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Abstract  

 

During a quarter of a century, the main characteristics of the horizontal-to-vertical spectral 

ratio of ambient noise HVSRN have been extensively used for site effect assessment. In spite 

of the uncertainties about the optimum theoretical model to describe these observations, over 

the last decade several schemes for inversion of the full HVSRN curve for near surface 

surveying have been developed. 

 

In this work, a computer code for forward calculation of H/V spectra based on the diffuse 

field assumption (DFA) is presented and tested. It takes advantage of the recently stated 

connection between the HVSRN and the elastodynamic Green’s function which arises from 

the ambient noise interferometry theory.
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The algorithm allows for (1) a natural calculation of the Green’s functions imaginary parts 

by using suitable contour integrals in the complex wavenumber plane, and (2) separate 

calculation of the contributions of Rayleigh, Love, P-SV and SH waves as well. The stability 

of the algorithm at high frequencies is preserved by means of an adaptation of the Wang’s 

orthonormalization method to the calculation of dispersion curves, surface-waves medium 

responses and contributions of body waves. 

  

This code has been combined with a variety of inversion methods to make up a powerful tool 

for passive seismic surveying. 

 

1. Introduction 

 

Since the early work of Kanai et al. (1954), many efforts have been devoted to the observation 

and interpretation of the seismic ambient noise (microtremor), consisting of background 

vibrations due to natural phenomena of atmospheric, oceanic, seismic and volcanic origins 

as well as human activities like traffic and industry. The possibility of using this ubiquitous 

natural illumination for exploration of ground structures with seismic arrays was soon 

recognized by Aki (1957). 

 

Later, the capabilities of single-station measurements of this wavefield were enhanced by 

Nakamura (1989), who proposed that the ratio between the spectra of horizontal and vertical 

components of ambient noise allowed for identification of resonance peaks and for estimation 

of seismic amplifications of soils. After these early developments, several sophisticated tools 

have been introduced to take full advantage of these spectral ratios for seismic exploration, 

which are based on diverse and in some cases opposite theoretical approaches. 

 

Fäh et al. (2003) and Wathelet (2005) studied the inversion of the Rayleigh wave ellipticity, 

sometimes considered as a rough proxy of the horizontal-to-vertical spectral ratio of ambient 

noise (HVSRN), using genetic algorithms and the neighborhood method as inversion 

procedures. Their method was not intended to be applied using energy ratios of raw 

microtremor records, because they consist of a complicated mixture of Rayleigh, Love and 



 

body waves, but is better suited when used together with more advanced processing aimed at 

extracting the ellipticity (e.g. Poggi et al., 2012). 

 

Arai and Tokimatsu (2004) introduced a method for inversion of the HVSRN accounting for 

surface waves generated by a continuum of uncorrelated shallow sources located far enough 

from the receiver. Their approximate expressions allow for a quick and suitable estimation 

of the power ratio in those models and frequency bands where surface waves are the dominant 

contribution. Related full-wavefield versions have been developed by Lachet and Bard 

(1994) and Lunedei and Albarello (2009). To the best of the authors’ knowledge, these two 

methods have not been incorporated into ground inversion tools. It is probably due to the 

intensive computing requirements. 

 

On the other hand, a code for inversion of layered ground structures from horizontal-to-

vertical spectral ratios of microtremor was published by Herak (2008). The algorithm models 

the HVSRN as the ratio between the ground responses for vertically incident S and P waves. 

In this approach, the anelastic attenuation plays a major role in order to make the H/V decay 

at high frequencies as observed in most experimental conditions. This can be regarded as an 

oversimplified scheme taking into account the predominance of surface waves found in broad 

frequency bands of the microtremor spectra. 

 

Sánchez-Sesma et al. (2011) introduced an innovative method inspired in the possibility of 

retrieving the 3D elastodynamic Green’s tensor between two stations embedded in an elastic 

medium from the average time-domain cross-correlation of their ambient noise records 

(ambient noise interferometry). Some applications of this method have been developed by 

Salinas et al. (2014), Kawase et al. (2015), Lontsi et al. (2015), Rivet et al. (2015), Spica et 

al. (2015), among others. The theoretical foundations of this general theory were developed 

in several research works (e.g. Snieder, 2004; Wapenaar, 2004; Sánchez-Sesma and 

Campillo, 2006) and confirmed in experiments with microtremors by Shapiro and Campillo 

(2004). The equations used here for modelling the HVSRN appear naturally in the particular 

case of the interstation distance tending to zero. Sánchez-Sesma et al. (2011) formulated a 

first algorithm for forward calculation of the HVSRN under this approach based on the 



 

discrete wavenumber integration and the matrix method described by Knopoff (1964). 

Equivalent results can be obtained using a generalized view of the modal equipartition 

proposed by Margerin (2009).  

 

A more complete review of these theories appeared recently in Lunedei and Malischewsky 

(2015). The authors made a thorough description of the various theoretical models explaining 

the HVSRN that developed in the last three decades, including the diffuse field assumption, 

and compared the corresponding theoretical curves for a set of test models. 

 

In this communication we present a faster code which allows separate computation of the 

contributions of SH, P-SV, Rayleigh and Love waves together with algorithms for inversion 

of ground structures. The software is available at the hv-inv project website 

http://www.ual.es/GruposInv/hv-inv/ as FORTRAN 90 and Matlab codes. In a companion 

paper (Piña-Flores et al., 2016) we explore the properties of HVSRs as well as the non-

uniqueness problem. 

 

2. Forward calculation of the H/V spectral ratio 

 

The algorithms described here are based on the representation of the ambient noise wavefield 

as a 3D-diffuse vector field established within the medium. Then, the directional power 

spectral densities (PSD) of motion );( xmP  along any Cartesian axis m at an arbitrary point 

x  and circular frequency   are found to be proportional to the imaginary part of the diagonal 

components of the Green’s tensor at x  when both source and receiver coincide, 

)];;(Im[ xxmmG  (no sum, Sánchez-Sesma et al., 2008). When the ratio between two distinct 

directional PSDs is considered, the proportionality factor cancels out. Then, the ratio between 

the horizontal (sum of the terms associated with directions 1 and 2, which in fact are equal) 

and the vertical directional PSDs (term associated with direction 3), that is, the usual H/V 

spectral amplitude ratio at point x , corresponds to: 
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The middle expression arises from the noise auto-correlations; instead, the right hand side 

may be calculated theoretically under some properties and geometrical assumptions. In this 

work, the configuration considered is a horizontally layered structure on top of a half-space 

(Fig. 1). The top surface is free and the layers correspond to homogeneous, elastic and 

isotropic media with plane interfaces. Quantities j , j , j , 
2

jjj    and 
jh  stand for 

P- and S-wave velocities, mass density, shear modulus and thickness of the j-th layer, 

respectively. Under these assumptions, a convenient way to evaluate the Green’s function 

components in Eq. (1), on the basis of frequency-horizontal wavenumber ),( k  

representation of the wavefield, consists in using the contour integration method in the 

complex wavenumber plane. That method provides a rigorous way for dealing with the 

singularities of the original integral expressions defined on the positive k values (e.g. 

Harkrider, 1964).1 

 

 

Figure 1. Plane layered structure made of isotropic elastic layers. αj, βj, ρj and hj stand for P- and S-wave 

velocities, mass density and thickness of the j-th layer. The numbering of layer and interfaces is shown.  



 

 

To use the contour integration, the integrals are first extended to the whole real k axis using 

integrand symmetries. Then, the contour shown in Fig. 2 (Tokimatsu and Tamura, 1995; 

García-Jerez et al., 2013) can be employed to isolate the contributions to the Green’s 

functions of the body and any of the surface waves modes. The body wave contributions are 

calculated from the integral along the branch-cuts, whereas the surface waves modes 

contributions are proportional to the residues at the poles located on the positive real k axis. 

 

Figure 2. Contour used for complex-plane integration, from Tokimatsu and Tamura (1995). 

 

For coincident source and receiver, the sum of the branch-cut integrals along both sides of 

the positive imaginary axis contributes to the (diverging) real part of the Green’s functions, 

whereas the integrals along the segments of the branch-cuts on the real axis contribute to the 

imaginary part. Since Eq. (1) involves )];;(Im[ xxjjG  only, the required numerical 

integration, corresponding to body waves, is constrained to the interval  N /,0 . This may 

significantly speed up the computations comparing with the direct application of the 

conventional discrete wavenumber method, even though the actual improvement depends on 

the computational effort required to find the poles (dispersion curves) which varies from 

model to model. 

 



 

The contributions of the residues at the poles and of the branch-cut integrals to the imaginary 

part of the Green’ s function at source are: 
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where the real quantities RmA  and LmA  stand for the medium responses for the m-th Rayleigh 

and Love modes, respectively. The expressions for the contributions of surface waves result 

from the limit 0r  of the general formulae derived by Harkrider (1964). The integral terms 

may be interpreted as the motion at surface due to wave systems for which S waves spread 

through the halfspace from vertically to horizontal incidence. The integrands are evaluated 

on the fourth-quadrant side of the real k axis. In most cases, but not always, the integrands in 

Eqs. (2-4) are free from poles or sharp peaks so that the computational effort for numerical 

integration is moderate. Some exceptions to this rule, due to the presence of leaky-mode 

branches in the proximity of the real k axis have been studied by García-Jerez and Sánchez-

Sesma (2015). 

 

On the other hand, it is well-known that the Thomson-Haskell propagator-matrix method 

presents a weakness related with numerical overflow and loss of precision at high frequencies 

(e.g. Buchen and Ben-Hador, 1996). Algorithms for stabilization based on Dunkin (1965) 

have been used in various popular codes for computation of surface waves and Green’s 

functions (e.g. Herrmann and Ammon, 2003; Wathelet, 2005). In the program described here, 



 

this question is addressed with an adaptation of the Wang’s (1999) orthonormalization 

method, which preserves the 4 x 4 character of the propagators in the cases of P-SV and 

Rayleigh waves. The rest of this section is devoted to describe in detail the computations of 

the elements of Eqs. (2 to 4). 

 

2.1. Computation of the surface waves contributions  

 

2.1.1. Rayleigh waves dispersion curves  

 

The calculation of these curves is based on the Thomson-Haskell propagator-matrix method 

following the formulation in Aki and Richards (2002) for propagation of plane Rayleigh 

waves in the x-z plane (z axis directed down). 

First, the quantities j
222 / jk   and j 222 / jk  , and the matrix 

PSV

jL  
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are defined for each layer. After multiplying the columns of 
PSV

jL  by 
)( jj zz

e


, 
)( jj zz

e


, 

)( jj zz
e


 and 

)( jj zz
e


, respectively and by the horizontal propagation factor )( tkxie  , they 

form a basis for the waves in the j-th layer displacement-stress space   
T

rrrr 4321 ,,,  

 Tzzzxzx iiuu   ,,,  (Aki and Richards, 2002, Eq. 7.55). 

 

Since the phase velocity of surface waves cannot be higher than 
N  , the quantities 

N  and 

N  will be real. In that case, the waves within the halfspace are inhomogeneous. Taking into 

account these dependences on z, we first define the 4 x 2 coefficients matrix in the halfspace 

as 
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so that the product N

PSV

N

PSV

N DLY   selects the two first columns of PSV

NL  which form a basis 

of the subspace of the vectors, fulfilling the radiation conditions that imply the absence of 

waves with unbounded amplitude at infinite depth. 

 

To propagate this basis of the subspace upwards, fulfilling the conditions of continuity of 

stress and displacements across the N-th interface, NY  is first written in terms of the full basis 

associated to the (N˗1)-th layer by means of the coefficient matrix 
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In principle, the next step would be to obtain a basis PSV

NY 1  at the top of the (N˗1)-th layer as 

the two columns of 1

1

11 
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Nevertheless, when j  and j  are (positive) reals, this multiplication involves operations 

between the two different increasing exponentials which can cause loss of precision for a 

thick enough layer. Following Wang (1999), this difficulty can be avoided by means of a 

transformation of 1ND  by a 2x2 orthonormalization matrix defined as 
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Thus, 111'   NNN QDD  has zeroes at the elements 12 and 21, allowing the separation of the 

exponentials 
)(1 NN zz

e
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 and 
)(1 NN zz

e
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 along the (N˗1)-th layer in the columns of 

111 ')(   NNN

PSV

N DzzEL . Consequently, the alternative (stabilized) basis at 1Nz  is: 
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The procedure is then iterated up to the free surface, so that the result is formally equivalent 

to  
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where accjQ , 121... QQQQ jj   stand for the accumulated transformation from the j-th layer 

to the surface ( accNQ ,1  includes all the layers). 

  

At this point, the dispersion curves could be obtained in terms of k and   from the 

compatibility condition  
331

PSVY  
441

PSVY  
341

PSVY   0
431 PSVY , which guarantees the 

existence of a non-trivial linear combination of the columns of PSVY1  fulfilling the conditions 

of zero stress components 0)( 1 zzx  and 0)( 1 zzz . Nevertheless, due to the 

stabilization scheme, this relation involves complex quantities  
jk

PSVY1  that would imply a 

more laborious root-finding task. In order to deal with real quantities, it is preferable to state 

an equivalent equation by using the corresponding elements of 1

,11
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PSV QY . Moreover, since 

any positive factor preserves the sign of the determinant and 
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,1 accNQ  , we in practice solve the equation: 
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The signs of this expression are evaluated on the frequency - velocity plane and shown in 

Fig. 3a for an example model. The improvements in stability due to the orthonormalization 

scheme are evident in the short-wavelength region. 

 

Figure 3. (a) Sign of the determinant (frequency equation) used in this work for location of Rayleigh-waves 

phase velocities (Eq. 12) for an example model. Black color stands for negative and white for positive. (b) 

Result obtained without introducing the orthonormalization matrices Q. The model consists in a single layer 

over a stiffer halfspace with a contrast of 2 in  ,  2 , and no density contrast. A frequency 

)4/(10 hf   is used for normalization.  

 

2.1.2. Love waves dispersion curves  

 

The scheme followed for calculation of Love-waves dispersion curves parallels the algorithm 

used for Rayleigh-waves, even though the way for avoiding numerical overflow is simpler. 

 

In this case, the out-of-plane displacement-stress vector   
T

ll 21 ,  Tyzyu ,  in the j-th layer 

can be written as the columns of  
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with respective dependences on 
)()( jj zztkxi

e
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 and 
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e
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. The first one is itself a 

basis for the harmonic waves in the halfspace fulfilling the boundary conditions, so that 

 TSH

ND 01 . Then, the iterative procedure for upwards propagation described above is 

applied. In this case, once the corresponding 2x1 coefficient vector for the j-th layer basis is 

calculated as   SH

j
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j YLD 1

1




 , it is subsequently normalized dividing by 

2

2

2

1 )()( SH

j

SH

j DD  . Finally, the frequency equation arises as the zero-stress condition at 

the free surface:  )( 1zzyz   0
21 SHY . 

 

2.1.3. Medium response for surface waves  

 

Instead of doing a direct evaluation of the residues by using L’Hôpital’s rule (see expressions 

in Harkrider, 1964) which requires numerical derivatives, the computations of the medium 

responses for surface waves modes RmA , LmA  (Eqs. 3-4) are carried out by analytical 

evaluation of energy integrals along the modal shapes at pairs ))(,(  Rmcc   determined 

from the dispersion curves (Harkrider and Anderson, 1966). 

According to Section 2.1.1, the modal shapes for Rayleigh waves can be calculated in the j-

th layer as 

 

)(zyR )( 1 jj

PSV

j zzEL 'jD 1, jaccQ 








1

a
, with 1 jj zzz  and 

 
 

311

321

PSV

PSV

Y

Y
a


 .           (14) 

 

The modal index m and the layer index j in )(zy R  are dropped off for the sake of simplicity. 

The multiplication by  Ta 1  in Eq. (14) generates a linear combination of the basis PSVY1  

that fulfils the zero-stress condition at surface, whereas the multiplication by 1, jaccQ  



 

transforms 'jD  into the surface basis PSVY1  (since no transformation is required for z within 

the first layer, 
0,accQ  can be defined as the identity matrix). The modal shapes of Love waves 

can be computed using an analogous (but simpler) scheme. 

 

The calculation described above has been checked in many test models, showing accuracy 

and stability. Figures 4d-e show the perfect matching with the results of a global matrix 

method for the model defined by Denolle et al. (2012) in similar tests (Model 1 in Table 1). 

An example of the instability of the original propagator matrix method as frequency grows is 

shown in Figs. 4a-c (black lines). 

 

 

 

Figure 4. (a-c) Comparison between the shapes of the fundamental mode for model 1 (Table 1), computed by 

means of the algorithm described in this work (yellow line) and with a non-stabilized scheme (black line) based 

on Aki and Richards (2002). HR, VR and L stand for Horizontal component of Rayleigh wave, Vertical 

component of Rayleigh wave and Love wave displacements, respectively. (d-e) Shapes of the fundamental and 

the first three higher modes of Rayleigh waves compared with reference curves (red lines) obtained with a 

global matrix method (Kausel, 2015, personal communication). 

 

This scheme is subsequently used to compute the integrals (Ben-Menahem and Singh 2000, 

Eqs. 3.139) for Rayleigh wave modes: 
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and 
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where )()( 1 zrzux   and )()( 2 zrizuz   refer to the displacement components of the modal 

vector TR rrrry ),,,( 4321 . 

 

Then, the group velocity is calculated from these integrals and from the phase velocity 
Rc  as  
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which can be worked out from Ben-Menahem and Singh (2000, Eqs. 3.139, 3.140, 3.141 and 

5.128). Note that numerical derivatives of the phase-velocity dispersion curves are avoided 

in this way. Then, the medium response is subsequently computed as 
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In the case of Love waves, the relevant energy integrals to be evaluated are 
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and 
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whereas the medium response can be worked out as: 
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(Ben-Menahem and Singh 2000, Eqs. 3.128, 3.129 and 5.126). For joint inversion purposes, 

the group velocity of Love waves can also be calculated as 
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Since calculations of medium responses are independent for each frequency and mode, the 

computation can be easily parallelized to improve performance in shared memory 

multiprocessing systems. In this manner, each thread deals with a subset of frequencies. This 

feature has been implemented by means of OpenMP constructs. This also applies to the body 

wave contributions.  

 

2.2. Computation of body waves contributions 

 

The last step is to evaluate the integral terms in Eqs. (2 to 4), which address the effects of the 

diffuse P-SV and SH body wavefield, respectively. Thus, for any fixed   and for both P-SV 

and the SH contributions, the wavenumber k is uniformly varied from 0 to N / , 

corresponding to outgoing S waves spreading from vertically to horizontally in the halfspace. 

The P waves in the halfspace can either be of homogeneous or inhomogeneous type. 

 

For each couple ),( k , the boundary conditions at the halfspace and the continuity of stress 

and displacements through the structure are stated, except at the source (evaluation point) 



 

located at surface. In particular, respective bases for the displacement-stress vectors 

 Trrrr 4321 ,,,  and  Tll 21,  at 0z  are generated by following procedure in Eqs. (6 to 11) for 

P-SV waves, and that in section 2.1.2 for SH waves. 

 

The constant factors in Eqs. (2-4) have been fitted to represent discontinuities 3r , 4r  and 

2l  corresponding to unitary forces, that is, 14  zFr , and 3r 2l 1xF . These 

factors can be derived from the more general formulation in Aki and Richards (2002), who 

describe the discontinuities in 4r , 3r  and 2l  by means of the functions ),( mkfR , ),( mkf S  

and ),( mkfT . The particular cases of point forces acting in directions z and x are described 

by z

m

R Fmkf  )0,( ,  2/)1,( xS Fmkf )1,(  mkfS
, and  )1,( mkfT 2/xiF  

)1,( mkfT . These functions vanish for any other value of m. 

 

Therefore, to obtain the body-wave terms of 33G , a linear combination of the vectors 11 )( j

PSVY  

and 
21 )( j

PSVY  fulfilling the system of equations   
T

rrr 421 ,0,,    TPSV baY ,1  has to be found. 

The coefficients  ba,  can be worked out from the third and fourth equations and used to 

write the factor ),(2 kr   of the integrand as 
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where zF  has been replaced with 1. To obtain the contributions of P and SV waves to the 

radial motion, ),(1 kr   is worked out from  Trrr 0,,, 321   =  TPSV baY ,1 . Proceeding as in 

the previous case, it results: 
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Finally, in the case of SH waves, the system of equations to be solved is   
T

ll 21 , aY SH

1 , 

with 2l zx 1xF . The solution is: 
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To illustrate the computations of surface-waves and body-waves parts of )];0;0(Im[ jjG , we 

show the individual contributions of each type of wave for several shallow models listed in 

Table 1. Models 2 and 3 (called M5 and M6 in Pei, 2007) consist of three thin layers (35 m 

total) overlying a thicker fourth layer (95 m). These two models present low and high velocity 

zones in the second layer, respectively, and the velocity contrasts are moderate. 

 

As shown in Figure 5, the horizontal component is dominated by surface waves from 0.7 Hz 

in both models, with Love waves being the main component. SH waves are the main 

contribution at lower frequencies. For Model 3, the fundamental Love mode dominates the 

surface wavefield, whereas the first higher mode becomes the dominant Love mode at 14.5 

Hz for Model 2, with Rayleigh waves being the main contribution in a narrow transition band 

around this frequency. The vertical component is dominated by Rayleigh waves of the 

fundamental mode in both models. As shown in Figs. 5e-f, the surface waves control the 

overall shape of the HVSRN except for frequencies below the fundamental SH resonance of 

the model. Resonances of body waves also introduce some bumps in the H/V ratio, such as 

the visible SH resonance at 4.9 Hz for Model 2. In spite of the smaller effects on the overall 

shape of the spectral ratio, the computation of body wave contributions is often the most time-

consuming part of the forward problem. For example, between 5000 and 10000 evaluations 

of the integrand were carried out to obtain a perfect estimation of SH and P-SV terms for 

Model 3 in the frequency ranges shown in Fig. 5. Those integrals consumed the 91 – 97% of 

the total computing time. In inverse problem, the user may assess the appropriateness of 

neglecting body wave contributions to speed up repetitive forward calculations on the basis 

of an a priori estimation of the ground model and considering the size of the experimental 

uncertainties. 

 



 

 

Figure 5. Contribution of different waves to the imaginary parts of G11 and G33 for coinciding source and 

receiver located at surface. Panels (a) and (b) correspond to horizontal and vertical components for Model 2 

(Table 1). Panels (c) and (d) correspond to Model 3. The HVSRN are shown in panels (e) and (f) for models 2 

and 3, using surface waves only, body waves only and full wavefield.  



 

It should be noted that the models consider here are purely elastic. However, it is known that 

pronounced viscoelasticity, which is often found in shallow structures, may considerably 

change the properties of seismic waves. Our experiments based on simple models with high 

impedance contrasts (e.g. Sanchez-Sesma et al., 2011; Salinas et al., 2014; Sanchez-Sesma, 

2016) show that the main effect of the anelastic attenuation is the decreasing of the main peak 

amplitude as the quality factor decreases. For example, Sanchez-Sesma (2016) has reported 

a decrement of 23% in amplitude at the peak for a quality factor of 200. Contrary to some 

other approaches (Herak, 2008), the effects of attenuation were almost negligible at higher 

frequencies, at which the Green’s functions are dominated by surface waves, and the effects 

on the overall shape remain moderate. 

 

3. Inversion of HVSRN and of surface wave velocities  

 

In a general sense, the inversion of geophysical data consists in finding properties of the so 

called a posteriori probability distribution, which measures the probability of any model m 

(a ground profile) of being the true model on the basis of its ability to fit a set of observations 

obs

jd j  and fulfilling a priori constraints. The method for forward calculation, )(mtheo

jd , 

is assumed to be known. Most of the applications are intended to characterize this probability 

distribution by means of the maximum likelihood model, the mean (expected) model and/or 

the covariance matrix for the model parameters. 

 

The inversion software provided here has been written in Matlab® and includes 

implementations of three main inversion algorithms: i) Monte Carlo sampling ii) the 

Simulated Annealing method (SA) and iii) the Interior Point method (IP), together with a 

suitable graphic user interface. In addition, two simpler methods such as the Random Search 

(RS) and the Downhill-Simplex are also available. These methods can be sequentially applied 

following the program flow chart sketched in Figure 6. 



 

 

 

Figure 6. Flow chart of the inversion procedure. 



 

The interface allows both independent and joint inversion of HVSRN and Rayleigh- or Love-

wave phase or/and group velocities. Since only variations in the elastodynamic properties with 

depth are considered, our procedure requires that the structure beneath the experimental 

setting may be locally approximated by a horizontally layered medium. If the dataset includes 

surface wave velocities and HVSRNs, the similarity among the spectral ratios for all the 

stations of the array used for dispersion curve retrieval can be stated as a consistency control. 

The main features of these implementations are described in this section. 

 

3.1 Random Search  

 

A random search on the model space can be performed alone or as a first stage of a more 

complicated inversion procedure. The user has to set up suitable intervals for the ground 

parameters ( j , 
j , j , jh  and Poisson’s ratios) as a priori information. Uniform 

probability is assumed for layer thicknesses and densities within the stated ranges as well as 

for either i  or i , depending on the program settings. The remaining velocity type is also 

uniformly sampled even though the actual range could be made narrower to be compatible 

with the Poisson’s ratio intervals. In addition, it is possible to impose downward-increasing 

)(z  or )(z  velocity profiles. Instead of rejecting invalid profiles among the random 

models, the semi-analytical approach described in Appendix A has been followed to 

implement these constraints. 

 

After a number of trials defined by the user, the model presenting the lowest value of the 

misfit, )(mE , defined as 
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is selected. For joint inversion of an HVSRN together with a dispersion curve, equation (27) 

is slightly generalized to  
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where HVn  and cn  are the respective number of samples and an adjustable weight parameter 

cw  ranging from 0 to 1 controls the relative weight of the dispersion curve in the global 

misfit. The default choice of 5.0cw  guarantees the same weight for all the samples, 

regardless of the observable they represent. On the contrary, wc can be used to equalize the 

sensitivity of )(mE  to spectral ratios and velocities, which could be retrieved for a very 

different number of samples. To do so, the software provides the option of making an inverse 

weighting fulfilling cHV ww / HVc nn / , where HVw  represents )1( cw . In particular, it takes 
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 . In the case of coinciding HVn  

and cn  then cw  and HVw  equal 0.5 and the unweighted expression (27) is recovered. 

 

3.2 Simulated Annealing and Monte Carlo Sampling 

 

The SA inversion method (Kirkpatrick et al., 1983) is inspired in the process of heating a 

solid until it melts and then cooling very slowly until the substance reaches the state of lowest 

energy, forming a perfect crystal. This technique uses the Metropolis algorithm (Metropolis 

et al., 1953; Hastings, 1970) to sample the model space M with a Gibbs-type probability 

density function  
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In equation (29), )(mE  resembles the energy, and T a fixed value which is decreased slowly 

and corresponds to the temperature in the thermodynamic analog (the Boltzmann constant is 

taken equal to one). 

 



 

The cooling schedule, defined by the number of temperatures, its initial value and reduction 

ratio as well as the number of model per temperature (Markov’s chain length) are set by the 

user. In addition to the best fitting model, the software computes the mean model m , its 

uncertainties and the normalized covariance matrix c for a set of iterations performed at the 

lower temperature reached. The relevant formulae are: 
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and 
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where m is written as a column vector. Since the model space is sampled according to the 

distribution )(mG , the integrals turn into the unweighted averages of m and 

T))(( mmmm  respectively, over the set of models obtained in this way. 

 

This method has been successfully used for inversion of surface-waves dispersion curves by 

Iglesias (2000) and Pei et al. (2007) among others. Comparisons between the SA and two 

more heuristic methods as well as with linearized inversion have been carried out by 

Yamanaka (2005) and Pei (2007), respectively. Yamanaka`s numerical experiments showed 

that SA provides a rapid convergence and finds models with the smallest misfits. 

 

With the above definition of )(mE , the a posteriori probability density in the case of 

independent Gaussian uncertainties is proportional to  2, TP m . The exploration at this 

constant temperature is implemented as a separate option of the software and referred to as 

Random Monte Carlo sampling (e.g. Mosegaard and Tarantola, 1995). In this case, m  and 

ijc  calculated from Eqs. (30) and (31) have a clear statistical meaning. Note that the 



 

introduction of the decreasing temperature in the SA method can be thought as a way of 

distorting the a posteriori probability distribution until it sharply peaks at the maximum 

likelihood (minimum energy) model (Tarantola, 2005). In this way, the neighborhood of this 

model is virtually the only sampled region at the end of the cooling process. 

 

3.3 Local optimization methods  

 

The built-in implementation of the interior-point method for non-linear constrained 

optimization (e.g. Waltz et al., 2006) usually converges faster than the SA algorithm (and 

much faster than the RS) to a minimum of )(mE . Since it is prone to converge to local 

minima, this algorithm would be suitable when the a priori information allows for significant 

restrictions of the model space (encoded by the user) or when the solution is known to be 

well approximated by the initial model. This method also performs well for joint inversion 

of HVSR and dispersion curves, due to the implied reduction of the set of equivalent solutions 

(see Piña-Flores et al., 2016 for further discussion on non-uniqueness). 

  

The procedure is based on the Matlab implementation of this method through fmincon 

command, which attempts to find the minimum of constrained nonlinear multivariable 

functions. The user has to set up the termination criterion in terms of minimum meaningful 

variations in model parameters and misfit decrements. The maximum number of iterations 

and misfit evaluations can also be limited. The bounds imposed to the model parameters as 

well the optional constraints related with increasing )(z  or )(z  functions are coded by 

means of the inequalities which define the constraints in this optimization method. 

 

A basic implementation of the downhill simplex method (Nelder and Mead, 1965) based on 

a built-in Matlab procedure has also been incorporated to the interface. Even though this 

derivative-free algorithm is aimed at unconstrained minimization problems, the ground 

model constraints are taken into account through misfit penalization of models for which they 

are violated. The speed of this method is very good for low and moderate model space 

dimensionality. 

 



 

4. Test with real data  

 

The reliability of H/V ratios obtained under the diffuse field assumption has been already 

stated by Sánchez-Sesma et al. (2011) and Salinas et al. (2014) among others. These two 

studies deal with H/V curves of relatively simple shape associated with resonances of a 

shallow soft layer (as soft as 70 m/s for 
1 ). In this section, the outputs of the presented 

software and its suitability are illustrated for a sample HVSRN measured in a very different 

environment. 

 

The measurements used here were performed in the context of seismic investigations in 

Campo de Dalías, a large coastal plain in SW Spain and correspond to a test site located at 

El Ejido town. Previous active multichannel seismic surveys and borehole analysis revealed 

the stratigraphic record in the vicinity of the measurement point. The shallow layers are 

formed by anthropogenic fillings of insignificant thickness overlying Pliocene materials 

(calcarenites, silts and marly limestones). The Pliocene-aged layer is underlain by the thickest 

Neogene unit, of Messinian age (Pedrera et al., 2015), and composed at its base of lower 

Messinian silts and marls overlain by gypsum layers, marly limestones and silts. An older 

and thinner layer made up of late Tortonian calcarenites and conglomerates rests on the 

basement, which is attributed to the Permo-Triassic metamorphic rocks of the Alpujárride 

Complex (Betic Cordillera). 

 

We used a CMG-6TD broad-band seismometer. The recording time was of 30 minutes and 

the sampling rate was 100 sps. Traces were first divided in a set of overlapping windows of 

40.48s. Then, the HVSRN was calculated following the procedure stated by Sánchez-Sesma 

et al. (2011), which involves normalization of each time window by its total energy, 

calculation of the power spectral density for each component and the subsequent computation 

of the spectral ratio according with Eq. (1). The H/V curve (black line in Fig. 7a) shows a 

somewhat complicated shape with a clear main peak at 0.65-0.7 Hz and a broad secondary 

bump between 1.3 and 8.0 Hz, approximately. In turn, at least a pair of minor peaks can be 

identified in that latter band. 

 



 

The inversion has been performed combining SA with the local methods. The allowed ranges 

for the ground parameters   and   were based on previous work performed by Marín-

Lechado (2005) in Campo de Dalías. Once a good fitting of the data was obtained, 4000 more 

models were generated by Monte Carlo sampling to compute the mean model, the standard 

deviation and the covariance matrix (Fig 7). The obtained model is consistent with the 

information available from previous studies. For example, the two-way P-wave travel time 

down to the bottom of the layer interpreted as Messinian marls (418 ms) agrees very well 

with the corresponding value derived from active-source seismic methods (Plata et al., 2004, 

p. 164), and the depth of the basement matches the results obtained by González et al. (2003). 

 

5. Concluding remarks 

 

An algorithm for forward calculation of HVSRN based on the diffuse field approximation 

(Sánchez-Sesma et al., 2011) has been described and implemented in a FORTRAN 90 code. 

This method provides a full-wavefield interpretation of this observable and it is compatible 

with the recent developments in ambient noise interferometry. 

 

An orthonormalization technique has been used to preserve the stability of the code at high 

frequency, preventing from underflow/overflow problems in the susceptible steps of the 

algorithm: computation of dispersion curves, medium responses to surface-wave modes and 

contribution of body waves. 

 

The separate calculation of each contribution to the wavefield allows a better understanding 

of the physics. Moreover, it would make feasible to state corrections in cases of deviations 

of the wavefield composition from the energy ratios stated by the equipartition principle. 

Examples of this behavior have been reported by Nakahara and Margerin (2011) among 

others. 

 

This code has been incorporated into a program for inversion of HVSRN which supports joint 

inversion of the spectral ratio and the surface waves dispersion curves. This approach has 

been demonstrated to reduce the tradeoff between thicknesses and velocities inherent to  



 

 

Figure 7. Example of HVSRN inversion for a test site (Campo de Dalías, SW Spain). Black line and black 

segments in panel (a) represent the experimental spectral ratio and its standard deviation. The colored curves in 

(a) show the forward calculations for the corresponding sampled models shown in panels (c) to (e), which were 

evaluated during a final application of the Monte Carlo Sampling method. Red lines show the best fitting model 

(panels c to e) and the corresponding theoretical HVSRN (panel a). The mean model m and the standard 

deviations of its parameters (Cjj ) are shown in panels c-d with black lines, whereas panel (b) shows the 

normalized covariance matrix c . 

 

inversion of H/V ratios and improves the sensitivity to velocity contrasts of profiles obtained 

from dispersion curves, and in particular to the basement velocity (e.g. Arai and Tokimatsu, 

2005; Parolai et al., 2005; Piña-Flores et al., 2016). The program allows for applying Monte 

Carlo sampling of the model space, the SA algorithm as well as local methods. The numerical 



 

calculation of the body waves integrals is often the most time-consuming part of the forward 

problem, even though these terms often have minor effects on the HVSRN curves. In very 

intensive problems, the software can be used for doing a preliminary inversion based on 

surface-waves components, letting final refinements with full wavefield computations for a 

second stage. 

 

The application of this software to real data obtained at a moderately deep sedimentary 

structure provided good fitting of the experimental curve, including secondary peaks and 

features. The results were consistent with previous information obtained from boreholes and 

conventional seismic methods. 
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Appendix A. Algorithm for generation of models with velocity increasing downwards. 

 

In this software, the velocities of the layers, vj , j = 1, 2, …, N are considered as 

independent variables with uniform probability densities in predefined intervals [vjmin 

vjmax]. In mathematical terms, the probability density for the combination (v1,v2,..., vN) is 

p(v1,v2,...,vN) = p1(v1)p2(v2)...pN (vN), where pj (v) is 
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which can be easily sampled with a generator of pseudo-random uniformly-distributed 

numbers. 

 

To let the user introduce an a priori condition of increasing velocity with depth, the 

algorithm might simply discard those models for which that condition fails (i.e. jj vv 1

, for some pair of successive layers). Nevertheless, this procedure becomes very 

inefficient as the number of layers increases so that an alternative semi-analytical 

approach has been implemented. 

 

Considering the statistics described by equations (A1-2), the probability of generating a 

profile with velocity of the (j+1)-th layer greater than vj and increasing velocities in the 

underlying layers can be represented by 
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)(jI  defined in this manner is a piecewise polynomial function. 

 

Once the expression of )(1 I  has been calculated, the velocity of the upper layer is 

sampled. To do so, we use a uniform random number generator and the transformation 

method of probability distributions (e. g. Press et al. 2007, section 7.3.2). First, the 



cumulative distribution function for v1, also of piecewise-polynomial type, is calculated 

as 
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Then, for a sample s of the uniform distribution in [0 1], the corresponding sample v1s of 

the target distribution is calculated as v1s = )...|( 21

1

NvvvsP 
. This equation is 

solved numerically, without an explicit calculation of 
1P . 

 

This procedure is iterated for deeper layers down to the halfspace, taking the sample 

obtained for the previous layer as a lower bound for the velocity of the current one. In 

this way, for the j-th layer, equation (A3) is replaced with 
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An example of this procedure is presented in Figure A1. As shown, the statistics of the 

models obtained in this way behave as those of the reference population, i.e. the set 

obtained assuming uniform distributions of velocities and subsequently discarding those 

models for which v(z) is not a monotonically increasing function. For reference, and 

assuming that the lower and upper velocity limits are same for all the layers, the 

procedure described here is faster than the reference method for models with more than 

5-6 layers (Fig. A2). The reference method becomes unfeasible for about 8 layers, when 

the time required for generating an acceptable model is of the order of the duration of the 

forward calculations. 

 



 

Figure A1. Histograms for the velocities of 5000 models consisting of six layers overlying a halfspace for 

which the velocity increases as depth increases. Left side panels are generated on the basis of the 

expressions shown in this appendix. Right side panels represent the reference set of models, with uniform 

distribution of the velocities within the limits of the layer and subsequent discard of invalid models. For 

the latter method, only the 0.02 % of the models was acceptable. 

 

 

Figure A2. Computing time for generation of 5000 random models with monotonically increasing v(z), 

following the two methods described here. The displayed durations are approximate values for an Intel® 

i7-4510U 2.0GHz processor using Matlab® code. 

 

If the only constraint required by the user consists in assigning the higher velocity to the 

halfspace, we compute the piecewise polynomial function 
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instead, where  
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 measures the probability of having the velocities 

of the upper N-1 layers smaller than an arbitrary value  . Once the velocity of the 

halfspace vNs is sampled according to the distribution in (A5), the rest of the velocities 

are generated with uniform distributions in [ minjv  Nsv ]. 
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