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Abstract
The most widely used technique for solving and optimizing a real-life problem is linear programming (LP), due to its

simplicity and efficiency. However, in order to handle the impreciseness in the data, the neutrosophic set theory plays a

vital role which makes a simulation of the decision-making process of humans by considering all aspects of decision (i.e.,

agree, not sure and disagree). By keeping the advantages of it, in the present work, we have introduced the neutrosophic LP

models where their parameters are represented with a trapezoidal neutrosophic numbers and presented a technique for

solving them. The presented approach has been illustrated with some numerical examples and shows their superiority with

the state of the art by comparison. Finally, we conclude that proposed approach is simpler, efficient and capable of solving

the LP models as compared to other methods.
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1 Introduction

One of the most extremely used OR methods in real-life

problems according to empirical surveys is linear pro-

gramming [1–4]. It is a mathematical programming which

contains a linear objective function and a group of linear

equalities and inequalities constraints. The petroleum

manufacture was the first and most productive application

of linear programming. Well-defined data which contain a

greater cost of information are required for LP problems.

But in real-life problems, the precision of data is

overwhelmingly deceitful and this affects optimal solution

of LP problems. Probability distributions failed to transact

with inaccurate and unclear information. Also fuzzy sets

were introduced by Zadeh [5] to handle vague and

imprecise information. But also fuzzy set does not repre-

sent vague and imprecise information efficiently, because it

considers only the truthiness function. After then, Ata-

nassove [6] introduced the concept of intuitionistic fuzzy

set to handle vague and imprecise information, by con-

sidering both the truth and falsity function. But also intu-

itionistic fuzzy set does not simulate human decision-

making process. Because the proper decision is funda-

mentally a problem of arranging and explicate facts the

concept of neutrosophic set theory was presented by

Smarandache, to handle vague, imprecise and inconsistent

information [7–10]. Neutrosophic set theory simulates

decision-making process of humans, by considering all

aspects of decision-making process. Neutrosophic set is a

popularization of fuzzy and intuitionistic fuzzy sets; each

element of set had a truth, indeterminacy and falsity

membership function. So, neutrosophic set can assimilate

inaccurate, vague and maladjusted information efficiently

and effectively [11, 12]. We now can say that NLP problem

is a problem in which at least one coefficient is represented

by a neutrosophic number due to vague, inconsistent and

uncertain information. The NLP problems are more useful
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than crisp LP problems because decision maker in his/her

formulation of the problem is not forced to make a delicate

formulation. The use of NLP problems is recommended to

avert unrealistic modeling. In this research, it is the first

time to present LP problems in a neutrosophic environment

with trapezoidal neutrosophic numbers. Two ranking

functions are introduced according to the problem type, for

converting NLP problem to crisp problem. The proposed

model was applied to both maximization and minimization

problems.

The remaining part of this research is marshaled as

follows: We survey the pertinent fuzzy and intuitionistic

FLP problems literature review in Sect. 2. The important

concepts of neutrosophic set arithmetic are presented in

Sect. 3. The formularization of NLP models is presented in

Sect. 4. The proposed method for solving NLP problems is

presented in Sect. 5. Numerical examples are disbanded

with the suggested method, a comparison of results with

different researchers is illustrated and the drawbacks of

existing methods are listed in Sect. 6. Finally, conclusions

and future trends are clarified in Sect. 7.

2 Literature review

Linear programming problems in the fuzzy environment

have classified into two groups which are, symmetric and

non-symmetric problems according to Zimmermann [13].

Objectives and constraints weight are equally significant in

symmetric FLP problems, but non-symmetric problem

weights of objectives and constraints are not equal [14].

Another classification of FLP problems was introduced by

Leung [15]: (1) problems with crisp values of objective and

fuzzy values of constraints; (2) problems with crisp values

of constraints and fuzzy values of objectives; (3) problems

with fuzzy objectives and fuzzy constraints; and finally (4)

robust programming problems. Three types of fuzzy linear

programming models were proposed by Luhandjula [16],

which are flexible, mathematical and fuzzy stochastic

programming models. Another six models of FLP prob-

lems was introduced by Lnuiguchi et al. [17], which are as

follows: flexible, possibility programming, possibility LP

by using fuzzy max, possibility linear programming with

fuzzy preference relations, possibility linear programming

with fuzzy objectives and robust programming. An FLP

problem with equality and inequality constraints are

introduced by Kumar et al. [18]. Various approaches for

disbanding FLP with inequality constraints were proposed

by several authors [19–21], by firstly converting FLP

problems to its equivalent crisp model and then get the

optimal fuzzy solution of the original case. A large number

of authors have deliberated different properties of FLP

problems and suggested various models for finding

solutions. The first introduction of fuzzy programming

theory was suggested by Tanaka et al. [22]. The first for-

mulation and solving of FLP problems are presented by

Zimmerman [23]. Tanaka and Asai [24] suggested an

approach for getting the fuzzy optimal solution of FLP

problems. Verdegay solved FLP problems by depending on

fuzzification principle of objective [25]. The fuzzified

version of mathematical problems was examined by Her-

rera et al. [26]. An FLP problem with fuzzy values of

objective function coefficients were proposed by Zhang

et al. [27]. They converted FLP problems into multi-ob-

jective problems. Another model of FLP problems with

fuzzy values of objective function coefficients and con-

straints was introduced by Stanciulescu et al. [28]. An FLP

model with symmetric trapezoidal fuzzy numbers was

presented by Ganesan and Veeramani [29]. They obtained

the optimal solution of a problem without converting it to

the crisp form. A revised version of Ganesan and Veera-

mani method was proposed by Ebrahimnejad [30]. A

ranking function for arranging trapezoidal fuzzy numbers

of FLP problems was introduced by Mahdavi and Naasseri

[31]. The idealistic stipulation for FLP problems was

derived by Wu [32], by presenting the concept of a non-

dominated solution of multi-objective programming. By

utilizing a defuzzification function, Wu [33] converted the

problem into optimization problems. The full FLP prob-

lems were introduced by Lotfi et al. [34]. Some researchers

have proposed a ranking function for converting FLP

problems into its tantamount crisp LP model and then

solving it by standard methods. The primal simplex method

was extended by Maleki et al. [35], for solving FLP

problems. Tavana and Ebrahimnejad introduced a new

approach for solving FLP problems with symmetric

trapezoidal fuzzy numbers [36]. The fully intuitionistic

FLP problems introduced by Bharati and Singh [37]

depend on sign distance between triangular intuitionistic

fuzzy numbers. A ranking function was used by Sidhu and

Kumar [38] for solving intuitionistic FLP problems.

Nagoorgani and Ponnalagu [39] introduced an accuracy

function to defuzzify triangular intuitionistic fuzzy number.

The previous researches motivated us to propose a study

for solving NLP problems. There does not exist any

researches which solve neutrosophic linear programming

problems with trapezoidal neutrosophic numbers [40–45].

3 Preliminaries

A review of important concepts and definitions of neutro-

sophic set is presented in this section.

Definition 1 [43] A single-valued neutrosophic set N

through X taking the form N={〈x, TN(x), IN xð Þ, FN xð Þ〉:
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x∈X}, where X be a universe of discourse, TN(x): X→[0,

1], IN xð Þ: X→[0, 1] and FN xð Þ: X→[0, 1] with 0≤TN(x)
+IN xð Þ+FN xð Þ≤3 for all x∈X. TN(x), IN xð Þ and FN xð Þ
represent truth membership, indeterminacy membership

and falsity membership degrees of x to N.

Definition 2 [43] The trapezoidal neutrosophic number ~A

is a neutrosophic set in R with the following truth, inde-

terminacy and falsity membership functions:

T ~A xð Þ ¼
a ~A

x� a1

a2 � a1

� �
a1 � x� a2ð Þ

a ~A a2 � x� a3ð Þ
a ~A a2 � x� a3ð Þ
0 otherwise

8>>>><
>>>>:

; ð1Þ

I ~A xð Þ ¼

a2 � xþ h ~A x� a01
� �� �

a2 � a01
� � a01 � x� a2

� �
h ~A a2 � x� a3ð Þ
x� a3 þ h ~A a04 � x

� �� �
a04 � a3
� � a3\x� a04

� �
1 otherwise

8>>>>>>><
>>>>>>>:

ð2Þ

F ~A xð Þ ¼

a2 � xþ b ~A x� a001
� �� �

a2 � a001
� � a001 � x� a2

� �
b ~A a2 � x� a3ð Þ
x� a3 þ b ~A a004 � x

� �� �
a004 � a3
� � a3\x� a004

� �
1 otherwise

8>>>>>>><
>>>>>>>:

ð3Þ

where a ~A, h ~A and b ~A represent the maximum degree of

truthiness, minimum degree of indeterminacy, minimum

degree of falsity, respectively, a ~A, h ~A and b ~A 2 0; 1½ �:
Also a001 � a1 � a01 � a2 � a3 � a04 � a4 � a004.
The membership functions of trapezoidal neutrosophic

number are presented in Fig. 1.

Definition 3 [43] The mathematical operations on two

trapezoidal neutrosophic numbers ~A ¼

a1; a2; a3; a4ð Þ; a ~A; h ~A; b ~A

� �
and ~B ¼

b1; b2; b3; b4ð Þ; a ~B; h ~B; b ~B

� �
are as follows:

~Aþ ~B ¼ a1 þ b1; a2 þ b2; a3 þ b3; a4 þ b4ð Þ; a ~A ^ a ~B; h ~A _ h ~B; b ~A _ b ~B

� �
~A� ~B ¼ a1 � b4; a2 � b3; a3 � b2; a4 � b1ð Þ; a ~A ^ a ~B; h ~A _ h ~B; b ~A _ b ~B

� �
~A�1 ¼ 1

a4
;
1

a3
;
1

a2
;
1

a1

� �
; a ~A; h ~A; b ~A

� 	
; where ~A 6¼ 0

� �

c~A ¼ ca1; ca2; ca3; ca4ð Þ; a ~A; h ~A; b ~A

� �
if ðc[ 0Þ

ca4; ca3; ca2; ca1ð Þ; a ~A; h ~A; b ~A

� �
if c\0ð Þ

(

~A
~B
¼

a1

b4
;
a2

b3
;
a3

b2
;
a4

b1

� �
; a ~A ^ a ~B; h ~A _ h ~B;b ~A _ b ~B

� 	
if a4 [ 0; b4[ 0ð Þ

a4

b4
;
a3

b3
;
a2

b2
;
a1

b1

� �
; a ~A ^ a ~B; h ~A _ h ~B;b ~A _ b ~B

� 	
if a4 0; b4h i0ð Þ

a4

b1
;
a3

b2
;
a2

b3
;
a1

b4

� �
; a ~A ^ a ~B; h ~A _ h ~B;b ~A _ b ~B

� 	
if a4\0; b4\0ð Þ

8>>>>>>><
>>>>>>>:

~A~B ¼
a1b1; a2b2; a3b3; a4b4ð Þ; a ~A ^ a ~B; h ~A _ h ~B;b ~A _ b ~B

� �
if a4 [ 0; b4 [ 0ð Þ

a1b4; a2b3; a3b2; a4b1ð Þ; a ~A ^ a ~B; h ~A _ h ~B;b ~A _ b ~B

� �
if a4 0; b4h i0ð Þ

a4b4; a3b3; a2b2; a1b1ð Þ; a ~A ^ a ~B; h ~A _ h ~B;b ~A _ b ~B

� �
if a4\0; b4\0ð Þ

8><
>:

Definition 4 A ranking function of neutrosophic numbers

is a function Ɍ: N Rð Þ ! R, where N Rð Þ is a set of neu-

trosophic numbers defined on set of real numbers, which

convert each neutrosophic number into the real line.

Let ~A ¼ a1; a2; a3; a4ð Þ; a ~A; h ~A; b ~A

� �
and ~B ¼

b1; b2; b3; b4ð Þ; a ~B; h ~B; b ~B

� �
are two trapezoidal neutro-

sophic numbers, then

1. If Ɍ(~A)[R ~B
� �

then ~A[ ~B;

2. If Ɍ(~A)\R ~B
� �

then ~A\~B;

3. If Ɍ(~A)=R ~B
� �

then ~A ¼ ~B:

4 Neutrosophic linear programming
problem (NLP)

In this section, various types of NLP problems are

presented.

Fig. 1 Truth membership, indeterminacy and falsity membership functions of trapezoidal neutrosophic number
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The first type of NLP problem is the problem in which

coefficients of objective function variables are represented

by trapezoidal neutrosophic numbers, but all other

parameters are represented by real numbers.

Maximize/minimize ~Z �
Xn
j¼1

~cjxj

Subject toXn
j¼1

aijxj � ;¼; � bi; i ¼ 1; 2; . . .;m;

j ¼ 1; 2; . . .; n; xj � 0:

ð4Þ

In this type of problem, ~cj is a trapezoidal neutrosophic

number.

The second type of NLP problem is the problem in

which objective function variables and coefficients are

exemplified by real values but coefficients of constraints

variables and right-hand side are represented by trapezoidal

neutrosophic numbers.

Maximize/minimize Z ¼
Xn
j¼1

cjxj

Subject toXn
j¼1

~aijxj ~� ;�; ~� ~bi; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n; xj � 0:

ð5Þ
Here, both ~aij and ~bi are trapezoidal neutrosophic numbers.

The third type of NLP problem is the problem in which

all parameters are represented by trapezoidal neutrosophic

numbers, except variables are exemplified only by real

values.

Maximize / minimize ~Z �
Xn
j¼1

~cjxj

Subject toXn
j¼1

~aijxj ~� ;�; ~� ~bi; i ¼ 1; 2; . . .;m;

j ¼ 1; 2; . . .; n; xj � 0:

ð6Þ

Here, ~cj; ~aij and ~bi are trapezoidal neutrosophic numbers.

The NLP problem may also be a problem with neutro-

sophic values for variables, coefficients in goal function

and right-hand side of constraints.

Maximize/minimize ~Z �
Xn
j¼1

~cj~xj

Subject toXn
j¼1

aij~xj ~� ;�; ~� ~bi; i ¼ 1; 2; . . .;m;

j ¼ 1; 2; . . .; n; xj � 0:

ð7Þ

Here, ~cj; ~xj and ~bi are trapezoidal neutrosophic numbers.

Here, ~xj is defined as trapezoidal neutrosophic numbers, if

authors want to obtain results in the form of neutrosophic

numbers. But in reality, any manager or decision maker

want to obtain the crisp optimal solution of problem,

through considering vague, imprecise and inconsistent

information when defining the problem. So, if we obtain

the crisp value of decision variables, this problem can be

considered as another formulation of NLP (6).

5 Proposed NLP method

A new approach suggested to find the neutrosophic optimal

solution of NLP problems is introduced in this section.

Step 1 Let decision makers insert their NLP problem

with trapezoidal neutrosophic numbers. Because we always

want to maximize truth degree, minimize indeterminacy

and falsity degree of information, and then inform decision

makers to apply this concept when entering trapezoidal

neutrosophic numbers of NLP model.

Step 2 Regarding to definition 4, we propose a ranking

function for trapezoidal neutrosophic numbers.

Step 3 Let (~a ¼ al; am1; am2; au; ; T~a; I~a;F~aÞ be a trape-

zoidal neutrosophic number, where al; am1; am2; au; are

lower bound, first, second median value and upper bound

for trapezoidal neutrosophic number, respectively. Also

T~a; I~a;F~a are the truth, indeterminacy and falsity degree of

trapezoidal number. If NLP problem is a maximization

problem, then:

Ranking function for this trapezoidal neutrosophic

number is as follows:

Ɍ ~að Þ ¼ alþauþ2 am1þam2ð Þ
2

� �
+confirmation degree.

Mathematically, this function can be written as follows:

R ~að Þ ¼ al þ au þ 2 am1 þ am2ð Þ
2

� �
þ T~a � I~a � F~að Þ ð8Þ

If NLP problem is a minimization problem, then:

Ranking function for this trapezoidal neutrosophic

number is as follows:

Ɍ ~að Þ ¼ alþau�3 am1þam2ð Þ
2

� �
+confirmation degree.

Mathematically, this function can be written as follows:
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R ~að Þ ¼ al þ au � 3 am1 þ am2ð Þ
2

� �
þ T~a � I~a � F~að Þ: ð9Þ

Step 4 According to the type of NLP problem, apply the

suitable ranking function to convert each trapezoidal neu-

trosophic number to its equivalent crisp value. This lead to

convert NLP problem to its crisp model.

Step 5 Solve the crisp model using the standard method

and obtain the optimal solution of problem.

6 Numerical examples

In this section, to prove the applicability and advantages of

our proposed model of NLP problems, we solved the same

problem which introduced by Ganesan and Veeramani [29]

and Ebrahimnejad and Tavana [36].

The difference between fuzzy set and neutrosophic set is

that fuzzy set takes into consideration the truth degree only.

But neutrosophic set takes into consideration the truth,

indeterminacy and falsity degree. The decision makers and

problem solver always seek to maximize the truth degree,

minimize indeterminacy and falsity degree. Then, in the

following example, we consider truth degree (T)=1, inde-

terminacy (I) and falsity (F) degree=0, as follows 1; 0; 0ð Þ
for each trapezoidal neutrosophic number and this called

the confirmation degree of each trapezoidal neutrosophic

number. We should also note that, according to Ganesan,

Veeramani and Ebrahimnejad, Tavana each trapezoidal

number is symmetric with the following form:

~a ¼ al; au; a; a
� �

;

where al; au; a; a represented the lower, upper bound and

first, second median value of trapezoidal number, respec-

tively. The median values of trapezoidal numbers accord-

ing to Ganesan, Veeramani and by Ebrahimnejad, Tavana

are with equal vales (α). Now let us apply our proposed

method on the same problem.

6.1 Example 1

Maximize ~Z � 13; 15; 2; 2ð Þx1 þ 12; 14; 3; 3ð Þx2 þ 15; 17; 2; 2ð Þx3
Subject to

12x1 þ 13x2 þ 12x3 ~� 475; 505; 6; 6ð Þ;
14x1 þ 13x3 ~� 460; 480; 8; 8ð Þ;
12x1 þ 15x2 ~� 465; 495; 5; 5ð Þ;
x1; x2; x3 ~� ~0:

ð10Þ
Because this NLP problem is a maximization problem, then

by using Eq. (8) each trapezoidal number will convert to its

equivalent crisp number. Remember that confirmation

degree of each trapezoidal number is (1, 0, 0) according to

decision maker opinion as we illustrated previously at the

beginning of example. Then, the crisp model of previous

problem will be as follows:

Maximize Z ¼ 19x1 þ 20x2 þ 21x3

Subject to

12x1 þ 13x2 þ 12x3 � 503;

14x1 þ 13x3 � 487;

12x1 þ 15x2 � 491

x1; x2; x3 � 0:

ð11Þ

We can structure the standard form of previous problem

(11) as follows:

Maximize Z ¼ 19x1 þ 20x2 þ 21x3

Subject to

12x1 þ 13x2 þ 12x3 þ s4 ¼ 503;

14x1 þ 13x3 þ s5 ¼ 487;

12x1 þ 15x2 þ s6 ¼ 491;

x1; x2; x3; s4; s5; s6 � 0:

ð12Þ

where s4; s5; s6 are slack variables.

The previous standard form can be solved by the sim-

plex approach. The initial tableau of simplex is presented

in Table 1.

The coming variable in Table 2 is x3 and departing

variable is s5.

The entering variable is x2 and leaving variable is s4 as

shown in Table 3.

Table 1 Initial simplex form

Basic variables x1 x2 x3 s4 s5 s6 RHS

s4 12 13 12 1 0 0 503

s5 14 0 13 0 1 0 487

s6 12 15 0 0 0 1 491

Z 19 20 21 0 0 0 0

Table 2 First simplex form

Basic variables x1 x2 x3 s4 s5 s6 RHS

s4 − 12/13 13 0 1 − 12/13 0 695/13

x3 14/13 0 1 0 1/13 0 487/13

s6 12 15 0 0 0 1 491

Z − 47/13 20 0 0 − 21/13 0 10,227/13
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6.2 Comparisons between our proposed model
and other existing models

By comparing proposed model results with Ebrahimnejad

and Tavana [36] results of the same problem, we noted

that:

1. Our proposed model results are better than Ebrahim-

nejad and Tavana results. Let us look at the optimal

tableau of our proposed model as shown in Table 3, it

is obvious that the objective function value equal 869

but in Ebrahimnejad and Tavana, the objective func-

tion equal 635 by knowing that, the problem is a

maximization problem. To make this more obvious, let

us introduce the optimal tableau of Ebrahimnejad and

Tavana model as presented in Table 4.

2. Ebrahimnejad and Tavana proposed their model to

solve only symmetric trapezoidal numbers. But our

model can solve symmetric and non-symmetric

numbers.

3. When entering symmetric trapezoidal numbers of

Ebrahimnejad and Tavana, it take the following form:

~a ¼ al; au; a; a
� �

, and they did not utilize the value of a
in their calculations of ranking function for obtaining the

equivalent crisp value, so let us ask ourselves a question

“what is the rule of a?”. But in our proposed model, we

take all values into considerations. Our ranking function

has not any missing values of trapezoidal numbers, and

then it is very accurate and comprehensive.

4. As we know,al; au; a; a represented the lower, upper

bound, first and second median value of trapezoidal

number, respectively. Because two values of a are

equals, then the triangular numbers will be more

logical than trapezoidal numbers.

5. To solve a problem with not symmetric trapezoidal

numbers using Ebrahimnejad and Tavana method, we

need to approximate all not symmetric trapezoidal

numbers into the closest symmetric numbers. This

approximation will make obtained results which are

not delicate.

6. The big drawback of Ebrahimnejad and Tavana fuzzy

model is the taking of truthiness function only. But in

real life, the decision-making process takes the

following form “agree, not sure and disagree.” We

treated this drawback in our model by using neutro-

sophic. Since, beside the truth function, we take into

account the indeterminacy and falsity function.

Also by comparing our model with Ganesan and

Veeramani at the same problem, we also noted that:

1. Our model is more simple and efficient than Ganesan

and Veeramani model.

2. Since obtained results of Ebrahimnejad, Tavana and

Ganesan and Veeramani are equals then, our results are

also better than Ganesan and Veeramani model.

3. Our model represents reality efficiently than Ganesan

and Veeramani model, because we consider all aspects

of decision-making process in our calculations (i.e., the

truthiness, indeterminacy and falsity degree).

4. Ganesan and Veeramani model represented to solve

only the symmetric trapezoidal numbers. Our model

can solve both the symmetric and non-symmetric.

Also, by comparing our model with Kumar et al. [18] for

solving the same problem we founded that:

1. In their model, they convert the FLP problem to its

tantamount crisp model. But their model has more

variables and constraints.

2. Their models increase the complexity of solving linear

programming problem by simplex algorithm.

3. Our model reduces complexity of problem, by reduc-

ing the number of constraints and variables.

4. Their model is a time-consuming and complex, but our

model is not.

5. Also our model represents reality efficiently and better

than their model.

By solving the previous example according to Saati

et al. [44] proposed method, then the model will be as

follows:

Table 3 Optimal form
Basic variables x1 x2 x3 s4 s5 s6 RHS

x2 − 12/169 1 0 1/13 − 12/169 0 695/169

x3 14/13 0 1 0 1/13 0 487/13

s6 2208/169 0 0 − 15/13 180/169 1 429

Z − 371/169 0 0 − 20/13 − 33/169 0 869

Table 4 Ebrahimnejad and Tavana optimal tableau

Basis x1 x2 x3 s4 s5 s6 RHS

x2 − 12/169 1 0 1/13 − 12/169 0 730/169

x3 14/13 0 1 0 1/13 0 470/169

s6 1848/169 0 0 − 15/13 180/169 1 70,170/169

Z 42/13 0 0 1 52/169 0 634.6
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Maximize Z ¼ 13x1 þ 12x2 þ 15x3

Subject to

12xl1 þ 13xl2 þ 12xl3 � 475;

12xu1 þ 13xu2 þ 12xu3 � 505;

12xm11 þ 13xm12 þ 12xm13 � 6;

12xm21 þ 13xm22 þ 12xm23 � 6;

14xl1 þ 13xl3 � 460;

14xu1 þ 13xu3 � 480;

14xm11 þ 13xm13 � 8;

14xm21 þ 13xm23 � 8;

12xl1 þ 15xl2 � 465;

12xu1 þ 15xu2 � 495;

12xm11 þ 15xm12 � 5;

12xm21 þ 15xm22 � 5;

xl1 þ xu1 � 0;

xl2 þ xu2 � 0;

xl3 þ xu3 � 0;

xm11 þ xm21 � 0;

xm12 þ xm22 � 0;

xm13 þ xm23 � 0:

ð13Þ

As an effect, the numbers of constraints and variables are

increased, and this lead to increase complexity of problem,

increase the space of recording binary bits and also

increase computational time when solving it by simplex

method. If the numbers of constraints of the original

problem are increased, then the solution will become very

difficult to apply. But our proposed method solves the same

problem with less variables and constraints, and then, with

less complexity and also less computational time when

solving by simplex method.

6.3 Example 2

In this example, we solve a NLP problem with trapezoidal

neutrosophic numbers. The order of element for trapezoidal

neutrosophic numbers is as follows: lower, first median

value, second median value and finally the upper bound.

The decision makers’ confirmation degree about each value

of trapezoidal neutrosophic number is (0.9, 0.1, 0.1). This

example belongs to the second classification of NLP

problems as listed in Sect. 4.

Maximize Z ¼ 25x1 þ 48x2

Subject to

14; 15; 17; 18ð Þx1 þ 25; 30; 34; 38ð Þx2
~� 44; 980; 45; 000; 45; 030; 45; 070ð Þ

21; 24; 26; 33ð Þx1 þ 4; 6; 8; 11ð Þx2
~� 23; 980; 24; 000; 24; 050; 24; 060ð Þ

17; 21; 22; 26ð Þx1 þ 12; 14; 19; 22ð Þx2
~� 27; 990; 28; 000; 28; 030; 28; 040ð Þ

~x1; ~x2 ~� ~0:

ð14Þ

By using Eq. (8), each trapezoidal number will convert to

its equivalent crisp number. Then, the crisp model of pre-

vious problem will be as follows:

Maximize Z ¼ 25x1 þ 48x2

Subject to

33x1 þ 64x2 � 90; 041;

53x1 þ 15x2 � 48; 046;

44x1 þ 34x2 � 56; 031;

x1; x2 � 0:

ð15Þ

We can structure the standard form of previous problem

(15) as follows:

Maximize Z ¼ 25x1 þ 48x2

Subject to

33x1 þ 64x2 þ s3 ¼ 90; 041

53x1 þ 15x2 þ s4 ¼ 48; 046

44x1 þ 34x2 þ s5 ¼ 56; 031

x1; x2; s3; s4; s5 � 0:

ð16Þ

where s3; s4; s5 are slack variables.

The previous standard form can be solved by the sim-

plex approach. The initial tableau of simplex is presented

in Table 5. The entering variable in Table 6 is x2 and

leaving variable is s3.

The coming variable is x1 and departing variable is s5 as

in Table 7.

Table 5 Initial simplex form

Basic variables x1 x2 s3 s4 s5 RHS

s3 33 46 1 0 0 90,041

s4 53 15 0 1 0 48,046

s5 44 34 0 0 1 56,031

Z 25 48 0 0 0 0
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6.4 Example 3

Let us introduce another type of problems in this example

and making a comparison with other research at the same

example.

By solving the same problem which introduced by Saati

et al. [44]:

Minimize Z ¼ 6x1 þ 10x2

Subject to

2x1 þ 5x2 ~� 5; 8; 3; 13ð Þ;
3x1 þ 4x2 ~� 6; 0; 4; 16ð Þ;
x1; x2 ~� ~0:

ð17Þ

Let confirmation degree is (1, 0, 0) according to our

assumptions and note that, here the order of trapezoidal

neutrosophic number is as follows: lower bound, first,

second median value and finally the upper bound, respec-

tively. Let us use Eq. (9) for transforming the previous

model to its crisp model as follows:

Minimize Z ¼ 6x1 þ 10x2

Subject to

2x1 þ 5x2 � � 6;

3x1 þ 4x2 � 6;

x1; x2 � 0:

: ð18Þ

The previous problem can be solved by the simplex

approach. The optimal tableau of simplex method is pre-

sented in Table 8.

From the previous table, the value of objective function

=12, x1 ¼ 2 and x2 ¼ 0:

When Saati et al. [35] solved the previous example, the

results are nearly equal with our result. Since the value of Z

according to their model is equal to 12.857, the value of

x1 ¼ 1:429 and x2 ¼ 0:429. It is obvious that two approach

results are nearly equal, but our proposed method has

several advantages over their method:

1. We obtain the results which also obtained by Saati

et al. [44] but with easy and simple method.

2. Number of constraints in our model is the same of the

original model, but when Saati solved their model, the

number of variables and constraints is significantly

increased. Since in Saati et al. [44] model, number of

constraints of the previous problem becomes 20

constraints when they trying to solve the previous

problem.

3. Due to the big increase in number of variables and

constraints of Saati model, the complexity of solving

the problem by simplex will increase and computa-

tional time will increase sure.

4. Their proposed approach is difficult to apply in large

scale of problems.

5. Also their approach does not represent vague, incon-

sistent information efficiently.

6.5 Case study

A company for electronic industries manufactures four

technical products for aerospace companies that conclude

NASA contracts. The outputs must get through four parts

before they are shipped. These departments are: Wiring,

Drilling, Assembly and finally Inspection. The required

time for each unit manufactured and its profit is presented

in Table 9. The minimum production quantity for fulfilling

contracts monthly is presented in Table 10. The objective

of company is to produce products in such quantities for

maximizing the total profits.

Table 6 First simplex form

Basic variables x1 x2 s3 s4 s5 RHS

x2 33/64 1 1/64 0 0 1406.89

s4 2897/64 0 − 15/64 1 0 26,942.6

s5 847/32 0 − 17/32 0 1 8196.72

Z 0.25 0 − 0.75 0 0 67,530.8

Table 7 Optimal form

Basic variables x1 x2 s3 s4 s5 RHS

x2 0 1 2/77 0 − 3/154 1247.21

s4 0 0 571/847 1 − 1.71015 12,925

x1 1 0 − 17/847 0 32/847 23,845/77

Z 0 0 − 631/847 0 − 8/847 67,608.2

Table 8 Optimal simplex form

Basis x1 x2 s3 s4 RHS

s3 0 − 7/3 1 − 2/3 10

x1 1 4/3 0 − 1/3 2

Z 0 2 0 2 12

Table 9 Departments

Products Wiring Drilling Assembly Inspection Unit profit

P1 0.5 3 2 0.5 ~9$

P2 1.5 1 4 1 f12$
P3 1.5 2 1 0.5 f15$
P4 1 3 2 0.5 f11$
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The confirmation degree of previous information

according to decision makers’ opinions is (0.9, 0.1, 0.1).

Let number of units of p1 produced=x1,

Let number of units of p2 produced=x2,

Let number of units of p3 produced=x3,

Let number of units of p4 produced=x4.

The formulation of previous problem is as follows:

Maximize ~Z � ~9x1 þ f12x2 þ f15x3 þ f11x4
Subject to

0:5x1 þ 1:5x2 þ 1:5x3 þ x4 � g1500;
3x1 þ x2 þ 2x3 þ 3x4 � g2350;
2x1 þ 4x2 þ x3 þ 2x4 � g2600;
0:5x1 þ x2 þ 0:5x3 þ 0:5x4 � g1200;
x1 �g150;
x2 �g100;
x3 �g300;
x4 �g400:
x1; x2; x3; x4 � ~0:

ð19Þ

Note that the values of each neutrosophic number repre-

sented by a trapezoidal neutrosophic number as follows:

~9 ¼ 6; 8; 9; 12ð Þ;f12 ¼ 9; 10; 12; 14ð Þ;f15 ¼ 12; 13; 15; 17ð Þ;f11 ¼ 8; 9; 11; 13ð Þ;g150 ¼ 120; 130; 150; 170ð Þ;g100 ¼ 70; 80; 100; 120ð Þ;g300 ¼ 270; 280; 300; 320ð Þ; g400 ¼ 370; 380; 400; 420ð Þ;g1500 ¼ 1200; 1300; 1500; 1700ð Þ;g2350 ¼ 2200; 2250; 2350; 2400ð Þg2600 ¼ 2200; 2400; 2600; 2800ð Þ;g1200 ¼ 1000; 1100; 1200; 1300ð Þ:

By using Eq. (8), the previous problem transform to the

following crisp model as follows:

Maximize Z ¼ 27x1 þ 34x2 þ 43x3 þ 31x4

Subject to

0:5x1 þ 1:5x2 þ 1:5x3 þ x4 � 4251;

3x1 þ x2 þ 2x3 þ 3x4 � 6901;

2x1 þ 4x2 þ x3 þ 2x4 � 7501;

0:5x1 þ x2 þ 0:5x3 þ 0:5x4 � 3451;

x1 � 426;

x2 � 276;

x3 � 876;

x4 � 1176:

x1; x2; x3; x4 � 0:

ð20Þ

By solving the previous model using simplex approach, the

results are as follows:

x1 ¼ 426;

x2 ¼ 343;

x3 ¼ 876;

x4 ¼ 1176;

Z ¼ 97; 288:

7 Conclusions and research directions

By applying the neutrosophic set concept to the linear

programming problems, we treated imprecise, vague and

inconsistent information efficiently. We also have a better

representation of reality through considering all aspects of

the decision-making process. We proposed two ranking

functions for converting trapezoidal neutrosophic numbers

to its equivalent crisp values. The first ranking function is

for maximization problems and the second-ranking func-

tion is for minimization problems. After using the suit-

able ranking function and transforming the problem to its

equivalent crisp model, then we solve the problem using

the standard methods. By comparing our proposed model

with other existing fuzzy models, we concluded that our

proposed model is simpler, efficient and achieve better

results than other researchers. It is also revealed that pro-

posed method is equivalently applied for solving with the

symmetric and non-symmetric trapezoidal numbers.

Table 10 Time capacity and

minimum production level
Departments Capacity (in hours) Products Minimum production level

Wiring g1500 P1 g150
Drilling g2350 P2 g100
Assembly g2600 P3 g300
Inspection g1200 P4 g400
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