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Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder.
Although a definite diagnosis is only possible by necropsy, a differential
diagnosis with other types of dementia and with major depression should be
attempted. The aim of this study was to analyse the electroencephalogram
(EEG) background activity of AD patients to test the hypothesis that the
regularity of the AD patients’ EEG is higher than that of age-matched controls.
We recorded the EEG from 19 scalp electrodes in 11 AD patients and 11 age-
matched controls. Two different methods were used to estimate the regularity
of the EEG background activity: spectral entropy (SpecEn) and sample entropy
(SampEn). We did not find significant differences between AD patients and
control subjects’ EEGs with SpecEn. On the other hand, AD patients had
significantly lower SampEn values than control subjects (p < 0.01) at electrodes
P3, P4, O1 and O2. Our results show an increase of EEG regularity in AD
patients. These findings suggest that nonlinear analysis of the EEG with
SampEn could yield essential information and may contribute to increasing the
insight into brain dysfunction in AD in ways which are not possible with more
classical and conventional statistical methods.

Keywords: Alzheimer’s disease, electroencephalogram, sample entropy,
spectral entropy

1. Introduction

Alzheimer’s disease (AD) is the most frequent cause of dementia, and is characterized by
progressive impairments in cognition and memory whose course lasts several years prior to
death (Jeong 2004). These clinical features are accompanied by characteristic histological
changes in the brain, which include widespread cortical atrophy, intracellular deposition

0967-3334/06/030241+13$30.00 © 2006 IOP Publishing Ltd Printed in the UK 241

http://dx.doi.org/10.1088/0967-3334/27/3/003
mailto:danaba@tel.uva.es
http://stacks.iop.org/PM/27/241


242 D Abásolo et al

of neurofibrillary tangles and extracellular deposition of senile plaques, particularly in the
hippocampus and the cerebral cortex (Selkoe 1994). AD is considered to be the main cause of
dementia in western countries (Bird 2001), and although a definite diagnosis is only possible
by necropsy, a differential diagnosis with other types of dementia and with major depression
should be attempted. Magnetic resonance imaging and computerized tomography can be
normal in the early stages of AD, but a diffuse cortical atrophy is the main sign in brain scans.
Mental status tests are also useful.

The electroencephalogram (EEG) has been used as a tool for diagnosing dementias for
several decades. The hallmark of EEG abnormalities in AD patients is a shift of the power
spectrum to lower frequencies and a decrease of coherence among cortical areas (Jeong 2004),
although in the early stages of the disease the EEG may exhibit normal frequencies
(Markand 1990). These abnormalities are thought to be associated with functional
disconnections among cortical areas resulting from death of cortical neurons, axonal pathology,
cholinergic deficits, etc (Jeong 2004).

Recent progress in the theory of nonlinear dynamics has provided new methods for the
study of the EEG (Jeong 2004). Nonlinearity as a necessary condition for chaotic behaviour
is present in many dynamical systems found in nature, including the brain. Nonlinearity in
the brain is introduced even at the cellular level, since the dynamical behaviour of individual
neurons is governed by threshold and saturation phenomena. Moreover, the hypothesis of an
entirely stochastic brain can be rejected due to its ability to perform sophisticated cognitive
tasks. Given the highly nonlinear nature of the neuronal interactions at multiple levels of
spatial scales, the EEG appears to be an appropriate area for nonlinear time series analysis
(Kantz and Schreiber 1997).

There are many studies in which nonlinear time series analysis techniques were applied to
different kinds of EEGs. These investigations of the electrical activity of the brain have revealed
possible medical applications, since analysis based on nonlinear dynamics yields information
unavailable from traditional EEG spectral-band analysis (Pritchard et al 1994). Moreover,
they have given rise to the possibility that the underlying mechanisms of the brain function
may be explained by nonlinear dynamics (Babloyantz and Destexhe 1988, Röschke et al 1995,
Stam et al 1995). Particularly, several studies have examined the nonlinear dynamics of the
EEG in AD. It has been found that AD patients have lower correlation dimension (D2) values—
a measure of dimensional complexity of the underlying system (Grassberger and Procaccia
1983a)—than control subjects (Pritchard et al 1994, Stam et al 1995, Jeong et al 1998, 2001a).
These results show a decrease in the complexity of the electrical activity in brains injured by
AD (Jeong 2004). The first Lyapunov exponent (L1) has also been used to characterize
nonlinear behaviour (Wolf et al 1985). It has been shown that AD patients have significantly
lower L1 values than controls in almost all EEG channels (Jeong et al 1998, 2001a). However,
the amount of data required for meaningful results in the computation of D2 and L1 is
beyond the experimental possibilities for physiological data (Eckmann and Ruelle 1992).
Moreover, the Grassberger and Procaccia algorithm or its modifications used to estimate
D2 assume the time series to be stationary (Grassberger and Procaccia 1983b), something
generally not true with biological data. Therefore, it becomes necessary to study the EEG
background activity with different methods. For instance, mutual information analysis (Jeong
et al 2001b) and synchronization likelihood (Stam et al 2003, Pijnenburg et al 2004) have
been used to assess information transmission between different cortical areas in AD.

One possible alternative solution lies in computing the entropy of the EEG. Entropy is a
concept addressing randomness and predictability, with greater entropy often associated with
more randomness and less system order. Recently, a number of different estimators have
been introduced to quantify the entropy of time series. These approaches may be loosely
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classified into two groups: spectral entropies and embedding entropies (Sleigh et al 2004).
Spectral entropies estimate the changes in the amplitude component of the power spectrum
of the EEG, using the amplitude components at each frequency of the power spectrum as the
probabilities in the entropy calculations (Sleigh et al 2004). On the other hand, embedding
entropies provide information about how the EEG signal fluctuates with time by comparing
the time series with a delayed version of itself (Sleigh et al 2004).

The present study was undertaken to examine the EEG background activity in AD with
two different entropy definitions: spectral entropy (SpecEn) and sample entropy (SampEn).
SpecEn is the Shannon entropy formula suitably normalized and applied to the power spectral
density of the EEG signal (Sleigh et al 2004), while SampEn is an embedding entropy that
quantifies the irregularity (or complexity) in data without the drawbacks that widely used
nonlinear methods (D2 and L1) have (Richman and Moorman 2000). We wanted to test
the hypothesis that the entropy of the AD patients’ EEG would be different from that of
age-matched controls, hence indicating an abnormal type of dynamics in this group.

The paper is organized as follows. In section 2, we explain the selection of patients and
controls, the EEG recording and how artefact-free epochs were chosen. SampEn and SpecEn
are also introduced in section 2, as well as the statistical tools used to evaluate the differences
between entropy values for AD patients and control subjects. Section 3 presents the results of
our study. Finally, in section 4 we discuss our results and compare them with other studies of
the EEG background activity in AD patients with nonlinear analysis methods, and we draw
our conclusions.

2. Materials and methods

2.1. Subjects and signals

Twenty-two subjects participated in this study. Eleven patients (five men and six women;
age = 72.5 ± 8.3 years, mean ± standard deviation (SD)) fulfilling the criteria of probable AD
were recruited from the Alzheimer’s Patients’ Relatives Association of Valladolid (AFAVA)
and referred to the University Hospital of Valladolid (Spain), where the EEG was recorded.
All of them had undergone a thorough clinical evaluation that included clinical history,
physical and neurological examinations, brain scans and a Mini-Mental State Examination
(MMSE), generally accepted as a quick and simple way to evaluate cognitive function
(Folstein et al 1975). The mean MMSE score for the patients was 13.1 ± 5.9 (mean ± SD),
with five of them having a score of less than 12 points, indicating a severe degree of dementia.
Two patients were receiving lorapezam. With therapeutic doses, benzodiapzepines may
enhance beta activity, although no prominent rapid rhythms were observed in the visual
examination of their EEGs. None of the other patients used medication that could be expected
to influence the EEG.

The control group consisted of 11 age-matched, elderly control subjects without past
or present neurological disorders (seven men and four women; age = 72.8 ± 6.1 years,
mean ± SD). The MMSE score value for all control subjects was 30.

The local ethics committee approved the study. All control subjects and all caregivers of
the demented patients gave their informed consent for participation in the current study.

2.2. EEG recording

EEGs were recorded from the 19 scalp loci of the international 10–20 system (electrodes Fp1,
Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz and Pz, all of them
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being referenced to the chin). More than 5 min of data were recorded from each subject using
a Profile Study Room 2.3.411 EEG equipment (Oxford instruments). Sample frequency was
256 Hz, with a 12-bit A-to-D precision. Recordings were made with the subjects in a relaxed
state and under the eyes-closed condition in order to obtain as many artefact-free EEG data as
possible.

All EEGs were visually inspected by a specialist physician to check for eye movement
and other artefacts. Thus, only EEG data free from electro-oculographic and movement
artefacts, and with minimal electromyographic (EMG) activity were selected for the entropy
computations. Afterwards, EEGs were organized in 5 s artefact-free epochs (1280 points) that
were copied as ASCII files for off-line analysis on a personal computer. An average number
of 30.0 ± 12.5 artefact-free epochs (mean ± SD) were selected from each electrode for each
subject. Furthermore, all recordings were digitally filtered with a band-pass filter with cut-off
frequencies at 0.5 Hz and at 40 Hz in order to remove EMG activity prior to the SampEn and
SpecEn calculations.

2.3. Spectral entropy (SpecEn)

Shannon defined the information concept of entropy as the expected value (i.e. the average
amount) of the information of a probability distribution (Shannon 1948). Shannon’s definition
of entropy has been applied, modified and proven valid in a variety of fields. In 1979, Powell
and Percival introduced spectral entropy (SpecEn), based on the peaks of the Fourier transform,
as a measure of regularity (Powell and Percival 1979). This definition was also extended to
the relative power spectral density of the EEG by Inouye et al (1991) and can be calculated
with the following expression:

H(f ) = − 1

ln(N)

N∑
i=1

pi ln(pi), (1)

where pi are the spectral amplitudes of frequency bin i (assuming a bin width of one spectral
unit), the sum of all pi is equal to 1 and N is the number of frequency bins (Sleigh et al 2004).
The pi can be obtained as the normalized value of the power spectral density at each frequency
bin (Rezek and Roberts 1998).

SpecEn is a convenient way of quantifying the distribution of spectral power, as it measures
the flatness of frequency spectrum. A high SpecEn implies a flat, uniform spectrum with a
broad spectral content, whereas a low SpecEn implies a spectrum with all the power condensed
into a single frequency bin (i.e. a less complex, more predictable signal) (Sleigh et al 2004).
This entropy estimator has been applied to measure the irregularity of the EEG during rest
and mental arithmetic tasks, with results showing that EEGs during rest were significantly
more irregular anteriorly than in the occipital areas (Inouye et al 1991). Fell et al (1996)
have shown that SpecEn is a useful discriminator of sleep stages, as its value decreases
significantly from stage II to stages III and IV. Moreover, the use of SpecEn to study epilepsy
shows promise. The background EEG is disorganized in or near the epileptogenic focus and
focal background abnormalities can therefore be estimated by SpecEn (Inouye et al 1992). It
has been demonstrated that this entropy measure is useful in the extraction of features from
EEG recordings of a patient during Cheyne–Stokes respiration (Rezek and Roberts 1998).
Furthermore, SpecEn has been used to monitor the depth of anaesthesia (Rezek and Roberts
1998, Zhang and Roy 2001), and the algorithm has even been implemented in the Datex-
Ohmeda S/5TM Entropy module (Viertiö-Oja et al 2004). SpecEn can be used to detect subtle
changes in the EEG background activity. It has been shown that it decreases abruptly as the
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patient becomes unconscious during induction of general anaesthesia, and does not decrease
significantly with further deepening of the anaesthesia (Sleigh et al 2004).

In this pilot study, we estimated the SpecEn of the EEG background activity of AD patients
and control subjects with a short computer program, developed with MATLAB R©. The spectral
power density was obtained as the Fourier transform of the autocorrelation function of the
EEG signals. The different pi were obtained as the normalized value of the power spectral
density, with respect to the total spectral power in the 0.5 to 40 Hz band, at each frequency.
We wanted to test if this method could be useful for the detection of the differences in the
power spectrum between both groups, as one of typical abnormalities in AD is a shift of the
power spectrum to lower frequencies.

2.4. Sample entropy (SampEn)

As we have previously mentioned, embedding entropies provide information about how the
EEG signal fluctuates with time by comparing the time series with a delayed version of itself
(Sleigh et al 2004). Several embedding-based formulae have been proposed in an attempt to
estimate the Kolmogorov–Sinai (KS) entropy with reasonable precision, such as K2 entropy
(Grassberger and Procaccia 1983c) or the Eckmann and Ruelle entropy (Eckmann and Ruelle
1985). However, these methods to estimate the entropy of a system represented by a time
series are usually not well suited to short and noisy data sets, such as biomedical signals. To
overcome this drawback, Pincus introduced a family of statistics named approximate entropy
(ApEn) (Pincus 1991). ApEn provides a widely applicable, statistically valid formula that will
distinguish data sets by a measure of regularity (Pincus 1991).

ApEn examines time series for similar epochs and assigns a non-negative number to
the sequence, with larger values corresponding to more complexity or irregularity in the data
(Pincus 1991). Briefly, given N points, ApEn(m, r, N) measures the logarithmic likelihood that
runs of patterns that are close (within r) for m contiguous observations remain close (within
the same tolerance width r) on subsequent incremental comparisons. The ApEn algorithm
counts each sequence as matching itself to avoid the occurrence of ln(0) in the calculations
and this has led to discussion of the bias of ApEn (Richman and Moorman 2000).

To reduce this bias, Richman and Moorman have developed and characterized a new
family of statistics: SampEn (Richman and Moorman 2000). Two input parameters, a run
length m and a tolerance window r, must be specified to compute SampEn. SampEn(m, r,
N) is the negative logarithm of the conditional probability that two sequences similar for m
points remain similar at the next point, where self-matches are not included in calculating the
probability. Thus, a lower value of SampEn also indicates more self-similarity in the time
series. SampEn is largely independent of record length and displays relative consistency under
circumstances where ApEn does not (Richman and Moorman 2000). In addition to eliminating
self-matches, the SampEn algorithm is simpler than the ApEn algorithm, requiring one-half
as much time to calculate.

Formally, given N data points from a time series {x(n)} = x(1), x(2), . . . , x(N), to define
SampEn, one should follow these steps:

1. Form m vectors Xm(1), . . . , Xm(N − m + 1) defined by Xm(i) = [x(i), x(i + 1), . . . ,

x(i + m − 1)], for 1 � i � N − m + 1. These vectors represent m consecutive x values,
commencing with the ith point.

2. Define the distance between vectors Xm(i) and Xm(j), d[Xm(i),Xm(j)], as the maximum
absolute difference between their scalar components:

d[Xm(i),Xm(j)] = max
k=0,...,m−1

(|x(i + k) − x(j + k)|). (2)
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3. For a given Xm(i), count the number of j (1 � j � N − m, j �= i), denoted as Bi, such that
the distance between Xm(i) and Xm(j ) is less than or equal to r. Then, for 1 � i � N − m,

Bm
i (r) = 1

N − m − 1
Bi. (3)

4. Define Bm(r) as

Bm(r) = 1

N − m

N−m∑
i=1

Bm
i (r). (4)

5. We increase the dimension to m + 1 and calculate Ai as the number of Xm+1(i) within r of
Xm+1(j ), where j ranges from 1 to N − m (j �= i). We then define Am

i (r) as

Am
i (r) = 1

N − m − 1
Ai. (5)

6. We set Am(r) as

Am(r) = 1

N − m

N−m∑
i=1

Am
i (r). (6)

Thus, Bm(r) is the probability that two sequences will match for m points, whereas Am(r)

is the probability that two sequences will match for m + 1 points.
We define sample entropy by

SampEn(m, r) = lim
N→∞

{
−ln

[
Am(r)

Bm(r)

]}
, (7)

which is estimated by the statistic

SampEn(m, r,N) = −ln

[
Am(r)

Bm(r)

]
. (8)

It is imperative to consider SampEn(m, r, N) as a family of parameters: comparisons
are intended with fixed m, r and N. N is the length of the time series, m is the length of the
sequences to be compared and r is the tolerance for accepting matches. It is convenient to
set the tolerance as r times the standard deviation of the original data sequence. This gives
SampEn scale invariance, in that it remains unchanged under uniform process magnification,
reduction or constant shift to higher or lower values (Pincus 1991, Richman and Moorman
2000).

Although m and r are critical in determining the outcome of SampEn, no guidelines
exist for optimizing their values. In principle, the accuracy and confidence of the entropy
estimate improve as the number of matches of length m and m + 1 increases. The number of
matches can be increased by choosing small m (short templates) and large r (wide tolerance)
(Lake et al 2002). However, there are penalties for criteria that are too relaxed (Pincus 1991).
For smaller r values, one usually achieves poor conditional probability estimates, while for
larger r values, too much detailed system information is lost and SampEn tends to 0 for all
processes.

Despite its advantages over ApEn, the use of SampEn is not widespread. It has been used
to study abnormal heart rate (HR) characteristics of reduced variability in the early course of
neonatal sepsis, where it has been shown that SampEn of neonatal HR falls before the clinical
diagnosis of sepsis (Lake et al 2002). Moreover, this entropy measure has been applied to
characterize the nonlinear features of HR time series for three recumbent positions (Kim et al
2005). To our knowledge, this is the first study of the EEG background activity with SampEn.
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Because of the nonlinear character of EEG signals, SampEn can be used as a powerful
tool in the study of the EEG background activity. For this study, SampEn was calculated with
a short computer program, developed with MATLAB R©, and parameter values m = 1 and r =
0.25 times the standard deviation of the original data sequence. SampEn results for these set
of values are in agreement with theoretical entropy estimates for short data sets as the EEG
epochs we are analysing (Richman and Moorman 2000).

2.5. Statistical analysis

Student’s t-test was used to evaluate the statistical differences between the estimated SpecEn
and SampEn values for AD patients and control subjects. If the p value was lower than 0.01,
the differences between the mean values were considered significant.

The ability of the entropy methods to discriminate AD patients from control subjects at the
electrodes where p < 0.01 was evaluated using receiver operating characteristic (ROC) curves
(Zweig and Campbell 1993). ROC curves can be obtained by plotting the sensitivity values (the
proportion of patients with a diagnosis of AD who test positive, i.e. the true positive rate) on
the y axis against their equivalent {1-specificity} values (specificity represents the percentage
of controls correctly recognized, i.e. the true negative rate) for all the available cut-off points
(in this case, the SpecEn or SampEn values) on the x axis. We used a computer program
developed with MATLAB R© that automatically selected different cut-off points and calculated
the sensitivity/specificity pair for each one of them. Accuracy is a related parameter that
quantifies the total number of subjects (AD patients and control subjects) precisely classified.
The optimum threshold is the cut-off point in which the highest accuracy (minimal false
negative and false positive results) is obtained. It can be determined from the ROC curve as
the closest value to the left-top corner (100% sensitivity, 100% specificity).

3. Results

SpecEn and SampEn (m = 1, r = 0.25 times the standard deviation of the data) were estimated
for channels Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5 and T6. The results
were averaged based on all the artefact-free 5 s epochs (N = 1280 points) within the 5 min
period of EEG recordings.

The SpecEn values (mean ± SD) for the AD patients and control subjects and the p
values of the Student’s t-tests performed to examine the differences between both groups are
summarized in table 1. As can be seen, although the control subjects’ spectral entropy values
were higher than those of the AD patients at most electrodes, no significant differences were
found between both groups (p > 0.01).

Table 2 summarizes the SampEn values (mean ± SD) for the AD patients and control
subjects and the p values of the Student’s t-test. AD patients had lower SampEn values than
control subjects at all electrodes apart from T4, with significant differences between both
groups at electrodes O1, O2, P3 and P4 (p < 0.01). These results suggest that EEG activity of
AD patients is more regular (less complex) than in a normal brain in the parietal and occipital
regions.

Finally, we evaluated the ability of SampEn to discriminate AD patients from control
subjects at the electrodes in which significant differences were found using ROC plots (Zweig
and Campbell 1993). The highest sensitivity was obtained at electrode O2 (90.91%), although
with a small specificity (63.64%). On the other hand, the highest specificity was reached at
electrode P4 (90.91%), with a decreased sensitivity (63.64%). The accuracy of the diagnostic
test was similar at all four electrodes in which significant differences between both groups were
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Table 1. Average SpecEn values of the EEGs for the AD patients and control subjects for all
channels.

Control subjects AD patients Statistical analysis
Electrode (mean ± SD) (mean ± SD) (p value)

F3 0.6176 ± 0.0721 0.6207 ± 0.1024 0.9356
F4 0.6906 ± 0.0855 0.6477 ± 0.0938 0.2755
F7 0.6612 ± 0.1153 0.6758 ± 0.1027 0.7571
F8 0.7035 ± 0.1126 0.6746 ± 0.1064 0.5437
Fp1 0.6604 ± 0.1083 0.6302 ± 0.1216 0.5455
Fp2 0.6556 ± 0.1133 0.6094 ± 0.1011 0.3241
T3 0.7515 ± 0.0845 0.7102 ± 0.1176 0.3552
T4 0.7821 ± 0.0739 0.7110 ± 0.0926 0.0605
T5 0.7073 ± 0.0696 0.6726 ± 0.0735 0.2691
T6 0.7572 ± 0.1030 0.6629 ± 0.1244 0.0671
C3 0.6634 ± 0.1112 0.6273 ± 0.1143 0.4609
C4 0.6749 ± 0.1143 0.6165 ± 0.1281 0.2730
P3 0.7129 ± 0.0814 0.6383 ± 0.1144 0.0933
P4 0.7231 ± 0.0980 0.6416 ± 0.1027 0.0713
O1 0.7320 ± 0.0861 0.6822 ± 0.0802 0.1759
O2 0.7413 ± 0.0978 0.6769 ± 0.0729 0.0953

Table 2. Average SampEn(1, 0.25, 1280) values of the EEGs for the AD patients and control
subjects for all channels. Significant group differences are marked with an asterisk.

Control subjects AD patients Statistical analysis
Electrode (mean ± SD) (mean ± SD) (p value)

F3 0.6551 ± 0.1867 0.5759 ± 0.1048 0.2342
F4 0.6473 ± 0.1796 0.6357 ± 0.1237 0.8610
F7 0.7030 ± 0.1859 0.6694 ± 0.1450 0.6425
F8 0.7162 ± 0.1645 0.6636 ± 0.1425 0.4325
Fp1 0.6533 ± 0.1471 0.5177 ± 0.1803 0.0677
Fp2 0.6371 ± 0.1966 0.5279 ± 0.1196 0.1316
T3 0.8783 ± 0.2697 0.8481 ± 0.2275 0.7798
T4 0.8513 ± 0.2254 0.8629 ± 0.3003 0.9189
T5 0.8284 ± 0.1835 0.6329 ± 0.1867 0.0223
T6 0.8141 ± 0.1908 0.6327 ± 0.1972 0.0404
C3 0.7578 ± 0.1484 0.6652 ± 0.1794 0.2020
C4 0.7670 ± 0.1178 0.7040 ± 0.1987 0.3765
P3∗ 0.7781 ± 0.1201 0.5576 ± 0.1625 0.0017
P4∗ 0.7852 ± 0.1192 0.5859 ± 0.1547 0.0029
O1∗ 0.8849 ± 0.1672 0.6361 ± 0.1745 0.0027
O2∗ 0.8538 ± 0.1899 0.6278 ± 0.1756 0.0089

found (77.27%). However, sensitivity was higher than specificity on the occipital electrodes,
while specificity was higher than sensitivity on the parietal channels. Table 3 summarizes
these results.

The value for the area under the ROC curve can be interpreted as follows: an area
of 0.8595 (electrode O1, for example) means that a randomly selected individual from the
control subjects’ group has a SampEn value larger than that of a randomly chosen individual
from the AD patients’ group in 85.95% of the time (Zweig and Campbell 1993). A rough guide
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(a)

(c)

(b)

(d)

Figure 1. ROC curves for the SampEn values at the electrodes in which p < 0.01. (a) P3. (b) P4.
(c) O1. (d) O2.

Table 3. Test results for SampEn(1, 0.25, 1280) on the channels in which the differences between
both groups were significant. The optimum threshold to discriminate AD patients and control
subjects is included.

Electrode Threshold Sensitivity (%) Specificity (%) Accuracy (%) Area under the ROC curve

P3 0.6658 72.73 81.82 77.27 0.8512
P4 0.6740 63.64 90.91 77.27 0.8347
O1 0.7492 81.82 72.73 77.27 0.8595
O2 0.7367 90.91 63.64 77.27 0.7769

to classify the precision of a diagnostic test is related to the area under the ROC curve. With
values between 0.90 and 1, the precision of the diagnostic test is considered to be excellent,
good for values between 0.80 and 0.89, fair if the results are in the range 0.70–0.79, poor
when the value of the area under the ROC curve is between 0.60 and 0.69 and bad for values
between 0.50 and 0.59. Thus, the results obtained can be considered good for electrodes P3,
P4 and O1, and fair for electrode O2. Figure 1 depicts the ROC curves corresponding to the
SampEn analysis.
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4. Discussion and conclusions

In this pilot study, we have analysed the EEG background activity of 11 control subjects and
11 patients with AD applying SampEn and SpecEn. SampEn is an embedding entropy related
to ApEn. SampEn statistics provide an improved evaluation of time series irregularity, with
increasing values corresponding to intuitively increasing process complexity. SpecEn is the
Shannon entropy formula suitably normalized and applied to the power spectral density of the
signal, and is a convenient way of quantifying the distribution of spectral power.

SpecEn has proven not to be effective in discriminating AD patients from control subjects.
Although the mean SpecEn values were higher at most electrodes for control subjects than for
AD patients, the differences were not significant (p > 0.01). One of the most relevant EEG
abnormalities in AD patients is a shift of the power spectrum to lower frequencies, through
increase of the delta (0.5–4 Hz) and theta (4–8 Hz) power, along with decrease of the alpha
(8–13 Hz) power (Jeong 2004). SpecEn quantifies the distribution of spectral power in the
EEG. However, our results show that, contrary to what we expected, SpecEn is unable to
reflect the power spectrum changes usually found in AD. This might be due to the fact that
the spectral distribution of power in the EEG of AD patients is shifted to lower frequencies,
but the shape of the spectrum remains relatively unchanged. Despite these negative results,
the possible usefulness of SpecEn in the diagnosis of AD should be investigated with a larger
number of patients and control subjects.

On the other hand, we have found that AD patients have significantly lower SampEn
values than control subjects at electrodes O1, O2, P3 and P4 (p < 0.01). We infer that brains
affected by AD show a more regular and less complex electrophysiological behaviour in the
parietal and occipital regions. This confirms findings associated with the fact that a diffuse
slowing of the background activity may be found in the EEG of patients with AD (Markand
1990). Moreover, our results agree with other studies showing that the EEG of AD patients has
lower D2 values than that of control subjects (Pritchard et al 1994, Stam et al 1995, Jeong et al
1998, 2001a, Jelles et al 1999) and, consequently, a less complex brain activity. Besthorn et al
(1995) found that a lower D2 was correlated with increased severity of dementia and that this
method correctly classified AD patients and controls with an accuracy of 70% (Besthorn et al
1997). Pritchard et al (1994) showed that the addition of nonlinear measures (D2) and a
neural net classification procedure to linear methods improves the classification accuracy of
the AD/control status of subjects up to 92%. Jeong et al (1998, 2001a) found that AD
patients have significantly lower L1 values than age-matched controls. L1 of the EEG can be
interpreted as a measure of flexibility of information processing in the brain (Röschke et al
1995). In this context, decreased L1 values in AD patients reflect a drop in the flexibility
of information processing in the injured brain (Jeong 2004). The decreased complexity of
brain activity in AD patients has also been shown using Lempel–Ziv complexity (Abásolo
et al 2005b), with an accuracy of 81.82% at some electrodes. Furthermore, the
aforementioned increased regularity in the EEG background activity in AD patients has
also been found in the parietal electrodes with ApEn (Abásolo et al 2005a). The results
of this study suggest that ApEn might be complementary to spectral and autocorrelation
analyses.

The reduction of irregularity in the EEG of AD patients could be explained by a decrease
of dynamical complexity of part of the brain. However, the pathophysiological implications
of this decreased EEG irregularity (or complexity) are not clear. Among others, three
mechanisms can be responsible for it: neuronal death, a general effect of neurotransmitter
deficiency and loss of connectivity of local neural networks as a result of nerve cell death
(Jelles et al 1999, Jeong 2004). Nevertheless, ageing and age-related diseases often accompany
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a wide-ranging loss of physiological complexity (Kyriazis 2003). As the AD patients’ and
control subjects’ groups were carefully matched for age, the increase of regularity in the
parietal and occipital regions might represent the cognitive dysfunction in AD. However,
a possible association should be investigated with a larger number of patients and control
subjects.

In order to estimate SampEn accurately we need recordings of just 10m to 20m points,
where m is the run length that must be fixed to compute this embedding entropy. Thus, this
family of statistics is much better suited for EEG analysis than traditional nonlinear techniques
such as L1 or D2 that require an amount of data to obtain meaningful results usually beyond
the experimental possibilities for physiological data (Eckmann and Ruelle 1992). Moreover,
SampEn statistics (Richman and Moorman 2000)

• agree much better than ApEn with theory for random numbers with known probabilistic
character over a broad range of operating conditions,

• maintain relative consistency where ApEn statistics do not and
• have residual bias for very short record lengths.

These properties make SampEn an attractive tool for nonlinear analysis of biomedical signals.
Some limitations of our study merit consideration. First of all, although AD patients

had lower SampEn values than control subjects at all electrodes apart from T4, only four
electrodes (P3, P4, O1 and O2) showed statistically significant differences between both
groups. The symmetric disposition of those electrodes over the scalp shows promise and
might reflect significant changes in the brain electrical activity of AD patients in the parietal
and occipital regions. However, caution should be applied due to the preliminary nature
of this study. Furthermore, the sample size was small. Hence, to prove the usefulness of
SampEn as a diagnostic tool, this approach should be extended on a much larger patient
population. Moreover, the detected increase of EEG regularity (or decrease of complexity) is
not specific to AD. It appears in several physiological and pathological states including, among
others, sleep (Burioka et al 2003), anaesthesia (Zhang and Roy 2001), the Creutzfeld-Jakob
disease (Babloyantz and Destexhe 1988), vascular dementia (Jeong et al 1998), schizophrenia
(Röschke et al 1995) and Parkinson’s disease (Stam et al 1995). Thus, although this pilot
study shows that SampEn might be a helpful tool for recognition of AD, further work must be
carried out to examine nonlinear EEG activity in other types of dementia.

In summary, although nonlinear EEG analysis cannot yet be applied as a diagnostic tool,
our findings show the possibility of analysing the dynamical behaviour of the brain in AD
patients and detecting significant differences with SampEn. Our experimental results prove the
potential applications of this new family of statistics in reflecting differences in the irregularity
of EEG data time series of patients with a diagnosis of AD and control subjects. Nonlinear
dynamics suggest that AD can be a dynamical disease which is characterized by changes in the
qualitative dynamics of physiological processes (Belair et al 1995). The decrease of the EEG
entropy found in the parietal and occipital regions in AD patients leads us to think that EEG
analysis with SampEn could be a useful tool to increase our insight into brain dysfunction in
this disease.
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