   

(DGM)  

 

Training 

images 
 

TP 16 17 15 15 19 16 18 15 16 16 13 

TN 9 10 12 11 12 10 9 12 11 9 10 

FP 4 3 1 2 1 3 4 1 2 4 3 

FN 4 3 5 5 5 4 2 5 4 4 7 

TOE 8 6 6 7 6 7 6 6 6 8 10 

Test 

images 

TP 18 13 18 16 18 19 16 14 19 20 19 

TN 10 12 9 9 10 9 9 12 9 8 9 

FP 2 0 3 3 2 3 3 0 3 4 3 

FN 2 7 2 4 2 1 4 6 1 0 1 

TOE 4 7 5 7 4 4 7 6 4 4 4 

TP: True Positive     TN: True Negative    FP: False Positive     FN: False Negative   TOE: Total of error 

 
 

 

Table 2: Detection results of our decision-level fusion algorithm by means of HMM 

 

Performance measures  

SPC SEN NPV PPV TOE FN FP TN TP Database 

0.92 0.95 0.95 

 

0.95 
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Test image 

 

0.85 

 

0.80 0.73 

 

0.89 
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16 

 

Training image 

 

 
 

Table 3: Middle results of our decision-level fusion-based detection algorithm on six selected image samples. 

 

HMM 

result 
( | )P n I  ( | )P c I  

Possible observations 
Image and 

class F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 

TN 0.80 0.20 h h h h h h h h h h h 1.n 

TP 0.22 0.78 m m m h m m m m m m m 2.c 

TP 0.43 0.56 m m h m h m m m m h h 3.c 

TN 0.53 0.46 m m h h h h m m m h h 4.n 

FP 0.34 0.66 m m h m m m m m m h m 5.n 

FN 0.60 0.40 h h h m h m m m h h h 6.c 

 

 

 

Breast Cancer Detection Using MRF-based Probable Texture Feature and Decision-level Fusion-based Classification 

using HMM on Thermography Images 

 

 

1. We propose a two-stage breast cancer detection algorithm by decision-level fusion. 

2. We tried to improve false accept of previous algorithms by our proposed algorithm.  

3. We used Hidden Markov Model as a fusion algorithm to fuse primitive decisions. 

4. We propose a novel texture feature based on Markov random field model. 

5. To extract color and edge information of images, we modified Local Binary Pattern. 

 

 


