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a b s t r a c t

In this paper, we introduce the multiple adaptive vacation policy and the general decre-
menting service rule based on the classical M/G/1 queueing systems, and obtain the
P.G.F. (Probability Generating Function) of stationary queue length by using the embedded
Markov chain method and regeneration cycle approach. Then, the LST (Laplace Stieltjes
Transform) of stationary waiting time is also derived according to the independence
between the waiting time and arrival process. At last some special cases are given to show
the general properties of the new model, and some numerical results are shown to com-
pare the mean queue length and waiting time of special cases.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Many researchers have developed multiple vacations and single vacation queueing systems, and obtained many perfor-
mance measures in those systems. For example, Cohen [1] studied many single server queues, and derived the P.G.F. of the
queue length and LST of waiting time, and analyzed the busy period of the system. Gross etc. [2] also studied some queueing
models, and analyzed performance measures. Tian [3] introduced a multiple adaptive vacation policy, and studied a multiple
adaptive vacation M/G/1 model with an exhaustive service rule, then the queueing models with multiple vacations and sin-
gle vacation were extended. Zhang and Tian [4] studied the discrete time queue model with multiple adaptive vacations, and
obtained the P.G.F. of the queue length and waiting time. Takagi [5] studied the general decrementing service M/G/1 queue
with multiple vacations, and obtained the P.G.F. of the stationary queue length and LST of the stationary waiting time, and
showed the stochastic decomposition results of the above indices. As the special case, Takagi [6] studied the mean customer
waiting time in a symmetric polling system, which is a pure decrementing service queueing system with multiple adaptive
vacations. Levy and Yechiali [7] studied the exhaustive service M/G/1 queue, which is the special case of the general decre-
menting service M/G/1 queue with multiple vacations.

Few researchers pay attention to the nonexhaustive service queueing system with the multiple adaptive vacation policy
by far now. The M/G/1 and Geom/G/1 gate service systems with multiple adaptive vacations and Geom/G/1 gate service sys-
tem with multiple adaptive vacation are studied in [8,9], which obtained the P.G.F. of the stationary queue length and LST of
waiting time, and analyzed the service period. In this paper, we study an M/G/1 queueing model with the general decrement-
ing service and the multiple adaptive vacations, and obtained the P.G.F. of the stationary queue length and LST of waiting
time. Our study shows that the general decrementing service queueing system with multiple vacations in [5,10] are special
cases of our model presented in this paper. Furthermore, we compare the system performances for pure decrementing ser-
vice queue with multiple vacations, the exhaustive service queue with multiple vacations and single vacation.
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The paper is organized as follows. In Section 2, we give the description of new model and its system parameters in detail.
In Section 3, we embed a Markov chain, and derive the customer number of the system at the completion instant of the vaca-
tion. We further deduce the P.G.F. of the stationary queue length and LST of the stationary waiting time, and show the sto-
chastic decomposition results of stationary measures. In Section 4, we present some numerical results. Concluding remarks
are given in Section 5.

2. Model description

In the classical M/G/1 queueing system, we introduced the general decrementing service policy [5] and the multiple adap-
tive vacations rule [3]. Firstly, we define the general decrementing service policy. Once the service period starts, the server
will keep on working until the number of customers in the system isM less than the number of customers at the start instant
of the service period, or until there is no customer in the system for the service. After the service period completion instant,
the server will take H vacations consecutively according to the assistant workload completed at present, and H is a positive
random variable with the probability distribution hj and the P.G.F. HðzÞ as follows:

PðH ¼ jÞ ¼ hj; j P 1; HðzÞ ¼
X1
j¼1

hjzj:

Each consecutive vacation time Vkðk ¼ 1;2; . . . ;HÞ is an independently and identically distributed (i.i.d.) random variable.
There are two cases as follows:

(1) For a natural number kð1 6 k 6 HÞ, if there are customers arrived during the kth vacation, the vacation period will
stop in advance at the kth vacation completion instant, then the system enters a new service period. When the
server finishes serving customers, the system enters the next vacation according to the general decrementing service
policy.

(2) If there are customers in the system at the Hth vacation completion instant, the server immediately serves some cus-
tomers according to the general decrementing service policy, then enters the vacation period. If there is no customer in
the system at the Hth vacation completion instant, the system enters an idle period, and waits for a new customer to
arrive. If a customer arrives during the idle period, the server will enter a service period immediately, and serves some
customers according to the general decrementing service. The system will continually repeat the above processes.

The basic assumptions of the new model are given as follows:

(1) Customers follow a Poisson arrival process with rate kð> 0Þ, which means that any neighbor interarrival time series
fsi; i P 1g are independently and identically negative exponential distribution FðtÞ ¼ 1� e�kt ; t P 0.

(2) Each customer’s requiring service time series fBi; i P 1g follow an independent and identically general distribution
BðtÞ; t P 0. The mean of service time, the second moment and LST are respectively denoted as follows:

0 < 1=l ¼
Z 1

0
tdBðtÞ; bð2Þ ¼

Z 1

0
t2dBðtÞ; B�ðsÞ ¼

Z 1

0
e�stdBðtÞ:

(3) Vacation time V is a nonnegative i.i.d. random variable with the general distribution VðxÞ, the first moment EðVÞ, the
second moment EðV2Þ and the LST v�ðsÞ. Suppose that there is a single server in this system, and its buffer capacity is
infinite. The interarrival time, the service time and the vacation time are mutually independent. The service order is
First Come First served (FCFS). The model is denoted by M/G/1 (GD, MAV), where GD and MAV represent the General
Decrementing service and the Multiple Adaptive Vacations respectively.

3. Analysis of system performance measures

For the general decrementing service M/G/1 queue, it will be studied by the embedded Markov chain method and the
regeneration cycle approach, and the regeneration cycle approach is shown as the following lemma. Let LðtÞv be queue length
process in M/G/1 (GD, MAV) queue.

Lemma 1. If LðtÞv is a positive recurrent process, the P.G.F. of the stationary queue length Lv is given by

LvðzÞ ¼
E
PU
n¼1

zLn
� �
EðUÞ ð1Þ

where Ln is the number of customers at the departure instant of the nth customer in one service period, and U is the number of
customers served in one service period.

The proof of Lemma 1 can be found in [5,10].
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3.1. Number of customers in the system at the vacation completion instant

Let Q ðnÞ
b be the number of customers in the system at the completion instant of the nth vacation, then fQ ðnÞ

b ;n P 1g is a
Markov chain, and its transition probabilities are given as follows:

Pjk ¼

vk�jþM; k P j�M > 0
ð1� Hðv�ðkÞÞÞvk; j 6 M; k 6¼ 1
ð1� Hðv�ðkÞÞÞvk þ Hðv�ðkÞÞ; j 6 M; k ¼ 1
0; j > M; k < j�M

8>>><
>>>:

ð2Þ

where

vj ¼
Z 1

0

ðkxÞj

j!
e�kxdVðxÞ; j P 0:

At the same time, let fqk; k P 0g be the steady state distribution of Markov chain fQ ðnÞ
b ;n P 1g, i.e.

qk ¼ lim
n!1

PðQ ðnÞ
b ¼ kÞ; k P 0:

The stationary probabilities satisfy the equilibrium equations as follows:

q0 ¼ v0ð1� Hðv�ðkÞÞÞ
XM
j¼0

qj; ð3Þ

q1 ¼ ðð1�Hðv�ðkÞÞÞv0 þ Hðv�ðkÞÞÞ
XM
j¼0

qj þ v0qMþ1; ð4Þ

qk ¼ ð1� Hðv�ðkÞÞÞvk
XM
j¼0

qj þ
XkþM

j¼Mþ1

vk�jþMqj; k P 2: ð5Þ

Define the P.G.F. and the partial P.G.F. of fqk; k P 0g

QbðzÞ ¼
X1
k¼0

qkz
k; QMðzÞ ¼

XM
k¼0

qkz
k:

Multiplying Eqs. (3)–(5) by z0; z; zk respectively, we can derive the P.G.F. QbðzÞ of fqk; k P 0g as follows:

QbðzÞ ¼ ð1� Hðv�ðkÞÞÞ
XM
j¼0

qj

X1
k¼0

vkzk þ Hðv�ðkÞÞz
XM
j¼0

qj þ v0zqMþ1 þ
X1
k¼2

zk
XkþM

j¼Mþ1

vk�jþMqj

¼ ð1� Hðv�ðkÞÞÞv�ðkð1� zÞÞQMð1Þ þ Hðv�ðkÞÞzQMð1Þ þ
X1
k¼1

zk
XkþM

j¼Mþ1

vk�jþMqj

¼ ðð1� Hðv�ðkÞÞÞv�ðkð1� zÞÞ þ Hðv�ðkÞÞzÞQMð1Þ þ
1
zM

v�ðkð1� zÞÞðQbðzÞ � QMðzÞÞ: ð6Þ

Solving Eq. (6), we have

QbðzÞ ¼
1

v�ðkð1� zÞÞ � zM
� ðv�ðkð1� zÞÞQMðzÞ � ðð1� Hðv�ðkÞÞÞv�ðkð1� zÞÞ þ Hðv�ðkÞÞzÞzMQMð1ÞÞ: ð7Þ

We can obtain the values of q0; q1; . . . ; qM by applying Rouche theorem and Lagrange theorem [11,12], so that we can give
the stochastic decomposition of the stationary performance measures in the steady state system.

3.2. Partial probability generation function QMðzÞ

If kEðVÞ < M, the denominator of the right hand side of Eq. (7) has M � 1 zeros z1; . . . ; zM�1, inside jzj ¼ 1, and these zeros
are given by Lagrange theorem as

zm ¼
X1
n¼1

e2pimn

n!
dn�1

dzn�1 v
�ðkð1� zÞÞjz¼0; m ¼ 1;2; . . . ;M � 1:

Because QbðzÞ is analytic onside jzj < 1, the numerator of the right hand side of Eq. (7) must also be zero at z1; . . . ; zM�1, i.e.
q0; q1; . . . ; qM satisfy the following set of equations
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XM
k¼0

v�ðkð1� zmÞÞzMm � ðð1� Hðv�ðkÞÞÞv�ðkð1� zmÞÞ þ Hðv�ðkÞÞzmÞzMm
� �

qk ¼ 0; m ¼ 1; . . . ;M � 1: ð8Þ

Using the normalization condition Qbð1Þ ¼ 1, we have

Q 0
Mð1Þ ¼

XM
k¼1

kqk ¼ kEðVÞ �M þ ðM þ Hðv�ðkÞÞð1� kEðVÞÞÞQMð1Þ: ð9Þ

Combining Eqs. (3), (8) and (9), theseM þ 1 coefficients of QMðzÞ are determined by a set ofM þ 1 linear equations, so QbðzÞ is
the known function.

3.3. Stochastic decompositions of the stationary queue length and waiting time

Theorem 1. If q < 1 and kEðVÞ < M, the stationary queue length Lv in M/G/1 (GD, MAV) queue can be decomposed into three
independent random variables:

Lv ¼ Lþ Ld þ Lr ;

where L is the stationary queue length in the classical M/G/1 queue, and the P.G.F. of L can be seen in [5], and the P.G.F. of the addi-
tional queue length Ld and Lr are given by

LdðzÞ ¼
1� Hðv�ðkÞÞz� 1�Hðv�ðkÞÞ

1�v�ðkÞ ðv�ðkð1� zÞÞ � v�ðkÞÞ

Hðv�ðkÞÞ þ 1�Hðv�ðkÞÞ
1�v�ðkÞ kEðVÞ

� �
ð1� zÞ

;

LrðzÞ ¼
b

ðv�ðkð1� zÞÞ � zMÞð1� v�ðkð1� zÞÞ þ Hðv�ðkÞÞðv�ðkð1� zÞÞ � ð1� v�ðkÞÞz� v�ðkÞÞÞ

�
� ðQMðzÞð1� v�ðkð1� zÞÞÞ � QMð1Þðð1� v�ðkð1� zÞÞÞzMþHðv�ðkÞÞðz� v�ðkð1� zÞÞÞð1� zMÞÞÞ

�
: ð10Þ

Proof. Let b be the mean number of customers served during a busy period in the classical M/G/1 queue, then we have

b ¼ 1
1� q

; ð11Þ

where the proof of Eq. (11) can be found in [5]. And let U be the number of customers served in a service period of the M/G/1
(GD, MAV). If Qb ¼ k;1 6 k 6 M, the length of the service period is k times of the length of a busy period in the classical M/G/
1 queue; If Qb ¼ k P M, the length of service period isM times of the length of a busy period in the classical M/G/1 queue. We
have

EðUÞ ¼ b
XM
k¼1

kqk þMb
X1

k¼Mþ1

qk ¼
1

1� q
Q 0

Mð1Þ þ
Mð1� QMð1ÞÞ

1� q

¼ 1
1� q

ðkEðVÞ �M þMð1� QMð1ÞÞ þ ðM þ Hðv�ðkÞÞð1� kEðVÞÞÞQMð1ÞÞ

¼ 1
1� q

ðkEðVÞ þ Hðv�ðkÞÞð1� kEðVÞÞQMð1ÞÞ: ð12Þ

In order to derive the P.G.F. of the stationary queue length by applying the regeneration cycle approach, we discuss
Eð
PU

n¼1z
Ln Þ, where Ln is the number of customers in the system at the departure instant of the nth customer in a service per-

iod, and we consider Last Come First Served (LCFS) discipline. If the busy period starts with j customers in the classical M/G/1
queue, j P 1, then Eð

PU
n¼1z

Ln Þ is given by

E
XU
n¼1

zLn
 !

¼ zj�1 ð1� zÞB�ðkð1� zÞÞ
B�ðkð1� zÞÞ � z

; j P 1: ð13Þ

If k 6 M, the service period starting with k customers can be decomposed into k standard M/G/1 busy periods starting with
kth, ðk� 1Þth, . . .,1th customer, respectively. Combining Eq. (13), we have

qk

Xk
j¼1

zj�1

 !
ð1� zÞB�ðkð1� zÞÞ
B�ðkð1� zÞÞ � z

¼ qkð1� zkÞB�ðkð1� zÞÞ
B�ðkð1� zÞÞ � z

: ð14Þ

If k > M, the service period is decomposed into M standard M/G/1 busy periods starting with kth, ðk� 1Þth, . . ., ðk�M þ 1Þth
customer respectively. Combining Eq. (13), we have
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qk

Xk
j¼k�Mþ1

zj�1

 !
ð1� zÞB�ðkð1� zÞÞ
B�ðkð1� zÞÞ � z

¼ qkðzk�M � zkÞB�ðkð1� zÞÞ
B�ðkð1� zÞÞ � z

: ð15Þ

According to Total Probability theorem, we have

E
XU
n¼1

zLn
 !

¼
XM
k¼1

qkð1� zkÞ þ
X1

k¼Mþ1

qkðzk�M � zkÞ
 !

B�ðkð1� zÞÞ
B�ðkð1� zÞÞ � z

¼ QMð1Þ � QMðzÞ þ ðz�M � 1ÞðQbðzÞ � QMðzÞÞ
B�ðkð1� zÞÞ � z

B�ðkð1� zÞÞ

¼ QMð1Þ � QbðzÞ þ z�MðQbðzÞ � QMðzÞÞ
B�ðkð1� zÞÞ � z

B�ðkð1� zÞÞ: ð16Þ

Substituting Eq. (7) into Eq. (16), we obtain

E
XU
n¼1

zLn
 !

¼ B�ðkð1� zÞÞ
B�ðkð1� zÞÞ � z

1
v�ðkð1� zÞÞ � zM

� ðQMðzÞð1� v�ðkð1� zÞÞÞ � QMð1Þðð1� v�ðkð1� zÞÞÞzM

þ Hðv�ðkÞÞðz� v�ðkð1� zÞÞÞð1� zMÞÞÞ: ð17Þ

Using the regeneration cycle approach, see Lemma 1, we have

LvðzÞ ¼
E
PU
n¼1

zLn
� �
EðUÞ

¼ ð1� qÞð1� zÞB�ðkð1� zÞÞ
B�ðkð1� zÞÞ � z

�
1� Hðv�ðkÞÞz� 1�Hðv�ðkÞÞ

1�v�ðkÞ ðv�ðkð1� zÞÞ � v�ðkÞÞ

Hðv�ðkÞÞ þ 1�Hðv�ðkÞÞ
1�v�ðkÞ kEðVÞ

� �
ð1� zÞ

� b
ðv�ðkð1� zÞÞ � zMÞð1� v�ðkð1� zÞÞ þ Hðv�ðkÞÞðv�ðkð1� zÞÞ � ð1� v�ðkÞÞz� v�ðkÞÞÞ

�
� ðQMðzÞð1� v�ðkð1� zÞÞÞ � QMð1Þðð1� v�ðkð1� zÞÞÞzMþHðv�ðkÞÞðz� v�ðkð1� zÞÞÞð1� zMÞÞÞ

�
¼ LðzÞLdðzÞLrðzÞ:

ð18Þ
where

b ¼ kEðVÞ þ Hðv�ðkÞÞð1� v�ðkÞ � kEðVÞÞ
kEðVÞ þ Hðv�ðkÞÞð1� kEðVÞÞQMð1Þ

;

therefore we obtain the P.G.F. of the stationary queue length in the system. h

The proof of Theorem 1 indicates that the additional queue length can be decomposed into two parts in M/G/1 (GD, MAV)
queue, where Ld is the additional queue length of M/G/1 (E, MAV), and Lr is the additional queue length which is caused by
the general decrementing service. Using L’Hospital rule, we easily obtain the mean EðLvÞ.

According to Theorem 1, and using the relationship between the queue length and the waiting time, we can obtain the
stochastic decomposition property for the stationary waiting time.

Theorem 2. If q < 1 and kEðVÞ < M, the stationary waiting time Wv can be decomposed into three independent random variables
in M/G/1 (GD, MAV) queue,

Wv ¼ W þWd þWr ;

where W is the stationary waiting time in the classical M/G/1 queue, the LST of W can be seen in [5], and the LST of additional delay
Wd and Wr are given by

W�
dðsÞ ¼

k� Hðv�ðkÞÞðk� sÞ � k 1�Hðv�ðkÞÞ
1�v�ðkÞ ðv�ðsÞ � v�ðkÞÞ

Hðv�ðkÞÞ þ 1�Hðv�ðkÞÞ
1�v�ðkÞ kEðVÞ

� �
s

;

W�
r ðsÞ ¼

b

kMv�ðsÞ�ðk�sÞM

kð1� v�ðsÞÞ þ Hðv�ðkÞÞðkðv�ðsÞ � v�ðkÞÞ � ð1� v�ðkÞÞðk� sÞÞ

 

� kMQM
k� s
k

� �
ð1� v�ðsÞÞ � QMð1Þðkð1� v�ðsÞÞðk� sÞM

�
þHðv�ðkÞÞðkð1� v�ðsÞÞ � sÞðkM � ðk� sÞMÞÞ

��
:

ð19Þ

Proof. In M/G/1 (GD, MAV) queue, the waiting time of a customer is independent of the arrival process of this customer after
its arrival instant in FCFS order. So the stationary queue length at the completion instant of a service is composed of the num-
ber of customers arrived during its waiting time Wv and its service time S, we have
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LvðzÞ ¼ W�
vðkð1� zÞÞB�ðkð1� zÞÞ: ð20Þ

The proof of Eq. (20) can be found in [5], and substituting LvðzÞ of Theorem 1 into Eq. (20), and letting s ¼ kð1� zÞ, we obtain

W�
vðsÞ ¼

ð1� qÞs
s� kð1� B�ðsÞÞ ð21Þ

�
k� Hðv�ðkÞÞðk� sÞ � k 1�Hðv�ðkÞÞ

1�v�ðkÞ ðv�ðsÞ � v�ðkÞÞ

Hðv�ðkÞÞ þ 1�Hðv�ðkÞÞ
1�v�ðkÞ kEðVÞ

� �
s

�
b

kMv�ðsÞ�ðk�sÞM

kð1� v�ðsÞÞ þ Hðv�ðkÞÞ kðv�ðsÞ � v�ðkÞÞ � ð1� v�ðkÞÞðk� sÞð Þ

 

� kMQM
k� s
k

� �
ð1� v�ðsÞÞ � QMð1Þðkð1� v�ðsÞÞðk� sÞM

�

þHðv�ðkÞÞðkð1� v�ðsÞÞ � sÞðkM � ðk� sÞMÞÞ
��

¼ W�ðsÞW�
dðsÞW

�
r ðsÞ: ð22Þ

Therefore, Eq. (19) is the LST of the additional delay. h

Similarly, deriving Eq. (21) and using L’Hospital rule, we easily obtain the mean EðWvÞ of the stationary waiting time in M/
G/1 (GD, MAV) queue.

Specially, when the positive random variable H follows the different distribution, we can obtain some concrete M/G/1
queue with vacations. For example, if H ¼ 1, this queueing system corresponds to the general decrementing service M/G/
1 queue with multiple vacations – M/G/1 (GD, MV); if H ¼ 1, it corresponds to the general decrementing service M/G/1
queue with single vacation – M/G/1 (GD, SV); if H follows another distributions (geometric distribution, Possion distribution,
etc.), it corresponds to another models. If M ¼ 1, this queueing system corresponds to M/G/1 (PD, MAV), if M ¼ 1, it corre-
sponds to M/G/1 (E, MAV), etc. The performance measures of these models all can be obtained by substituting derived
Hðv�ðkÞÞ, QMðzÞ and supposed M into Theorems 1 and 2.

4. Numerical results

In this section, we present some numerical results that provide insight into the system behavior. Using the equations pre-
sented in Section 3, we can numerically compare the performance measures of the systems for three different M/G/1 (GD,
MAV) queueing models: the pure decrementing service M/G/1 queue with multiple vacations, the exhaustive service M/
G/1 queue with multiple vacations and single vacation. Here we assume that the service time S and the time length V of
a vacation follow exponential distributions, i.e., S follows an exponential distribution with parameter l ¼ 0:8. V follows
an exponential distribution with parameter h ¼ 0:6. As we presented in Section 3, if H ! 1 and M ¼ 1, the model corre-
sponds to an M/G/1 (PD, MV) Queue. If H ! 1 and M ! 1, the model corresponds to an M/G/1 (E, MV) queue. If H ¼ 1
and M ! 1, the model corresponds to an M/G/1 (E, SV) queue. By using Eqs. (10) and (19), we can derive the mean queue
length and waiting time. Suppose that traffic intensity q ranges from 0.15 to 0.6.
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Fig. 1. Mean queue length EðLvÞ versus traffic intensity q.
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Fig. 1 shows the mean queue length EðLvÞ as a function of the traffic intensity qwith three cases of H, i.e., M/G/1 (PD, MV)
queue, M/G/1 (E, MV) queue andM/G/1 (E, SV) queue. We can find that when q increases, EðLvÞ increases to a high level for all
the cases. It is shown that the larger q is, the higher the possibility that there will be customers arriving during the server
cycle. We also note that the mean queue length EðLvÞ of M/G/1 (PD, MV) is larger than that of M/G/1 (E, MV) and M/G/1 (E,
SV). This is from the fact that the longer the vacation times are, the larger the mean queue length EðLvÞ will be. And because
when there are customers in M/G/1 queue with the pure decrementing service policy, the server can take vacations, the
mean queue length is larger than that of queueing model with the exhaustive service policy.

Fig. 2 shows how the mean waiting time EðWvÞ changes with the traffic intensity q for the three different cases of H, i.e.,
M/G/1 (PD, MV) queue, M/G/1 (E, MV) queue and M/G/1 (E, SV) queue. We can find that when q increases, EðWvÞ increases to
a high level. We can find that the greater q is, the higher the possibility that there will be customers arriving during the ser-
ver cycle, then the mean waiting time will be greater. We also note that the mean waiting time EðWvÞ of M/G/1 (PD, MV) is
longer than that of M/G/1 (E, MV) and M/G/1 (E, SV). There is the similar explanation with EðLvÞ. And because when there are
customers in M/G/1 queue with the pure decrementing service policy, the server can take vacations, the mean waiting time
is larger than that of queueing model with the exhaustive service policy.

5. Conclusion

We presented a detailed description on the general decrementing service queueing system with multiple adaptive vaca-
tions. We gave out the P.G.F. of the stationary queue length by using the embedded Markov chain method and the regener-
ation cycle approach, the LST of the waiting time according to the independence between the waiting time and the arrival
process, and their stochastic decomposition results. We also obtained the P.G.F. of the additional queue length and the LST of
the additional delay. At last we pointed out some special examples, which showed the universality of the queue system. In
the future research we will give the practical numerical examples and use these results in computer network.
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Fig. 2. Mean waiting time EðWvÞ versus traffic intensity q.
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