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Abstract Service composition in multi-Cloud environ-
ments must coordinate self-interested participants, automate
service selection, (re)configure distributed services, and deal
with incomplete information about Cloud providers and
their services. This work proposes an agent-based approach
to compose services in multi-Cloud environments for differ-
ent types of Cloud services: one-time virtualized services,
e.g., processing a rendering job, persistent virtualized ser-
vices, e.g., infrastructure-as-a-service scenarios, vertical ser-
vices, e.g., integrating homogenous services, and horizon-
tal services, e.g., integrating heterogeneous services. Agents
are endowed with a semi-recursive contract net protocol and
service capability tables (information catalogs about Cloud
participants) to compose services based on consumer re-
quirements. Empirical results obtained from an agent-based
testbed show that agents in this work can: successfully com-
pose services to satisfy service requirements, autonomously
select services based on dynamic fees, effectively cope with
constantly changing consumers’ service needs that trigger
updates, and compose services in multiple Clouds even with
incomplete information about Cloud participants.
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1 Introduction

Cloud computing is a collection of web-accessible re-
sources, provisioned under service-level agreements estab-
lished via negotiation, that should be dynamically composed
and virtualized based on consumers’ needs [11] on an on-
demand basis [50]. In addition, there is an increasing num-
ber of Cloud providers (e.g., GoGrid [14], Amazon [3], and
Google [18]) and the services offered by Cloud providers
(e.g., Software-as-a-Service applications [13] and comput-
ing resources [49]) have also increased. There are also
increasing demands for Cloud services from consumers.
Hence there is a need for dynamic and automated Cloud
service composition that can support an everything-as-a-
service model [31, 38] capable of satisfying complex con-
sumer requirements as they emerge. Due to this, Cloud ser-
vice composition in single and multiple Cloud-computing
environments must support: (i) coordination of indepen-
dent and self-interested parties, e.g., Cloud consumers and
service providers, (ii) service selection based on dynamic
market-driven fees associated to Cloud services (e.g., Ama-
zon EC2 spot instances [2]), (iii) efficient reconfiguration
of existent and permanent service compositions, given con-
stantly changing consumer requirements, (iv) dealing with
incomplete knowledge about the existence of Cloud partic-
ipants, and the services they provide, due to the distributed
nature of Cloud-computing environments, and (v) dynamic
and automated composition of distributed and parallel ser-
vices.

The new challenges that Cloud computing poses to
service composition, emphasizes the need for the agent
paradigm [15, 48, 52, 53]. Agents are independent prob-
lem solvers (e.g., Cloud participants) that may collaborate to
achieve global objectives (e.g., service composition) while
simultaneously considering both individual goals and con-
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straints (e.g., utility maximization) [52]. A multiagent sys-
tem is a collection of autonomous, interacting, and coopera-
tive agents [15, 53] that react to events (e.g., changes in con-
sumer requirements) and may self-organize by means of in-
teraction, negotiation (see [30]), coordination (see [34, 37]),
cooperation (see [16]), and collaboration (see [27]). In addi-
tion, in a multiagent system, an agent may have incomplete
information (e.g., information about Cloud providers and
their services) as well as an incomplete list of capabilities
(e.g., mapping consumer requirements to available Cloud
resources or offering for leasing Cloud resources) for solv-
ing a given problem (e.g., Cloud service composition) [48].
Moreover, agent-based approaches have proved to be effec-
tive and efficient in a comprehensive range of application
areas, from assisting humans in daily activities [9, 26, 33]
and processing natural language [36] to supporting Grid and
Cloud resource management [27, 41-45].

It was noted in [42—45] that agents are appropriate tools
for automating Cloud resource management such as au-
tonomous resource mapping and dealing with changing re-
quests of consumers. Agent-based Cloud computing—the
idea of adopting autonomous agents for managing Cloud
resources was first introduced and proposed in [42-45].
Whereas [44] presented the challenging problems in Cloud
resource management and some agent-based approaches for
solving these problems, [42] presented the idea of agent-
based Cloud commerce, and [43, 45] proposed a Cloud
negotiation model, including the negotiation protocols and
strategies of agents to facilitate the establishment of service-
level agreements among Cloud participants. This research is
among the earliest efforts, to the best of the authors’ knowl-
edge, in adopting an agent-based distributed problem solv-
ing approach for supporting Cloud service compositions.

Cloud service composition may be augmented in two di-
mensions [32]: Horizontal and vertical. Horizontal service
composition deals with the combination and integration of
heterogeneous services, e.g., storage, compute, cryptogra-
phy services, etc. Vertical service composition involves the
integration of homogenous services, e.g., augmenting stor-
age capacity by adding new storage data centers.

Cloud service composition may be carried out in two
modalities: One-time and persistent. One-time service com-
positions consider Cloud resources as functions, which re-
ceive consumer requirements as input parameters, and return
the corresponding output. Once the output is generated, no
link between consumers and providers remains, for instance,
a consumer submitting a rendering job. Persistent service
compositions create a virtualized service that is assumed to
be accessed/used by consumers for a (long) predefined time,
for instance, infrastructure-as-a-service scenarios. Both one-
time and persistent service compositions may be augmented
in horizontal and vertical dimensions.

Self-organizing systems are composed of entities or
agents that interact [25] to evolve and adapt the structure and

@ Springer

objective of the system according to incoming events [17].
Through interaction, agents receive feedback (e.g., service
fees) that determines the entities to be connected with (e.g.,
providers to be contracted). System events (e.g., submis-
sion of consumer requirements) are handled by surrounding
agents (e.g., Cloud consumers and broker agents) that repli-
cate their effects to interconnected and close agents (e.g.,
service providers). In this manner, the evolution of the sys-
tem is based on local rules that decentralize the management
of the design objective (e.g., service composition).

In this present research, a self-organizing agent-based
service composition method is proposed. Cloud participants
are represented by agents, and Cloud resources are wrapped
and controlled by agents. In addition, a set of agent be-
haviors to handle the coordination of self-interested parties
are defined. Agents are endowed with service capability ta-
bles (SCTs) to register and consult information about Cloud
services, Cloud participants, and their current status, e.g.,
unreachable, failed, busy, etc. In addition, a semi-recursive
contract net protocol (SR-CNP) enhanced with SCTs is de-
vised. The SR-CNP is based on the contract net proto-
col [46], which is a distributed problem solving technique
used for (i) task assignment and (ii) establishing service con-
tracts. In the contract net protocol, the task assignment takes
place among managers with tasks to be executed and con-
tractors capable of executing such tasks. Contractors may
charge (differently) for performing tasks. So, a negotiation
between managers and contractors is carried out by adopt-
ing a bidding scheme where managers announce tasks and
contractors submit bids on the announced tasks. Then, the
managers select the best bids and notify the decisions to all
the contractors, see [40] for an application example of the
contract net protocol. The SR-CNP not only combines the
features of SCTs and the contract net protocol, it also con-
siderably augments and extends the contract net protocol by
(1) selecting contractor agents based on SCTs to focus the
interaction with feasible contractors, i.e., service providers
capable of carrying out a given task, (ii) allowing agents
playing contractor roles to play multiple manager roles de-
rived from their involvement as contractors, (iii) propagat-
ing and integrating results obtained from the multiple in-
stantiations of manager roles in the context of the same pro-
tocol run, and (iv) reacting to failures by updating the sta-
tus of agents in the SCTs (e.g., agents sending failure mes-
sages are labeled as failed agents) and re-instantiating man-
ager roles with the remaining feasible participants. SR-CNP
is used to (i) cope with incomplete information about the
structure of distributed Cloud-computing environments, and
(i1) handling dynamic service fees. Self-organization capa-
bilities are integrated into agent behaviors to efficiently sup-
port constantly changing consumer requirements in persis-
tent service compositions. Horizontal and vertical Cloud ser-
vice compositions in both one-time and persistent modalities
are achieved in an autonomous and dynamic manner.
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The novelty and significance of this research is that, to the
best of the authors’ knowledge, it is the earliest effort in pro-
viding an agent-based approach for dealing with one-time,
persistent, vertical, and horizontal Cloud service composi-
tions. The novel features included in this paper are:

(1) Designing and implementing an agent-based testbed
that supports vertical, horizontal, one-time and persis-
tent service composition (Sect. 2).

(2) Deploying agent-based distributed problem solving
techniques in single and multiple Cloud-computing
environments, which are integrated into the SR-CNP
(Sect. 2.2) enhanced with SCTs (Sect. 2.1) for (i) cop-
ing with incomplete information and (ii) dynamic ser-
vice selection based on market-driven service fees.

(3) Integrating self-organization capabilities into agent be-
haviors (Sect. 3) to efficiently create and update Cloud
service compositions.

(4) Providing experimental evidence (Sect. 4) to demon-
strate the effectiveness of agent-based techniques in the
creation of horizontal, vertical, one-time, and persis-
tent Cloud service compositions by conducting exper-
iments: (i) To evaluate the self-organization capabilities
of agents. (i) To compare the proposed agent-based ser-
vice composition approach using SCTs, where agents
have incomplete information about Cloud participants,
and using a central directory with complete knowledge.
(iii)) To evaluate the reaction of agents to constantly

changing consumer requirements in persistent service
compositions.

In addition, Sect. 5 presents a comparison with related
work, and Sect. 6 includes some concluding remarks and
describes some future works.

2 Agent-based Cloud service composition architecture

The agent-based architecture (Fig. 1) is composed of six
elements: Service ontology, web services, resource agents
(RAs), service provider agents (SPAs), broker agents (BAs),
and consumer agents (CAs).

(1) Web services are interfaces to remote-accessible soft-
ware or (Cloud) resources.

(2) The service ontology (Fig. 1) provides the service spec-
ification that describes the functionality, input and out-
put of services. A web service is described by the re-
quirement it resolves, and the parameters of the re-
quirement correspond to the input of the service. The
service output is a set of parameters that results from
resolving the requirement. The locations of web ser-
vices are expressed as URI addresses. The follow-
ing is an example of a web service definition:
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<service>
<name> AllocatorService </name>

<location> http://api.server.com/allocatorService </location>

<requirement>
<name> allocateCPU </name>

<parameter> <type> I/O performance </type> <value> Level </value></parameter>
<parameter> <type> PlatformType </type> <value> Bits </value> </parameter>

</requirement>
<output>

<parameter><type>URIlocation</type><value>http://api.server.com/cpu32</value></parameter>

</output>
</service>

(3) Resource agents orchestrate web services and control
the access to them. RAs receive requests to resolve re-
quirements from service providers. Then, RAs handle
the requests via their associated web service, returning
the output to the service provider. In addition, RAs are
used to orchestrate web services and control the access
to them to adopt W3C’s standpoint that in [54] states
that web services should be implemented by agents.

(4) Service provider agents manage Cloud providers’ re-
sources by controlling and organizing RAs. This func-
tion is divided into: (i) offering for leasing Cloud re-
sources to brokers, (ii) allocating/releasing Cloud re-
sources whenever transactions are agreed, (iii) direct-
ing and delegating brokers’ requirements to appropri-
ate RAs, (iv) keeping track of available resources, (v)
synchronizing the execution of concurrent and parallel
RAs, and (vi) establishing service contracts with bro-
kers. In addition, SPAs’ functions are designed to en-
dow SPAs with capabilities to act on behalf of Cloud
providers.

(5) Broker agents compose and provide a single virtu-
alized service to Cloud consumers. This is achieved
through: (i) receiving consumer requirements, (ii) se-
lecting and contacting a set of possibly heterogeneous
service providers, (iii) managing parallel agent conver-
sation contexts that have effect on one or more service
contracts (service-level agreements), and (iv) handling
consumers’ update requests of persistent service com-
positions. In addition, since Cloud service composition
can be carried out in multi-Cloud environments, BAs act
as an intermediary between Cloud consumers and SPAs
to compose and provide a single virtualized service to
Cloud consumers from multiple Cloud providers.

(6) Consumer agents’ functions are: (i) receiving and map-
ping consumer requirements to available Cloud resource
types, (ii) submitting service composition requests to
BAs, (iii) selecting the best (cheapest) BA, (iv) receiv-
ing and handling the single virtualized service provided
by BAs to Cloud consumers, and (v) submitting update
requests of persistent service compositions to contracted
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BAs. In addition, CAs’ functions are designed to endow
CAs with capabilities to act on behalf of Cloud con-
Sumers.

2.1 Service capability tables (SCTs)

SCTs are used by agents to register and consult information
about Cloud participants, Cloud services, and their status,
e.g., (i) whether a service is able to perform one of its ca-
pabilities at a given moment for the context of a Cloud ser-
vice composition and (ii) whether the service is busy, etc.
Whereas using SCTs to record Cloud service capabilities
relates to the idea of using acquaintance networks [24], to
record a list of acquainted agents and their functionalities,
SCTs and acquaintance networks differ in (i) the informa-
tion stored, SCTs extends acquaintance networks by keep-
ing records of the status of agents, which are modified as a
result of agent interaction, (ii) SCTs are more volatile, i.e.,
the status of agents is constantly updated as agent interac-
tion takes place, unlike acquaintance networks that may be
updated only when new agents enter to a system.

Agents may be included in SCTs because of previous en-
counters, recommendation lists, or merely because they can
see each other, e.g., agents in the same Cloud. SCTs are
dynamic, exact and incomplete: dynamic, because agents
can be removed or added; exact, because the agents’ ad-
dresses and functionalities are correct; and incomplete, be-
cause agents may be unaware of the full list of existent
agents.

The functionalities of agents are represented by the con-
sumer requirements they resolve. Thus, the records of SCTs
are composed of: (i) agents’ addresses, (ii) the requirements
that agents can resolve, and (iii) the last known status of the
service.

Each CA has one SCT that records a set of BAs’ ad-
dresses and their status. However, the functionalities of BAs
are left unspecified given that BAs are designed to resolve
any set of Cloud requirements through collaboration with
other agents. The possible status types for BAs are: avail-
able, unreachable, and failed. A BA is (i) available when it



Agent-based Cloud service composition

responds to CAs’ requests, (ii) unreachable when it doesn’t
respond to CAs’ requests, and (iii) failed when it is unable
to satisfy CA’s requests even though it has the capabilities to
do so.

Each BA has two SCTs that record information about
SPAs and other BAs. The SCT of service providers records:
(1) the address of providers, (ii) the list of requirements that
the providers can resolve, and (iii) the status of providers.
The SCT of BAs only records other BAs’ addresses and
their status, similar to the CAs’ case. When a BA receives
a request to carry out a Cloud service composition, if it is
possible, the BA contracts its SPAs, otherwise the BA sub-
contracts services to other BAs for fulfilling the unresolved
requirements (details are given in Sect. 3.2). The possible
status types for both BAs and SPAs are: available, unreach-
able, and failed.

Each SPA has two SCTs that record information about
RAs and other SPAs. The SCT of RAs is complete (un-
like the previous SCTs) given that SPAs are aware of the
Cloud resources they provide. The SCT of RAs is used to
delegate unresolved requirements to appropriate RAs, and
it can be updated as providers acquire or remove Cloud re-
sources. The SCT with information about SPAs is used to
subcontracting services to other SPAs. A SPA may subcon-
tract services to other SPAs when (i) its RAs fail, and (ii)
when its RAs, as the normal process of resolving a given
requirement, request from its SPA the fulfillment of an ex-
ternal requirement. For example, RAs contained in storage
service providers may ask for cryptographic services. This
was adopted from the object-oriented approach, to allow
the abstraction and encapsulation of SPAs’ functions, and
whenever uncommon, but previously considered require-
ments come out, SPAs can collaborate with each other to
resolve interrelated requirements. The possible status types
for RAs are: available, unreachable, failed, and busy. An
RA is busy when it is executing a task previously assigned
by its SPA.

2.2 The semi-recursive contract net protocol (SR-CNP)

A problem whose solution can be obtained from the solution
to smaller instances of the same problem is a recursive prob-
lem [19]. An agent interaction protocol is a communication
pattern established among agents with potentially different
roles to attain a design objective [6]. Then, a semi-recursive
(i.e., to some extent recursive) agent interaction protocol is
a protocol that attains its design objective (e.g., composing
a set of Cloud consumer requirements) by re-instantiating
its communication pattern within itself to solve smaller in-
stances of its design objective (e.g., composing a subset of
the Cloud consumer requirements).

The underlying structure of SR-CNP (as a semi-recursive
agent interaction protocol) is based on (recursive calls of)
the contract net protocol [46], which is a distributed prob-
lem solving technique used for establishing service contracts
among consumers and contractors. The contract net protocol
was selected as the underlying structure of SR-CNP because
it allows a cost-based Cloud resource selection from a het-
erogeneous set of Cloud providers.

Agents in the contract net protocol have two roles: initia-
tor and participant. A consumer adopting the initiator role
broadcasts a call-for-proposals to achieve a task (e.g., ser-
vice composition) to n participants (contractors). The partic-
ipants may reply with: (i) a proposal (quotation) to carry out
the task, or (ii) a refuse message. From the received m pro-
posals, the initiator selects the best (cheapest) proposal, and
sends: (i) an accept-proposal message to the best participant,
and (ii) reject-proposal messages to the remaining m — 1
contractors. After carrying out the task, the selected partici-
pant sends either: (i) an inform-result message or (ii) a fail-
ure message in case of unsuccessful results.

The SR-CNP extends the contract net protocol by (i) fo-
cusing the contracting process, interacting only with feasible
contractors, e.g., service providers capable of carrying out
a given task, (ii) allowing agents playing participant roles
to play multiple initiator roles derived from their involve-
ment as participants (contractors), e.g., accepting to perform
a set of jobs (Cloud requirements) as a participant, creates
multiple and concurrent instantiations of initiator roles to
subcontract as many contractors as needed to execute each
job (Cloud requirement), (iii) propagating and integrating
results obtained from the multiple instantiations of initiator
roles in the context of the same protocol run (Cloud ser-
vice composition), and (iv) reacting to failures by updating
the status of agents in the SCTs (e.g., agents sending failure
messages are labeled as failed agents) and re-instantiating
initiator roles with the remaining feasible participants.

The SR-CNP follows a divide-and-conquer strategy that
allows agents (with incomplete but complementary informa-
tion about the Cloud-computing environment) to work to-
gether to achieve a complex objective (e.g., Cloud service
composition). In addition, agents adopting the SR-CNP can
select and contract services based on dynamic fees.

In a given context, CAs, BAs, and SPAs can adopt the
SR-CNP initiator role, but only BAs and SPAs can take the
role of participant (details are given in Sect. 3).

3 Agent behaviors
The tasks that agents can perform are defined as behaviors.
In implementation terms, an agent is defined as a single ex-

ecution thread in which a set of behavior objects are instan-
tiated. Each agent behavior handles an agent task that may
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Table 1 Summary of agent behaviors

Agent Behavior identifier

Main function

To submit call-for-proposals to resolve requirements to SPAs and service composition requests to other BAs

CA SR-CNPinitiatorCA To submit service composition call-for-proposals to BAs
ServiceAugmenterCA To submit requests for incremental updates
ServiceRevokerCA To submit requests for subtractive updates
ContractChangeMonitor To receive expired contracts’ notifications

BA SR-CNPparticipantBA To handle consumers’ service composition requests either from CAs or other BAs
SR-CNPinitiatorBA
ResultHandlerBA To virtualize the service composition
ServiceRevokerBA To submit requests for subtractive updates
ContractChangeMonitor To receive expired contracts’ notifications

SPA SR-CNPparticipantSPA To handle BAs’ and/or other SPAs’ service requests
ReqAssignerSPA To assign requirements to RAs
IntermediarySPA To handle requests to resolve requirements from RAs
SR-CNPinitiatorSPA To submit call-for-proposals to resolve requirements to SPAs
ResultHandlerSPA To receive results from both RAs and contracted SPAs

ServiceRevokerSPA

To carry out subtractive updates

J.O. Gutierrez-Garcia, K.M. Sim

ContractExpirationMonitor To detect expired contracts

RA MainStructureRA
RequesterRA

ReleaserRA To release Cloud resources

To resolve requirements by orchestrating a web service

To request external requirements to SPAs

be activated in response to different events (e.g., reception
of a call-for-proposals message). To handle multiple con-
current actions, a set of behaviors can be added, stopped or
removed from a pool of agent behaviors. A set of agent be-
haviors is defined for each type of agent: CAs, BAs, SPAs,
and RAs. See Table 1 for a summary of agent behaviors and
their functions.

CAs, BAs, SPAs, and RAs interact among each other to
compose and manage persistent, one-time, vertical, and hor-
izontal Cloud services by adopting diverse agent behaviors
(Fig. 2).

CAs interact with BAs (Fig. 2) by adopting (i) a SR-
CNPinitiatorCA behavior (the initiator role of SR-CNP)
to submit service composition requests, (ii) a ServiceAug-
menterCA behavior to submit requests for incremental up-
dates, (iii) a ServiceRevokerCA behavior to submit requests
for subtractive updates, and (iv) a ContractChangeMonitor
behavior to receive expired contracts’ notifications.

BAs interact with CAs, other BAs, and SPAs (Fig. 2).
BAs interact with CAs (Fig. 2) by adopting (i) a SR-
CNPparticipantBA behavior (the participant role of SR-
CNP) to handle and bid for CAs’ service composition re-
quests, and (ii) a ResultHandlerBA behavior to deliver sin-
gle virtualized Cloud services. BAs interact with other BAs
(Fig. 2) by adopting (i) a SR-CNPinitiatorBA behavior (the
initiator role of SR-CNP) to submit service composition re-
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quests when subcontracting services is required, (ii) a SR-
CNPparticipantBA behavior (the participant role of SR-
CNP) to handle and bid for other BAs’ service composi-
tion requests, (iii) a ResultHandlerBA behavior to receive
outcomes from other BAs fulfilling requirements, and (iv)
a ContractChangeMonitor behavior to send expired con-
tracts’ notifications to other BAs. BAs interact with SPAs
(Fig. 2) by adopting (i) a SR-CNPinitiatorBA behavior to
submit call-for-proposals to resolve requirements, (ii) a Re-
sultHandlerBA behavior to receive outcomes from SPAs
fulfilling requirements, (iii) a ServiceRevokerBA behavior
to submit requests for subtractive updates, and (iv) a Con-
tractChangeMonitor behavior to receive expired contracts’
notifications.

SPAs interact with BAs, other SPAs, and RAs (Fig. 2).
SPAs interact with BAs (Fig. 2) by adopting (i) a SR-
CNPparticipantSPA behavior (the participant role of SR-
CNP) to handle and bid for BAs’ service composition re-
quests, (ii)) a ResultHandlerSPA behavior to deliver out-
comes from RAs fulfilling requirements, (iii) a Service-
RevokerSPA behavior to handle requests to release Cloud
resources, and (iv) a ContractChangeMonitor behavior to
send expired contracts’ notifications. SPAs interact with
other SPAs (Fig. 2) by adopting (i) a SR-CNPinitiatorSPA
behavior (the initiator role of SR-CNP) behavior to sub-
mit call-for-proposals to resolve requirements to SPAs
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Fig. 2 Interaction diagram of agent behaviors

when subcontracting services are required, (ii) a SR-
CNPparticipantSPA behavior (the participant role of SR-
CNP) behavior to handle and bid for other SPAs’ requests
to resolve requirements, (iii) a ResultHandlerSPA behav-
ior to receive outcomes from other SPAs fulfilling require-
ments, (iv) a ServiceRevokerSPA behavior to handle requests
to release Cloud resources, and (v) a ContractChange-
Monitor behavior to send expired contracts’ notifications
to other SPAs. SPAs interact with RAs (Fig. 2) by adopt-
ing (i) a RegAssignerSPA behavior to assign requirements to
RAs, (ii) a ResultHandlerSPA behavior to receive outcomes
from RAs fulfilling requirements, (iii) an IntermediarySPA
behavior to handle requests to resolve requirements from
RAs, (iv) a ServiceRevokerSPA behavior to submit requests
to release Cloud resources, and (v) a ContractExpiration-
Monitor behavior to submit requests to release Cloud re-
sources.

RAs interact with SPAs (Fig. 2) by adopting a (i) Main-
StructureRA behavior to resolve Cloud requirements and de-
liver the outcome to SPAs, (ii) a RequesterRA behavior to re-
quest requirements to SPAs, and (iii) a ReleaserRA behavior
to receive requests to release Cloud resources.

3.1 Consumer agent behaviors

CAs are endowed with four behaviors: SR-CNPinitiatorCA,
ServiceAugmenterCA, ServiceRevokerCA, and Contract-
ChangeMonitor.

The SR-CNPinitiatorCA behavior (Behavior 1) is for de-
composing and mapping consumer requirements to atomic
requirements (line 1). In addition to submitting service com-
position requests to BAs (line 2), which are obtained from
the SCT, the selection of BAs is based on the best (cheapest)
proposal (line 4). Once a BA is selected, a contract (service-
level agreement) is established between both parties (line 7),
and the CA waits for the single virtualized service to be de-
livered (line 8). Finally, the virtualized service is ready to be
consumed (line 9).

Two important timeouts are involved in the SR-CNP:
timeoutl and timeout2. The timeoutl (line 3) refers to the
proposal submission deadline, while timeout2 (line 8) refers
to the deadline to deliver the single virtualized service com-
position. If any of the two deadlines are missed, exceptions
are thrown (lines 12 & 15), the contract is removed and the
status of the BA is changed to failed (line 11) or unreachable
(line 14), and the behavior is halted.
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Behavior 1 SR-CNPinitiatorCA

Input: (i) Consumer requirements (ii) contractors (BAs)
Output: (i) A single virtualized service

1 decomposing requirements into atomic requirements

2 CA sends call-for-proposals to resolve requirements to m feasible BAs recorded in the SCT
3 if (BlockReceive(Proposals, timeoutl)) then

4. evaluate proposals

5: CA sends reject-proposal to (nProposals-1) BAs

6: CA sends accept-proposal to 1 BA

7 create contract between CA and BA

8 if (BlockReceive(virtualized service, timeout2)) then

9: consume virtualized service

10: else

11: remove contract and Update status of the BA to failed in the SCT.
12: throw exception

13:  Else

14: update status of the BAs to unreachable in the SCT.

15: throw exception

Behavior 2 ServiceAugmenterCA

Input: (i) New consumer requirements (ii) contract ID
Output: (i) An augmented single virtualized service

decomposing new requirements into atomic requirements
BA <« get previously contracted BA based on contract ID
CA sends call-for-proposals to resolve new requirements to the previously contracted BA

if (BlockReceive(Proposal, timeoutl)) then

if (proposal is accepted) then
CA sends accept-proposal to BA

update the contract with the newly contracted requirements
if (BlockReceive(virtualized service, timeout2)) then

1

2

3

4:

5: evaluate proposal
6 .

7

8

9

10: consume virtualized service

11: else

12: revoke changes to the contract and Update status of the BA to failed in the SCT
13: throw exception

14: else

15: CA sends reject-proposal to BA

16: else

17: update status of the BA to unreachable in the SCT

18: throw exception

CAs can update requirements for persistent service com-
positions. There are two types of updates: incremental and
subtractive.

Incremental updates are carried out using the ServiceAug-
menterCA behavior (Behavior 2). To update the require-
ments for a service composition, its corresponding contract
identifier should be provided as well as the new require-
ments to be added (line 1). The ServiceAugmenterCA be-
havior follows a similar structure to the SR-CNPinitiatorCA
behavior, because CAs should receive a quotation that indi-
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cates the cost derived from updating requirements of service
compositions. The modifications in the behavior are: (i) the
call-for-proposals message is sent only to the contracted BA
(lines 2 & 3), because contracting a different BA implies
moving the existent persistent composition, and it could be
computationally expensive and impractical, and (ii) the new
clauses are added to the service contract (line 8).
Subtractive updates are carried out using the ServiceRe-
vokerCA behavior (Behavior 3). To remove requirements
from a service composition, its corresponding contract iden-
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Behavior 3 ServiceRevokerCA

Input: (i) Consumer requirements to be removed R (ii) contract ID

Output (1) A reduced single virtualized service

if (BlockReceive(Acknowledgement, timeout)) then

else

AR A Sl ey

throw exception

update status of the BA to unreachable in the SCT

BA <« get previously contracted BA based on contract ID
CA sends request to remove R requirements to the BA

update contract by removing the clauses linked to the requirements

Behavior 4 SR-CNPparticipantBA

Input: (i) call-for-proposals from CAs or other BAs to resolve R
Output: (i) Instantiation of SR-CNPinitiatorBA behaviors or (ii) refuse message

1 if (BlockReceive(call-for-proposals(R))) then

2 reqsSPAs <« get requirements that can be fulfilled by feasible SPAs from R

3 reqsBAs < get requirements that can be fulfilled by feasible BAs from R

4 if (all the requirements can be fulfilled by either BAs or SPAs recorded in SCTs) then
5: BA sends Proposal to initiator

6 if (BlockReceive(reply, timeout)) then

7 if (proposal is accepted) then

8: create contract between the BA and either CAs or other BAs

9: SPAcontractors <— getFeasible Agts(SPAs, reqsSPAs)

10: contract SPAs by adopting SR-CNPinitiatorBA (SPAcontractors, reqsSPAs)
11: if (it is necessary to subcontract services to other BAs) then

12: BAcontractors <— getFeasibleAgts(BAs, reqsBAs)

13: contract BAs by adopting SR-CNPinitiatorBA (BAs, reqsBAs)

14: else

15: start over

16: else

17: start over

18: else

19: BA sends refuse message to initiator

20: start over

tifier should be provided as well as the requirements to be
removed. The CA sends a request to reduce the virtualized
service (line 2) to the contracted BA (line 1). Then, the CA
waits for an acknowledgement message (line 3), and if it is
received, the CA updates its contract (line 4), otherwise it
updates the status of the BA in the SCT to unreachable and
throws an exception (lines 6 & 7).

In persistent service compositions, Cloud resources are
reserved for long periods of time, e.g., infrastructure-as-a-
service scenarios. If expired contracts are detected, a noti-
fication is sent to the corresponding consumer. Then, to re-
ceive contracts’ expiration notifications a ContractChange-
Monitor behavior is integrated into CAs. When a notifica-
tion derived from expired contracts is received, the asso-
ciated contract is updated. An explicit definition of Con-

tractChangeMonitor behavior is omitted due to the fact that
its description is straightforward enough to be implemented.

3.2 Broker agent behaviors

BAs are endowed with four main behaviors: SR-
CNPparticipantBA, SR-CNPinitiatorBA, ResultHandlerBA,
ServiceRevokerBA, and ContractChangeMonitor.

The SR-CNPparticipantBA behavior (Behavior 4) is
based on the participant role of the SR-CNP. Its main func-
tion is to handle consumers’ service composition requests
either from CAs or other BAs (as explained in Sect. 2.1).
Service composition requests consist of a set of consumer
requirements. When a BA receives a call-for-proposals to
carry out a service composition (line 1), the BA deter-
mines whether the requirements can be resolved by its SPAs
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Behavior 5 SR-CNPinitiatorBA

Input: (i) Contractors (BAs or SPAs) and (ii) set of requirements R
Output: (i) Instantiation of a ResultHandlerBA behavior or (ii) failure propagation
The BA marks the set of requirements R as handled by it.
BA sends call-for-proposals to resolve R requirements to m Contractors recorded in SCTs

if (BlockReceive(Proposals, timeoutl)) then
evaluate proposals

BA sends accept-proposal to 1 Contractor

create a ResultHandlerBA (R) behavior to virtualize the service composition
create a ServiceRevokerBA (R) behavior to allow subtractive updates

else

1
2
3
4.
5: BA sends reject-proposal to (nProposals-1) Contractors
6.
7
8
9

10: remove contract and update status of the Contractors to unreachable in the SCT

11: BA sends failure(R) message to requester

recorded in the SCT (line 2) and/or whether some require-
ments should be submitted to other BAs (line 3) when sub-
contracting is required. If all the requirements can be re-
solved by the current set of agents recorded in the SCTs
(line 4), a proposal is sent to the initiator (line 5), other-
wise the BA sends a refuse message (line 19). If the pro-
posal is accepted (line 7), the BA establishes a contract with
the consumer and instantiates parallel SR-CNPinitiatorBA
behaviors for delegating the requirements (lines 8—13). As
indicated in lines 9-11, the delegation of requirements to
SPAs has priority over the delegation to BAs, because sub-
contracting is assumed to be computationally expensive.
The SR-CNPinitiatorBA behavior (Behavior 5) is based
on the initiator role of the SR-CNP. Its main function is to
contract service providers (either SPAs or BAs). The inputs
(contractors and requirements) are previously determined in
the SR-CNPparticipantBA behavior that instantiated the be-
havior. As the first step of the SR-CNPinitiatorBA behavior,
the requirements to be delegated, are marked by the BA (line
1) to prevent cyclic nested contracts, e.g., agent a contract-
ing agent b, b contracting ¢, and ¢ contracting a. In addi-
tion, the marking of requirements, results in the reduction
of messages exchanged in some situations, as analyzed in
the empirical evaluation of the testbed in Sect. 4.1, Observa-
tion 5. In difference to the initiator role of the SR-CNP, the
ResultHandlerBA (line 7) and ServiceRevokerBA (line 8) be-
haviors are instantiated when a proposal is selected (line 4).
The main function of the ResultHandlerBA behavior (Be-
havior 6) is to virtualize the service composition. The in-
put corresponds to results derived from resolving previously
delegated requirements. If the requirement was successfully
resolved (line 2), its corresponding contract is updated (line
3) to record the progress of the service composition. If the
service composition is complete (line 4), the service is vir-
tualized and delivered (line 5), otherwise the BA waits for
the remaining unresolved requirements with the remain-
ing associated ResultHandlerBA behaviors. If the fulfillment
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of some requirements fail (line 6), the agent that failed is
marked as failed in its corresponding SCT (line 7). Then, the
unresolved requirements are reassigned to remaining feasi-
ble providers (lines 8-16) instantiating SR-CNPinitiatorBA
behaviors. If there is no feasible provider, the contract is can-
celled, and the failure is propagated (lines 19 & 20).

The ServiceRevokerBA behavior (Behavior 7) is created
whenever a service composition is started. Its function is
to allow subtractive updates. To update requirements of a
service composition, its corresponding contract identifier
should be provided as well as the requirements to be re-
moved. A service composition can be reduced or simply
removed (line 7), if all its requirements are provided. The
subtractive process starts when a request to remove require-
ments is received (line 1). Then, the BA sends an acknowl-
edgement message to the requester. Given that BAs may use
several providers (SPAs or other BAs) to complete a service
composition, removal requests are sent to each associated
provider (lines 4 & 5). Finally, if an acknowledgement mes-
sage is received, the contract associated to the service com-
position is updated (line 7).

In persistent service compositions, Cloud resources are
reserved for long periods of time, e.g., infrastructure-as-a-
service scenarios. So, similarly to CAs, a ContractChange-
Monitor behavior is integrated into BAs to receive contracts’
expiration notifications from either other BAs or SPAs, if an
expiration notification is received, the notification is prop-
agated to the corresponding consumer either other BAs or
CAs. An explicit definition of ContractChangeMonitor be-
havior is omitted due to the fact that its description is
straightforward to be implemented.

3.3 Service provider agent behaviors

SPAs are endowed with eight main behaviors: SR-
CNPparticipantSPA, ReqgAssignerSPA, IntermediarySPA,
SR-CNPinitiatorSPA, ServiceRevokerSPA, ResultHandler
SPA, and ContractExpirationMonitor.
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Behavior 6 ResultHandlerBA

Input: (i) Outputs of requirements
Output: (i) Result propagation or (ii) failure propagation

1 if (BlockReceive(result, timeout2)) then

2 if (it is an outcome of a fulfilled requirement) then

3 fulfill the contract clause of the corresponding requirement’s contract

4 if (all the clauses of the contract are fulfilled) then

5: deliver virtualized service to its requester

6 else-if (it is a failure) then

7 update status of the agent to failed in the SCT

8 failedRequirements <— unpack the failed Requirements from result message

9: reqsSPAs <« get requirements that can be fulfilled by SPAs from failedRequirements
10: reqsBAs < get requirements that can be fulfilled by BAs from failedRequirements
11: if (all the requirements can be fulfilled by either BAs or SPAs recorded in SCTs) then
12: SPAcontractors <— getFeasible Agts(SPAs, reqsSPAs)

13: contract SPAs by adopting SR-CNPinitiatorBA (SPAcontractors, reqsSPAs)
14: if (it is necessary to subcontract services to other BAs ) then

15: BAcontractors < getFeasibleAgts(BAs, reqsBAs)

16: contract BAs by adopting SR-CNPinitiatorBA (BAs, reqsBAs)

17: start over

18: else

19: remove contract

20: BA sends failure(R) message to requester

21:  else

22: remove contract and update status of the agent to failed in the SCT

23: BA sends failure(R) message to requester

Behavior 7 ServiceRevokerBA

Input: (i) Consumer requirements to be removed R and (ii) contract ID

Output: (i) A reduced single virtualized service

if (BlockReceive(request to remove R requirements)) then

BA sends acknowledgement message to requester

for (all requirements R; to be removed) do

provider < get previously contracted provider based on contract ID and R;

if (BlockReceive(Acknowledgement, timeout)) then

update contract by removing requirement R;

else

1
2
3
4
5: BA sends request to remove requirement R; to provider
6
7
8
9

update status of provider to failed in the SCT

10: throw exception
11: start over

The SR-CNPparticipantSPA behavior (Behavior 8) is
based on the participant role of the SR-CNP. The main dif-
ference with previous participant roles is that when a pro-
posal is accepted (line 4), a ReqAssignerSPA behavior is in-
stantiated (line 6) to delegate the acquired requirement to
appropriate RAs.

The RegAssignerSPA behavior (Behavior 9) assigns re-
quirements to available and appropriate RAs. First, it is ver-
ified whether feasible (working) RAs exist to handle the

given requirement (line 1). Then, if RAs are available, the
requirement is delegated (lines 3 & 4) and the status of the
RA is changed to busy in the SCT of RAs (line 5). In ad-
dition, a ResultHandlerSPA behavior is instantiated to catch
the output (line 6). If there is no available RA, the behavior
holds until an RA is available (line 8). This handles the use
of resources that are concurrently accessed as well as allow-
ing service providers with scarce resources handling heavy
loads of service requests.
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Behavior 8 SR-CNPparticipantSPA

Input: (i) call-for-proposals from BAs or other SPAs to resolve r

Output: (i) Instantiation of a ReqAssignerSPA behavior
if (BlockReceive(call-for-proposals(r))) then
SPA sends Proposal to initiator
if (BlockReceive(reply, timeout)) then
if (proposal is accepted) then

create contract between the SPA and either BAs or other SPAs

create a ServiceRevokerSPA(r) behavior to allow subtractive updates

start over
else
0: start over

1

2

3

4

S

6: delegate requirement r to RAs by adopting a ReqAssignerSPA(r) behavior
7

8

9

1

Behavior 9 ReqAssignerSPA

Input: (i) Requirement r to be resolved (ii) contract ID

Output: (i) Instantiation of a ResultHandlerSPA behavior or (ii) failure propagation

1 if (there are RAs that can fulfill requirement r in the SCT) then
2 if (there is an available RA that can handle r) then

3 RA <« get an available RA that can handle requirement
4 SPA sends request to resolve requirement r to the RA

5: update status of the RA to busy in the SCT.

6: create a ResultHandlerSPA (r) to receive the result

7 else

8 BlockUntil(there is an available RA that can handle r)

9: start over

10:  else

11: update contract by removing the clause linked to requirement r
12: SPA sends failure(r) message to requester

Behavior 10 IntermediarySPA

Input: (i) Request to resolve an internal/external requirement r
Output: (i) Instantiation of ReqAssignerSPA behavior or (ii) Instantiation of SR-CNPinitiatorSPA behavior
if (BlockReceive(request to delegate requirement r)) then

if (there are RAs that can fulfill requirement r) then

create a ReqAssignerSPA (r) behavior to delegate the requirement internally
else-if (there are SPAs recorded in the SCT that can fulfill requirement r) then

SPAcontractors <— getFeasibleAgts(SPAs, )

contract SPAs by adopting a SR-CNPinitiatorSPA (SPAcontractors, r) behavior

else

SPA sends failure(r) message to requester (RA)

1

2

3

4.

5: create contract
6 .

7

8

9

1

0: start over

The IntermediarySPA behavior (Behavior 10) handles re-
quests to resolve internal and external requirements from
RAs. A requirement is internal when there is a sibling RA
(an RA belonging to the same SPA) that can resolve the re-
quirement (lines 2 & 3). A requirement is external when no
sibling RA can resolve the requirement, and another SPA
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should be contracted (lines 4-7). This is to favor encap-
sulation and abstraction as explained in Sect. 2.1. The SR-
CNPinitiatorSPA behavior (line 7) is similar to Behavior 5
of BAs, hence its description is omitted.

The coordination of RAs in such a manner allows simpler
RA definitions by indicating what requirements are needed,
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Behavior 11 ServiceRevokerSPA
Input: (i) Requirements to be removed R (ii) contract ID
Output: (i) Cancellation of services
1 if (BlockReceive(request to remove R requirements)) then
2 SPA sends acknowledgement message to requester
3 for (all requirements R; to be removed) do
4 RA <« get RA that is fulfilling R; based on the contract ID
5: SPA sends request to remove requirement R; to the RA
6
7
8
9

if (BlockReceive(Acknowledgement, timeout)) then
update contract by removing the clause linked to requirement R;
update status of the RA to available in the SCT.

: else
10: update status of the RA to failed in the SCT
11: throw exception
12: start over

Behavior 12 ResultHandlerSPA

Input: (i) Outputs of requirements

Output: (i) Result propagation or (ii) failure propagation

1 if (BlockReceive(result, timeout2)) then

2 if (it is an outcome of a fulfilled requirement) then

3 fulfill the contract clause of the corresponding requirement’s contract

4 SPA sends inform(result) message to its requester (BA/SPA/RA)
5: if (the fulfiller is an RA) and (it is not a persistent service composition) then
6.
7
8

update status of the RA to available in the SCT.
else-if (it is a failure) then
update status of either the SPA or RA to failed in its corresponding SCT.

9: r <— unpack the failed requirement from result message

10: if (there is an RA that can fulfill r) then

11: delegate the requirement by adopting a ReqAssignerSPA (r) behavior
12: start over

13: else-if (there is a SPA recorded in the SCT that can fulfill ) then

14: SPAcontractors <— getFeasibleAgts(SPAs, r)

15: contract SPAs by adopting a SR-CNPinitiatorSPA (SPAcontractors, r) behavior
16: else

17: update contract by removing the clause linked to requirement r

18: SPA sends failure(r) message to requester

19:  else

20: update contract by removing the clause linked to requirement r

21: update status of the agent to failed in its corresponding SCT

22: SPA sends failure(r) message to requester

instead of how to get them (details of RA definitions are The ResultHandlerSPA behavior (Behavior 12) receives
results from both RAs and contracted SPAs (line 1). As re-
quirements are being resolved, the contract clauses are ful-
filled (line 3). If the result was provided by an internal RA,
and the service composition is not persistent, the RA is re-

leased (lines 5 & 6). Determining whether a requirement

given in Sect. 3.4).

The ServiceRevokerSPA behavior (Behavior 11) is simi-
lar to Behavior 7 of BAs. Its function is to carry out subtrac-
tive updates or cancel provided services. In addition, when

a service is cancelled by its consumer, the RAs that were as-
signed to the service composition are released by updating
their statuses in the SCT (line 8).

correspond to persistent compositions is based on its param-
eters stated in the contract clauses. If the fulfillment of a
requirement fails (line 7), the agent that failed (either RA
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Behavior 13 MainStructureRA

Input: (i) Request to resolve requirement » from its SPA
Output: (i) Inform results to SPA

I: try

2: switch (step)

3: case (0): if (BlockReceive(request to resolve requirement r)) then
4. ... Il resolving requirement

5: step++

6: break

7T: case (1): ... // resolving requirement

8: step++

9: break

10: .

11: case (n): RA sends inform(output) message to SPA
12: step < 0

13: break

14:  catch(exception)

15: RA sends failure(r) message to SPA

16:  start over

Behavior 14 RequesterRA

Input: (i) Requirement r to be delegated to SPA
Output: (i) Reception of resolved requirement r
RA sends request to delegate requirement r to SPA
if (BlockReceive(result, timeout)) then
if (result is received) then

continue with the workflow specification using r.output

throw exception
else

1
2
3
4.
5: else-if (there is a failure) then
6
7
8 throw exception

or SPA) is marked as failed in the corresponding SCT (line
8), and the unresolved requirement is reassigned to the next
available RAs (lines 10 & 11), or if it is not possible, as-
signed to other SPA (lines 13-15). Finally, if no feasible
agent is found, the contract is cancelled and the failure is
propagated (lines 17 & 18).

In persistent service compositions, Cloud resources are
reserved for long periods of time, e.g., infrastructure-as-
a-service scenarios. To manage the contracts and Cloud
resources associated to persistent compositions, the Con-
tractExpirationMonitor behavior is provided. This behavior
should be executed on a daily basis to detect expired con-
tracts. If expired contracts are detected, a notification is sent
to the corresponding consumers and the RAs involved in the
contract are released. An explicit definition of ContractEx-
pirationMonitor behavior is omitted due to the fact that its
description is straightforward to be implemented.
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3.4 Resource agent behaviors

The behaviors of RAs are pattern behaviors given that re-
sources agents orchestrate web services, and the behaviors
depend on the web service workflow. Two customizable pat-
terns are given: MainStructureRA and RequesterRA.

The MainStructureRA behavior (Behavior 13) is mapped
to a general-purpose agent behavior. The main structure of
control is provided by a switch selector (lines 2—13), where
the first instruction is the reception of a request to resolve a
requirement from a SPA (line 3). In complex web services
(web services that require exchanging more than one mes-
sage to provide their output), ad-hoc agent behaviors should
be created or added (lines 7—10), based on the web service
workflow. In the case of atomic web services (one-time web
services that produce outputs in one step), only the first and
last switch cases (lines 3 & 11) are necessary to receive
SPAs’ requests (line 3), resolve the requirement (lines 4—
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10), and inform the result (line 11). In case of an exception,
a failure message is sent (line 15) to RA’s SPA.

The RequesterRA behavior (Behavior 14) is defined for
complex web services that need to interact either with sib-
ling RAs or with SPAs for requesting external requirements
(as explained in Sect. 3.3). This pattern behavior should be
included into the MainStructureRA behavior as needed. In
addition, to prevent hard wired agent interaction among RAs
and SPAs, RAs delegate requirements to their SPAs (line
1), which is in charge of resolving the requirement (see
IntermediarySPA behavior). Then, RAs wait for the result
(line 2), and once received, the ad-hoc workflow continues
(line 4). In case of exceptions (lines 5-8), these are caught
by the MainStructureRA behavior.

In the case of RAs that control resources to be used in
persistent service compositions, the ReleaserRA behavior is
used. Its function is to release the Cloud resource, when-
ever its corresponding service contract is expired or it is
cancelled by SPAs. The behavior consists of: (i) receiving
SPAs’ requests, (ii) sending an acknowledgement message,
and (iii) resetting the MainStructureRA behavior to prepare
the RA for new service requests. An explicit definition of
ReleaserRA behavior is omitted due to the fact that its de-
scription is straightforward to be implemented.

3.5 Complexity of the agent behaviors

To measure the complexity of agent behaviors, two perfor-
mance measures are considered: number of messages ex-
changed and time complexity of algorithms.

(1) Number of messages. The number of messages sent
by agents relies on the level of connectivity of agents’
SCTs, i.e., number of connections (e.g., service providers)
recorded in SCTs.

For instance, the number of messages sent by a BA is de-
termined by the nested instantiations of the SR-
CNPinitiatorBA behavior (see lines 10 and 13 of the
SR-CNPparticipantBA, and lines 13 and 16 of the Re-
sultHandlerBA behaviors). In the worst case scenario,
when a CA submits a requirement to a BA. The SR-
CNPparticipantBA behavior creates p (No. of requirements
submitted by the CA) instances of the SR-CNPinitiatorBA.
For each instance, the BA with g feasible SPAs, sends ¢
call-for-proposals messages (assuming that the BA have
enough SPAs recorded in its SCTs to handle all possible
requirements). After receiving the proposals, the BA sends
q responses (1 accept-proposal message and g — 1 reject-
proposal messages). If the contracted SPAs fail, the failure
is propagated to the BA. Then, the BA sends ¢ — 1 call-
for-proposals messages to the remaining feasible SPAs, and
q — 1 responses, and so on. Thus, in the worst case scenario
the BA sends:

pP(2g+2(g—1D+2(g—2)+ - +2(2) +2(1))
=2p(g+@—D+@=-2+--+ @+ 1)
=2p(q(q +1)/2) = p*q(q + 1) messages

If after contacting all the SPAs, the p requirements are
not resolved, the BA may subcontract services to one BA
among r BAs by again adopting the SR-CNPinitiatorBA be-
havior. In a similar case to SPAs, if all the subcontracted
BAs fail, the BA sends: p*r(r + 1) messages.

The remaining broker behaviors send a relatively in-
significant number of messages. Thus, the number of mes-
sages sent by BAs in the worst case scenario is bounded by:
p*q(q + 1)+ p*r(r + 1) messages. When p, ¢, and r, tend
to infinity, the number of messages exchanged in the worst
case scenario is bounded by 213 messages

In the case of SPAs, in the worst case scenario, when a
BA submits a requirement to a SPA. The SPA sends a re-
quest message to a feasible RA (see line 4 of RegAssign-
erSPA behavior), if the RA fails to resolve the requirement,
the SPA sends a message to another feasible RA. If all the
RAs fail, the SPA will have sent i request messages to i fea-
sible RAs. Now in a similar case to BAs, SPAs adopt the SR-
CNPinitiatorSPA behavior to delegate the requirement to ¢
agents (other SPAs), and if all of them fail, the SPA will have
sent g(q + 1) messages. Thus, in the worst case scenario a
SPA, which handles r requirements, sends: (i + g(g + 1))
messages. When r, i, and ¢, tend to infinity, the number of
messages exchanged in the worst case scenario is bounded
by n? + 21> messages.

CAs send 2r messages to ask for a service composition,
where r is the number of BAs recorded in the SCT. RAs may
send 1 out of 4 types of messages: (i) to inform the result of
a resolved requirement, (ii) to request the delegation of a re-
quirement, (iii) to acknowledge the cancellation of a service,
and (iv) to indicate that a failure occurred.

(2) Time complexity. All the functions involved in the
agent behaviors (e.g., getFeasibleAgts()) take O(n) time to
execute. Agent Behaviors 6, 7, 11, and ContractExpiration-
Monitor have quadratic time complexities O (n?). The re-
maining behaviors have linear time complexities O (n). This
can be determined by simple inspection of the algorithms.
The complexity of Behavior 13 (MainStructureRA) depends
on the workflow associated to the web service that is or-
chestrated. However, in the case of atomic web services, the
complexity is O (n).

4 Evaluation and empirical results
Three groups of experiments were conducted using the
agent-based testbed defined in Sects. 2 and 3. The testbed

was implemented using the java agent development frame-
work [7] (JADE).
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Table 2 Input data source for Experiment 4.1

Input data Possible values

Service composition request rate (Requests per Low High

second) 5 100

Level of knowledge 1% to33 % 34 % to 66 % 67 % to 100 % 100 %

Degree of connectivity weak moderate strong Sull

Yellow page service provider service capability tables central
directory

Probability of failure of RAs

Cloud resource types

{0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, 0.9, 1.0}

{r1, 12,13, 14, 15, T, 7, T8, T9, T10 }

No. of requirements per service composition 1to20

request

SR-CNP’s timeouts timeoutl timeout?2
2s Undefined

The experiments were conducted on a computer with the
following specifications: Intel Core 2 Duo E8500 3.16 GHz,
4 GB RAM, with a Windows Vista Enterprise (32 bits) op-
erating system, service pack 1.

4.1 Evaluating self-organization in horizontal and vertical
service composition

(a) Objective. The series of experiments were designed:
(1) To evaluate the self-organization capabilities of agents
in both vertical and horizontal service composition scenar-
i0s. (ii) To compare two agent-based approaches: one using
SCTs, where agents do not necessarily have complete in-
formation about other agents’ service capabilities, and the
other using a central directory where agents have complete
knowledge about other agents’ service capabilities.

(b) Experimental settings. As presented in Table 2, there are
six input parameters in the testbed: (i) the service compo-
sition request rate, (ii) the level of knowledge of agents re-
garding information about other agents’ service capabilities,
(ii1) the probability of failure of RAs, (iv) the number of
resource types, (v) the number of requirements per service
composition request, and (vi) the timeouts involved in the
SR-CNP.

The service composition request rate is the number of ser-
vice composition requests per second. In some commercial
web services [4], the request rate is set to 1 request per sec-
ond. Therefore, the agents must handle request rates higher
than the limit of web services to avoid any delay. To ensure
efficiency, two different request rates were used: (i) A high
request rate (100 requests per second) was selected to ex-
plore the efficiency of the testbed in extreme situations, and
(i1) a low request rate (5 requests per second) was selected
to evaluate the testbed in possible real world settings.

Agents adopting weakly, moderately, and strongly con-
nected SCTs have knowledge of the service capabilities of
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other agents, ranging from 1 % to 33 %, 34 % to 66 %, and
67 % to 100 %, respectively. The exact level of knowledge
within each range, and the agents included in SCTs were
determined randomly. Agents using a central directory that
contains addresses and service capabilities of all agents in
the system are considered to be fully connected with a level
of knowledge of 100 %. The central directory is handled by
a system agent, to which agents send messages to consult
the directory.

To evaluate the self-organization capabilities of agents,
RAs were designed to fail with a failure probability in the
range of 0.0 to 1.0 (in 0.1 increments). When RAs (as the
end-point of the agent-based testbed) fail, they induce the
highest need for self-organization to the system. RAs con-
tact their SPAs that may contact other sibling RAs, SPAs
or sending result messages to BAs, which may attempt to
subcontract services to other BAs, and so on. In addition,
SPAs and BAs were designed to provide random quotations
to keep a uniform exploration of SCTs.

Cloud resource types were randomly selected from {ry,
ry, 13, 14, I's, I'g, I7, I3, 9, I'19 }, Which can be mapped to cur-
rent available types of general-purpose instances of Ama-
zon EC2 [2]. This creates heterogeneous SPAs with differ-
ent types and level of Cloud resources. In addition, the web
services contained in the RAs are assumed to be atomic.

The number of requirements per service composition re-
quest was randomly set from 1 to 20 requirements. In addi-
tion, the type for each requirement was randomly assigned
based on the available resource types. In doing so, consumer
composition requests were randomly generated in both hori-
zontal and vertical scenarios. The maximum level of require-
ments was defined based on the current consumers’ limit of
on-demand/reserved instances of Amazon EC2 [1]. An ex-
ample of a Cloud service composition request is as follows
{(2,11), (3,14),(1,17), (4, 13)} where 2, 3, 1, and 4 resources
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Table 3 Performance measures
for Experiment 4.1

Average service composition time for successful service compositions

Average number of messages

Percentage of successful service compositions

Nsuc/Nart
> (Tsuc)/Nsuc
> (MatT)/NarT

Nsuc: Number of successful service compositions

Narr: Number of attempted service compositions

Tsuc: Service composition time for successful service compositions

M art: Number of messages exchanged for attempted service compositions

Fig. 3 Overall percentages of
successful service compositions 100

Percentage of successful
service compositions
coBB8E82388

0.00102030405060708091.0
Resource agents’ probability of failure

of types ry, 14, r7, and rg are requested, respectively, and re-
source types rq, 14, 17, and rg may represent Amazon EC2
instances endowed with specific-purpose software to exe-
cute bioinformatics applications, data mining applications,
image manipulation applications, etc.

There are two relevant agents’ timeouts involved in the
agent behaviors (see SR-CNPinitiatorCA behavior). The
first timeout timeoutl (line 3) corresponds to the time that
agents wait for receiving proposals to carry out the com-
position. The second timeout timeout2 (line 8) corresponds
to the time that agents wait for receiving virtualized ser-
vice compositions. These timeouts are also used by BAs and
SPAs. The values of the timeouts have influence in the re-
sponse time of the testbed given that short timeouts may pro-
duce quicker compositions, however agents may not receive
responses to call-for-proposals to carry out service compo-
sitions.

The current Cloud service composition approach may
be oriented to human users (although not exclusively), and
the maximum acceptable response time to any user-oriented
processing task (according to [47]) is 10.0 s. An experimen-
tal tuning that was carried out showed that the majority of
the Cloud service compositions completed within 10.0 s (see
Fig. 5). This resulted in a timeoutl set to 2 s. In the case
of timeout2, it was left undefined, i.e., a considerable large
value was assigned to provoke that agents waited until a vir-
tualized service composition was delivered or a failure mes-
sage was received. In doing so, it was possible to differen-
tiate between service compositions that took much time to

100 composition requests per second
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e

-
=
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complete and those that were not achieved because of RAs’
failures.

The agents involved in the simulations were: 25 CAs,
25 BAs, 25 SPAs, and 3000 RAs. In addition, RAs were
randomly allocated among the 25 SPAs to simulate Cloud
providers with different levels of resources.

For each configuration of the agent-based testbed, 10 ex-
periment runs were carried out. Each run consisted of 25
service compositions, which were conducted with 11 (from
0.0 to 1.0) probabilities of failure of RAs, then for each level
of knowledge (4 levels), and finally, for 2 request rates. This
resulted in an overall of 22,000 Cloud service compositions.

(c¢) Performance measures. The performance measures are:
(i) Percentage of successful service compositions, (ii) aver-
age service composition time for successful service compo-
sitions, and (iii) average number of messages exchanged for
successful service compositions. See Table 3 for details.

(d) Results. Empirical results are shown in Figs. 3, 4, 5, 6.
From these results, five observations are drawn.

Observation 1. In general, agents adopting weakly, mod-
erately, and strongly connected SCTs achieved higher suc-
cess rates in service compositions than agents using a central
directory for both high and low request rates.

Analysis: Figs. 3(a) and 3(b) show that agents adopt-
ing SCTs achieved higher success rates in service composi-
tion than agents using a central directory. This was because
the central directory introduced a bottleneck in the system
given that agents requesting for providers that could resolve
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Fig. 4 Successful service
composition rates using SCTs

Percentage of successful
service compositions
coB8888388
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Resource agents' probability of failure

a given requirement overloaded the agent that controls the
directory (a system agent). This slowed down the response
time of the system agent and caused a delay that prevented
BAs and SPAs from responding to call-for-proposals on
time. For example, when a BA receives a call-for-proposals
to carry out a service composition, the BA consults the sys-
tem agent of the central directory to check whether appropri-
ate SPAs exist before preparing and sending a proposal (see
line 4 of SR-CNPparticipantBA behavior). Then, if the delay
in accessing the directory is longer than the timeout for re-
ceiving proposals (timeoutl) of the initiator agent of the SR-
CNP, the initiator agent opts out from the SR-CNP because
no proposals were received. This delay was longer for higher
request rates, showing the worst performance (Fig. 3a) in
comparison to the lower request rates (Fig. 3b).

It can be seen from Figs. 3(a) and 3(b) that, agents
adopting weakly, moderately, and strongly connected SCTs
generally achieved the best performance. This was be-
cause SCTs prevent system bottlenecks. Agents using SCTs,
although incomplete tables, were generally able to re-
spond to call-for-proposals on time. Even though in some
cases, agents rejected call-for-proposals (see line 19 of SR-
CNPparticipantBA behavior) due to the lack of appropriate
agents recorded in SCTs to carry out the service composi-
tions, agents that responded to call-for-proposals were ca-
pable of carrying out the service composition through col-
laborating with their contacts recorded in SCTs.

These results show that through self-organization and in-
teraction, agents adopting SCTs outperformed agents using
a central directory in achieving successful service composi-
tions despite dealing high probabilities of failure and incom-
plete information.

Observation 2. With high service request rates, agents
adopting weakly and moderately connected SCTs achieved
significantly higher success rates in service composition
than agents adopting strongly connected SCTs. However,
for low service request rates, agents adopting weakly, mod-
erately, and strongly connected SCTs generally achieved al-
most similar success rates in service composition except for
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high probabilities of failure. With low service request rates,
when the probability of failure is higher than 0.7, agents
adopting moderately and strongly connected SCTs generally
achieved significantly higher success rates in service com-
position than agents adopting weakly connected SCTs.

Analysis: As it can be seen in Fig. 4(a), agents who
adopted weakly and moderately connected SCTs consider-
ably outperformed agents who adopted strongly connected
SCTs with high service request rates. This was because
agents adopting strongly connected SCTs had more connec-
tions, and hence, they contacted more contractors (when ex-
ecuting the SR-CNP) before contracting one. This triggered
a message flooding in the system that saturated agents, and
thus, agents were unable to send proposals before reaching
SR-CNP’s timeouts (as it was explained in observation 1 of
Experiment 4.1). This caused agents to opt out from the SR-
CNP, propagating service composition failures that affected
the performance (Fig. 4(a)).

However, as it can be observed in Fig. 4(b), in general,
agents adopting weakly, moderately, and strongly connected
SCTs achieved similar success rates for low service request
rates. With fewer composition requests, all the agents (in-
cluding agents adopting strongly connected SCTs) were ca-
pable of promptly handling the load of messages derived
from adopting the SR-CNP. Nonetheless, for high proba-
bilities of failure (Fig. 4(b)), agents adopting moderately
and strongly connected SCTs generally outperformed agents
adopting weakly connected SCTs. This was due to the high
connectivity degree that allowed agents to self-organize with
more connections, and thus, improving the service compo-
sition success rate. Nonetheless, Fig. 4(b) shows that agents
adopting strongly connected SCTs with a probability of
failure of 0.9 achieved the worst performance. This was
because they had more connections, and thus sent more
messages. This triggered a message flooding that saturated
agents, similar to the presented with high service request
rates (Fig. 4(a)).

These results indicate that there is a tradeoff between
the (i) number of contractors taken into account to execute
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Fig. 5 Average service
composition time for successful
compositions
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the SR-CNP and the service request rates, and (ii) the ser-
vice composition success rate. For high service request rates,
agents should avoid considering many contractors (e.g., not
higher than 16, as agents adopting weakly and moderately
connected SCTs) for carrying out a service composition.
For low service request rates, agents should consider as
many contractors as possible to obtain the better (cheapest)
services, and preserving high service composition success
rates.

Observation 3. On the average, agents adopting weakly,
moderately, and strongly connected SCTs took shorter time
than agents adopting a central directory for successfully
composing services.

Analysis: it can be noted from Figs. 5(a) and 5(b) that
agents adopting SCTs took substantially shorter time than
agents using a central directory. As previously highlighted
in the analysis of observation 1 of Experiment 4.1, access-
ing the central directory consumes time. Thus, agents re-
ceiving highly heterogeneous (random) service composition
requests must access the central directory continuously, in-
crementing the time to complete service compositions. On
the other hand, agents adopting SCTs divided service com-
position requests into several parts, which were delegated to
several agents (see lines 2-3 of SR-CNPparticipantBA be-
havior). In doing so, agents with only local knowledge dis-
tributed the work, preventing bottlenecks that slow down the
service composition process.

These results show that through collaboration, agents
adopting SCTs distribute the service composition load over
all agents, achieving service compositions in shorter times.
On the contrary, agents using a central directory centralized
the control under a single component, and this caused some
deterioration in performance.

Observation 4. Whereas agents adopting weakly, moder-
ately, and strongly connected SCTs achieved generally con-
stant average time for composing services for different prob-
abilities of failure, the average time for agents using a central
directory to compose services largely fluctuated for different
probabilities of failure.
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Analysis: Tt can be observed from Figs. 5(a) and 5(b)
that, in general, agents adopting SCTs composed services
in a constant average time, even when reacting to differ-
ent failure rates. This was due to the local management that
agents followed to handle failures, i.e., when an agent, either
BA, SPA or RA, failed to resolve a requirement, the origi-
nal requester, either BA or SPA, contacted its next feasible
agent from the SCTs. BAs could have contacted SPAs or
other BAs, and SPAs could have delegated the requirement
to other RA or contacted other SPAs. This absorbed the im-
pact caused by failures. In addition, agents adopting SCTs
distribute the loads for achieving service compositions (this
was pointed out in the analysis of observation 3 of Experi-
ment 4.1).

From Figs. 5(a) and 5(b) it can be noted that the aver-
age time to complete service compositions by agents using
a central directory were largely different for different failure
rates. This was because the central directory was saturated
by agents requesting for addresses in a non-deterministic
pace, i.e., agents accessed the directory with different rates
based on (i) the time when their service composition propos-
als were accepted, and then, they needed addresses of SPAs
or BAs, or (ii) when agents needed to subcontract the service
from other agents to handle unresolved requirements derived
from RAs’ failures. The different overload rates caused the
system agent in charge of the central directory to be un-
able to respond in a constant rate. This caused the agents,
either SPAs or BAs, to complete their tasks in largely differ-
ent amounts of time.

These results indicate that, in general, constant and low
average time to compose services can be achieved with
agents adopting SCTs given that the work is distributed
among all the components of the system.

Observation 5. With lower probabilities of failure (up to
0.6), agents with lesser knowledge of other agents’ service
capabilities exchanged fewer messages, and agents adopt-
ing weakly connected SCTs exchanged the fewest mes-
sages, while agents using a central directory exchanged the
most messages. However, for higher probabilities of failure
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Fig. 6 Average number of

100 composition requests per second

5 composition requests per second

messages s 000 0 80000

& 70000 & & 70000 %o

g 60000 X 60000 Y+
50000 "o 50000 3 X X

5 40000 "‘; X E 40000 .
30000 X £ 30000 7'

2 20000 : A 2 20000 | =000

= k. i A AP AL TS = N A . -

s  EEEETHGE 10000 | XK XK HX

R BN AR S E‘ °°°g et A

2

= 0.00.1020.304050607080810 < 0.00102030405060.7080910

Resource agents' probability of failure

(above 0.6), agents with more knowledge of other agents’
service capabilities, exchanged fewer messages, and agents
using a central directory exchanged the fewest messages,
while agents adopting weakly connected SCTs exchanged
the most messages.

Analysis: Figs. 6(a) and 6(b) show the average number of
messages exchanged. It is observed that, in most cases, for
failure rates lower than 0.6, agents with lesser knowledge
sent fewer messages. This was because agents with fewer
connections contacted fewer service providers when execut-
ing the SR-CNP, and because the failures were handled lo-
cally, e.g., contacting sibling RAs.

On the other hand, Figs. 6(a) and 6(b) also show that,
for failure rates higher than 0.6, the average number of
messages exchanged was reduced as agents’ knowledge of
other agents’ capabilities increased. This was because agent
behaviors were designed to share information about failed
agents (either BAs or SPAs), preventing unnecessary mes-
sages. This mechanism works as follows:

(i) When a set of requirements is submitted to an agent,
the agent marks the requirements to indicate that the
requirements were handled by it (see line 1 of SR-
CNPinitiatorBA behavior).

(1)) When agents propagate failures, the failed require-
ments containing the list of previous handlers are
sent to the original requester (see line 18 of Result
HandlerSPA behavior).

(iii) Agents inspect the list of previous failed agents, and
omit them for future interactions (see line 2 of SR-
CNPparticipantBA behavior).

For instance, a BA with full knowledge of all SPAs’ ca-
pabilities contacts all the available SPAs for composing a
service, but subsequently, almost all the SPAs fail (common
with high failure rates). Then, the failure is propagated back
to the BA. When the BA attempts to subcontract the service
to other BAs, they will not carry out the service composition
because all their SPAs recorded in the SCTs already have
failed. In contrast, for a BAs with lesser knowledge of other
agents’ capabilities, the sets of SPAs included in the SCTs of
BAs tend to be mutually exclusive given that the SCTs were
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randomly created using a uniform distribution. Therefore,
more messages within BAs’ layer where needed to contact
all SPAs.

Agents are less likely to send out unnecessary messages if
they have more knowledge about other agents’ capabilities.
In addition, information exchange allows agents to adapt and
react according to feedback provided by other agents regard-
ing the current state of the Cloud-computing environment.

4.2 Evaluating self-organizing agent layers

(a) Objective. A series of experiments was carried out to
study the performance of different configurations of the
testbed with agents adopting SCTs by varying the number
of agents in each layer.

(b) Experimental settings. As presented in Table 4, there are
six input parameters in the testbed: (i) the number of CAs,
BAs, and SPAs grouped in three categories: small, medium,
and large, (ii) the service composition request rate, (iii) the
level of knowledge of agents, (iv) the number of resource
types, (v) the number of requirements per service composi-
tion request, and (vi) the timeouts involved in the SR-CNP.

The number of CAs, BAs, and SPAs was grouped in
three size categories: small (S)—5 agents, medium (M)—
15 agents, and large (L)—25 agents. This resulted in 33
testbed’s configurations. Agents’ SCTs were randomly de-
fined, considering the whole agent universe, i.e., each agent
was randomly connected, from 1 % to 100 % of the agent
universe. The service composition request rate was set to
100, to evaluate the performance of the testbed in each con-
figuration, considering extreme situations. The Cloud ser-
vice composition requests were randomly generated follow-
ing the constraints defined in Experiment 4.1. In addition,
the timeouts of the SR-CNP: timeoutl was set to 2 sec-
onds and fimeout2 was left undefined, as defined in Exper-
iment 4.1. For each configuration of the testbed, 10 exper-
iment runs were carried out, for an overall of 270 service
compositions.

(c) Performance measures. The performance measures are:
(i) Percentage of successful service compositions, (ii) aver-
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Table 4 Input data source for

Experiment 4.2 Input data

Possible values

No. of agents per layer

small (S) medium (M) large (L)

5
27 Configurations

Level of knowledge

Yellow page service
provider

Service composition
request rate

Cloud resource types

15 25
{SCAs, MCAs, LCAs} x {SBAs, MBAs, LBAs} x {SSPAs, MSPAs, LSPAs}

From 1 % to 100 % of the agent universe

service capability tables
High: 100 requests per second

{r1, 12,13, 14, 15, T, T7, Tg, T9, T10 }

No. of requirements per 1 to 20

service composition

request

SR-CNP’s timeouts timeoutl timeout2
2s undefined

Table 5 Performance measures
for Experiment 4.2

Percentage of successful service compositions

Nsuc/Nart

Average service composition time for successful service
compositions grouped by size category and agent type

Average number of messages grouped by size category

and agent type

>_(Tsuc)/Nsuc grouped by {S, M, L} x {CA,
BA, SPA} e.g., 3 *(T5uc)/Nsuc grouped by S
and CA indicates “Average service composition
time for successful service compositions when
the number of CAs was small”

> (Mart)/Nart grouped by {S, M, L} x
{CA, BA, SPA} e.g., > (Mart)/NarT grouped
by S and CA indicates “Average number of
messages exchanged for attempted service
compositions when the number of CAs was
small”

Nsyc: Number of successful service compositions

Narr: Number of attempted service compositions

Tsuc: Service composition time for successful service composition

S: Small number of agents
M: Medium number of agents

L: Large number of agents

M art: Number of messages exchanged for attempted service composition

age time for successfully composing services, and (iii) aver-
age number of messages exchanged. In addition, the perfor-
mance measures were grouped by agent type and size cate-
gory. See Table 5 for details.

(d) Results. Empirical results are shown in Figs. 7 to 9. From
these results, two observations are drawn.

Observation 1. Almost all the configurations achieved
a 100 % success rate in service composition. Except for
LCA-SBA-LSPA, 26 out of the 27 configurations achieved
a 100 % success rate, and LCA-SBA-LSPA achieved a 95 %
success rate.

Analysis: It can be observed from Fig. 7 that, almost all
the testbed’s configurations achieved a perfect success rate.
This was because at least one path existed between the CAs’

connections included in the SCTs and the SPAs that con-
tained the necessary Cloud resources to carry out the service
composition requests.

In addition, as it is presented in Fig. 7, the configuration:
LCA-SBA-LSPA (large number of CAs, small number of
BAs, large number of SPAs) achieved a 95 % success rate.
This was because: (i) several service compositions could not
be handled completely by a single BA, and thus, the compo-
sition was divided increasing the number of messages in the
BAs’ layer, and (ii) a large number of CAs and SPAs implied
that BAs received more service composition requests and
considered more providers in the SR-CNP, respectively. This
overloaded the system in the BAs’ layer, and in some occa-
sions, BAs opted out from the SR-CNP propagating failures
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(such as the system overloading analyzed in observation 1
of Experiment 4.1).

The proposed agent-based approach performs well for
a wide variety of configurations with large, medium, and
small numbers of agents in each layer. In addition, the results
suggest that, (i) whereas reducing the number of providers
contacted in the SR-CNP may leave out the cheapest service,
the system overloading may be prevented, and that (ii) the
BAs’ layer should be endowed with at least a medium num-
ber of BAs to handle a large number of service composition
requests, considering quotations from all the available ser-
vice providers.

Observation 2. In general, the average number of mes-
sages exchanged for attempted service compositions was
generally constant for all the size categories of BAs. The
number of messages exchanged remains constant regardless
of the number of BAs that have participated in the composi-
tion, and as a consequence, the average service composition
time for successful compositions is generally similar.

Analysis: As it can be observed in Figs. 8 and 9, the
average number of messages exchanged when the number
of BAs was small, medium, and large, is almost constant
(Fig. 8), and as a result, the average time for compositing
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services (Fig. 9) was almost similar. This was because BAs
as intermediaries only mapped consumer requests into ser-
vice provider’s resources. Whereas in some cases, subcon-
tracting services to other BAs was also necessary, the prior-
ity was given to contracting SPAs instead of other BAs, this
left just few requirements for other BAs, reducing the num-
ber of additional messages derived from subcontracting.

These results indicate that, the number of BAs can be in-
creased while preserving a similar performance of the sys-
tem. Then, recalling observation 1 of Experiment 4.2, the
95 % success rate of configuration LCA-SBA-LSPA (Fig. 7)
can be improved by augmenting the number of BAs, as oc-
curred in the configurations LCA-MBA-LSPA and LCA-
LBA-LSPA with a 100 % (Fig. 7) of successful composi-
tions. This suggests that the number of BAs can be increased
to deal with more service requests when the number of CAs
increases.

4.3 Evaluating persistent service compositions’ updates
(a) Objective. A series of experiments was carried out to

evaluate the effectiveness and efficiency of the agent-based
testbed in dealing with persistent horizontal and vertical ser-
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Table 6 Input data source for

Experiment 4.3 Input data

Possible values

Service composition update
requests

Level of knowledge

Yellow page service provider
Cloud resource types

No. of requirements per service
composition request

SR-CNP’s timeouts

[remove(n requirements) >> add(n requirements)] where 1 <n < 10
and [p > ¢q] means p is executed before p

From 1 % to 100 % of the agent universe

service capability tables

{ry, 2,13, 14, 15, 6, T7, T8, T9, T10 }

20
timeoutl timeout2
2s Undefined

vice compositions by varying the number of consumer re-
quirements to be removed/added to persistent service com-
positions.

(b) Experimental settings. The experiment runs were divided
into ten groups, one group for each update level n, where
1 <n < 10. Each group contained ten experiment runs. An
experiment run consisted of: (i) creating the persistent ser-
vice compositions that were composed of 20 randomly de-
termined requirements (the maximum allowed), (ii) remov-
ing n requirements, and then (iii) adding n requirements.
The maximum update level was set to 10 given that ser-
vice compositions were composed of 20 requirements, re-
sulting in a maximum update of 50 %. The agents involved
were: 1 CA, 25 BAs, 25 SPAs, and 3000 RAs. The SCTs
were defined randomly, considering the whole agent uni-
verse (from 1 % to 100 %). Only one CA was considered
to focus the experiment on the update process of persistent
service compositions, isolating the results from the ones ob-
tained in Experiments 4.1 and 4.2. The timeouts of the SR-
CNP: timeoutl was set to 2 s and timeout2 was left unde-
fined, as defined in Experiment 4.1. See Table 6 for details.

(c) Performance measures. In the case of incremental up-
dates: (i) Percentage of successful incremental updates,
(ii) ratio of No. of messages exchanged for resolving ad-
ditional requirements to No. of messages exchanged for
resolving initial requirements (additional-to-initial message
ratio), (iii) ratio of service composition time for additional
requirements to service composition time for initial require-
ments (additional-to-initial service composition time ratio).
In the case of subtractive updates: (i) Percentage of success-
ful subtractive updates, (ii) average number of messages ex-
changed for removed requirements, (iii) service composition
time for subtractive updates. Additionally, a performance
measure is the percentage of successful initial service com-
positions. See Table 7 for details.

(d) Results. Empirical results are shown in Figs. 10 and 11.
From these results, three observations are drawn.

Observation 1. Agents in the testbed can respond to
changing consumers’ requirements by handling both incre-
mental (addition of requirements) and subtractive (removal
of requirements) updates, and achieved a 100 % success rate
in creating and updating service compositions.

Analysis: Agents in the testbed achieved a 100 % success
rate in creating persistent service compositions, a 100 % suc-
cess rate in subtractive updates, and a 100 % success rate
in incremental updates. All the initial service compositions
and incremental updates were successful because at least
one path existed between the CAs’ connections included in
the SCTs and the SPAs that contained the necessary Cloud
resources to carry out the service composition requests (as
pointed in the analysis of observation 1 of Experiment 4.2).
In the simulations, all agents in all the service compositions
were capable of finding a path to succeed in the Cloud ser-
vice composition. In the case of subtractive updates, agent
behaviors worked as expected, referring to their service con-
tracts to contact the providers and cancel the services.

Equipped with partial knowledge of other agents’ service
capabilities as represented in SCTs, agents in the testbed au-
tonomously respond to changing consumers’ requirements
(both incremental and subtractive), and achieved a 100 %
success rate in updating and creating service compositions
through self-organization and interaction using the SR-CNP.

Observation 2. Incremental updates were achieved in a
fraction of the overall service composition time and the
number of messages exchanged for the initial service com-
position.

Analysis. It can be observed from Fig. 10 that even
though both additional-to-initial message ratio and ad-
ditional-to-initial service composition time ratio increased
as the number of additional requirements updated for the
persistent service compositions increased, both additional-
to-initial ratios were smaller than 1, i.e., all additional values
were smaller than the initial values. For incremental updates,
the number of additional messages exchanged did not in-
crease significantly. Adding new requirements consisted of
(i) sending a small number of messages from the CA to the
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Table 7 Performance measures
for Experiment 4.3

Percentage of successful incremental updates Napp/AADD
Ratio of No. of messages exchanged for resolving additional requirements Mapp/MiNt
to No. of messages exchanged for resolving initial requirements

(additional-to-initial message ratio)

Ratio of service composition time for additional requirements to service Tapp/ Tint
composition time for initial requirements (additional-to-initial service

composition time ratio)

Percentage of successful subtractive updates NREM/AREM
Average number of messages exchanged for removed requirements MRrgMm/ RREM
Service composition time for subtractive updates

Percentage of successful initial service compositions Nini/ ANt

Napp: Number of successful incremental updates

Aapp: Number of attempted incremental updates

Mapp: Number of messages exchanged for incremental updates

Min1: Number of messages exchanged for initial service compositions

Tapp: Service composition time for incremental updates

Ting: Service composition time for initial service compositions

Nrem: Number of successful subtractive updates

ArgMm: Number of attempted subtractive updates

Mggm: Number of messages exchanged for subtractive updates

Rrem: Number of requirements removed

Nn1: Number of successful initial service compositions

Ainr: Number of attempted initial service compositions
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contracted BA given the existence of a previous contract (see
ServiceAugmenterCA behavior in Sect. 3.1), and (ii) the ex-
ecution of the SR-CNP by the contracted BA to resolve the
additional requirements. Subsequently, if some messages
are exchanged for updating the requirements of persistent
service compositions, some additional time is consumed that
also has an increasing additional-to-initial service composi-
tion time ratio (Fig. 10). Nonetheless, the value in 20:7 of the
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service composition time ratio series (see Fig. 10) deviated
from the general behavior. Some of the possible causes of
this deviation are: (i) accumulated message latencies, and/or
(ii) a delay in the completion of the SR-CNP caused by one
or more SPAs, who took more time to send proposals to
contracted BAs.

Incremental updates up to 50 % of additional require-
ments of persistent service compositions do not exceed the
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effort (in terms of messages and time) of recomposing Cloud
services from the beginning.

Whereas the analysis in observation 1 shows that agents
in this work can deal with changing requirements and suc-
cessfully compose services through self-organization, the
results in Fig. 10 show that agents can carry out their tasks
effectively and efficiently, because only a small fraction of
composition time and number of messages exchanged are
needed to process additional requirements.

Observation 3. The overall number of messages that
agents exchanged to remove requirements from persistent
service compositions was small. In addition, the time to pro-
cess the subtractive updates was negligible.

Analysis: It can be seen from Fig. 11 that agents sent
just a few messages for removed requirement. In fact, the
overall number of messages (Fig. 11) involved in the sub-
tractive update process is 4r + 2, where r stands for No.
of requirements, e.g., removing 7 requirements, involved 30
messages among all agents. The message complexity of the
agent behaviors involved in subtractive updates is linear (see
Behaviors 3 (ServiceRevokerCA), 7 (ServiceRevokerBA), 11
(ServiceRevokerSPA), and ReleaserRA).

In most occasions, the time to process subtractive up-
dates was lower than 1 ms, because when some requirements
were removed from a persistent service composition, CAs
only sent 1 message to the contracted BA, and when the BA
replied with an acknowledgement message, the composition
is considered to be updated. Thus, from CAs’ perspective,
subtractive updates are carried out instantly. BAs were de-
signed to reply first to CAs, and then carry out the removal
with the involved providers to focus the system on improv-
ing consumer satisfaction.

Together with the analyses of observations 1 and 2 of Ex-
periment 4.3, the results in Fig. 11 show that agent behav-
iors via self-organization and collaboration are effective and
efficient for creating and updating persistent Cloud service
compositions in distributed Cloud-computing environments
with partial knowledge of service providers’ capabilities and
their location.

5 Related work

Since this work focuses on agent-based Cloud service com-
position, the related areas are: (i) agent-based service com-
position, and (ii) preliminary initiatives on Cloud service
composition methods.

(1) Agent-based service composition. Automated web ser-
vice composition supported by agents has been widely
studied, from considering semantic aspects of web ser-
vices [10, 28] through supporting service interaction [8, 39]
and handling failures [29] to verifying and validating service

compositions [35]. However, this section is only centered
on automated web service composition approaches where
agents show self-organization capabilities, reaction to envi-
ronment’s changes, and/or make use of cost-based service
selection mechanisms, given their close relation with the
present work.

In [22, 23], services are implemented by agents that regis-
ter their capabilities with upper broker agents, which operate
as directories and intermediaries for interrelated services,
supporting agent communication. In turn, broker agents are
registered with super broker agents. Agents organize them-
selves through brokers and connect with other agents to
compose services. However, agents depend on agents of up-
per layers either broker or super broker agents, with no self-
organization nor interaction within the same agent layer,
centralizing the communication in brokers’ layers. In addi-
tion, brokers are limited to route messages and no feedback,
e.g., previous contacted brokers, is provided to upper lay-
ers. In addition, only simple agents’ requests are passed, i.e.,
agents’ requests that need several services’ capabilities are
not supported. In comparison with [22, 23], agents in this
work are endowed with self-organizing skills that evolve the
multiagent system based on agent interaction, which decen-
tralize the service composition process. In addition, through
collaboration agents decompose and distribute the complex
task of Cloud service composition that may require multiple
service capabilities.

In [12], Chafle et al. proposed partitioning service com-
positions. For each partition, an agent that monitors and
records the progress of the web service composition is as-
signed. Monitoring agents maintain a global monitor agent
by periodically sending information related to their parti-
tions. When a monitoring agent detects an error inside its
partition, the partition is stopped, and the error is replicated
to the central monitor, this, in turn, stops all the running par-
titions and determines the last known correct state for ev-
ery partition. Then, the central monitor sends indications to
monitor agents to roll back their partitions and continue with
the composition. Whereas agents react to failures and adjust
service compositions, additional work is carried out in all the
partitions to proceed consistently. In addition, a single fail-
ure stops the whole service composition process. Moreover,
partitioning service compositions requires an initial phase
that analyzes all the specifications of the involved services
to determine appropriate partitions. In contrast to [12], the
agent-based Cloud service composition mechanisms sup-
ported by the SR-CNP allow agents to organize themselves
dynamically to adjust the service composition to deal with
unexpected failures. Moreover, the additional effort required
is distributed among all nearby agents where the failure oc-
curred. Furthermore, no prior analysis of agents’ capabilities
nor full knowledge of their capabilities is required.

In [51], a multi-layered multiagent system consisting of
broker agents, workflow planner agents, ontology agents,
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and service agents is proposed to dynamically execute user
workflows in web environments. Broker agents are in charge
of coordinating the execution of tasks among service agents.
Workflow planner agents indicate to broker agents the cor-
rect order of tasks to be executed. Ontology agents match
user requirements with services, which are handed to bro-
ker agents to execute tasks on the set of possible services.
Then, broker agents contract service agents by adopting the
contract net protocol. Whereas a cost-based selection mech-
anism is integrated into the service composition method
to execute workflows, the workflow planner agent assumes
complete knowledge about existing services, and both the
workflow planner and broker agents centralize the service
composition process. In comparison to [51], agents in this
work handle service compositions with incomplete knowl-
edge about the services deployed and their capabilities by
making use of SCTs. Both SCTs and SR-CNP endow agents
with skills to compose Cloud services without planning
ahead and in a fully distributed manner.

(2) Cloud service composition. Preliminary efforts that
tackle Cloud service composition are included in [55]
and [56].

In [55], a semantic-based matching method to compose
Cloud services is proposed. Cloud services are endowed
with semantic-enhanced input and output interfaces. Then,
a function that determines the similarity level between ser-
vices’ interfaces of correlated web services is used to create
a chain of services, which results in the service composition.

In [56], Cloud service composition is achieved in mul-
tiple Cloud-computing environments. From the service di-
rectories of each Cloud, a search tree is created to which
artificial intelligence planning techniques are applied to ob-
tain service compositions that involve the minimum number
of Clouds.

Although [55] and [56] are focused on different aspects
of Cloud service compositions, they share some strong as-
sumptions, such as: complete knowledge of the Cloud-
computing environments, and that all the web services are
atomic. In addition, both [55] and [56] are centralized ap-
proaches. Moreover, inherent features of Cloud-computing
environments are ignored, such as: (i) service fees associated
to Cloud services, nor dynamic selection of services based
on fees, (ii) service contract management, and (iii) updating
Cloud service compositions. Furthermore, all Cloud service
compositions are seen as one-time compositions. While in
this work, (i) Cloud service composition is achieved with in-
complete knowledge of the Cloud-computing environment,
(ii) services can be atomic or complex, (iii) Cloud service se-
lection based on market-driven fees is supported, (iv) agents
create, update, and manage contracts derived from Cloud
service compositions, and (v) not only one-time service
composition is achieved but vertical, horizontal, and persis-
tent Cloud service compositions are supported.
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Finally, it is acknowledged that, this paper is a signifi-
cantly and considerably extended version of the preliminary
works reported in [20] and [21].

(1) Gutierrez and Sim [20] present initial Petri net agent
models of Cloud Participants and a Petri net-based
methodology to design workflow definitions for RAs.
In addition, [20] makes use of Smith’s contract net pro-
tocol [46] as a service selection mechanism. However,
(i) the agent models do not consider self-organization
capabilities and agent collaboration is limited to that of
the contract net protocol, (ii) the testbed considers a cen-
tral directory to locate Cloud services, assuming com-
plete knowledge, and (iii) no collaboration among SPAs
is implemented.

(2) Gutierrez and Sim [21] introduce self-organization ca-
pabilities into agent behaviors and the use of SCTs to
replace the central directory of [20]. In addition, [21],
only presents a very small set of results regarding self-
organizing service compositions, where agents were in-
cluded in fixed scenarios with three different levels of
connectivity and with relaxed constraints. In addition,
agent behaviors were designed to run in parallel and
concurrently, but within the context of one service com-
position, i.e., a BA can run several behaviors at the same
time, but just one composition can be executed at a time.

This present work significantly and considerably en-
hances [20] and [21] as follows: (i) BA collaboration is en-
hanced by dividing service composition requests into two
main sets, a set that can be carried out by the current BA,
and the other set that is delegated to other BAs by means
of subcontracting (Sect. 3.2). (ii)) Many new agent behav-
iors are included in CAs (Sect. 3.1), BAs (Sect. 3.2), SPAs
(Sect. 3.3), and RAs (Sect. 3.4) to handle persistent ser-
vice compositions as well as incremental and subtractive
updates. (iii) The agent-based testbed includes the manage-
ment of service contracts that support concurrent and paral-
lel management of n Cloud service compositions. (iv) The
results with respect to self-organizing service compositions
are augmented and generalized by conducting experiments
with stringent constraints (Sect. 4.1), e.g., randomly created
SCTs, high service request rates, randomly generated ser-
vice composition requests, etc. (v) In addition, new exper-
iments for evaluating the performance of the testbed’s self-
organizing agent layers are conducted (Sect. 4.2). (vi) More-
over, an empirical comparison (Sect. 4.1) of self-organizing
agents adopting SCTs versus self-organizing agents using a
central directory is included. (vii) Furthermore, new results
derived from evaluating the management of persistent ser-
vice compositions are included (Sect. 4.3).
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6 Conclusion and future work

The novelty and significance of this research is that, to the
best of the authors’ knowledge, it is the earliest effort in pro-
viding an agent-based approach for dealing with one-time,
persistent, vertical, and horizontal Cloud service composi-
tions as well as providing mechanisms to efficiently update
persistent service compositions.

In this research effort, the new challenges that Cloud-
computing environments in single and multiple Cloud
schemes pose to automated and dynamic service compo-
sition were highlighted (Sect. 1). Self-organizing agent be-
haviors capable of reflecting self-interested characteristics
of distributed and parallel executing Cloud participants were
included (Sects. 2 and 3). A combination of two agent-based
distributed problem solving techniques: SCTs (Sect. 2.1)
and the SR-CNP (Sect. 2.2), was devised and integrated into
agent behaviors to cope with (i) service selection based on
dynamic services fees, and (ii) incomplete knowledge about
the existence and location of service providers and the Cloud
resources they offer. An agent-based Cloud service com-
position testbed (Sects. 2 and 3) was implemented to sup-
port one-time, persistent, horizontal, and vertical Cloud ser-
vice compositions. Using self-organizing agents as building
blocks, mechanisms to update and create service composi-
tions based on constantly changing consumers’ needs were
designed. Finally, a series of experiments (Sect. 4) were con-
ducted: (i) to evaluate the self-organization capabilities of
agents, (ii) to compare agents adopting SCTs with incom-
plete knowledge versus agents using a central directory with
complete knowledge, (iii) to study the performance of the
agent-based Cloud service composition testbed, and (iv) to
evaluate the effectiveness and efficiency of updating persis-
tent service compositions. The empirical results (Sect. 4)
show that via agent collaboration and self-organization,
Cloud service compositions can be efficiently achieved and
evolved based on constantly changing consumers’ require-
ments, even in Cloud-computing environments where ser-
vices fees vary based on a supply-and-demand basis, and
where no complete information about distributed Cloud par-
ticipants is available.

Since this work is among the earliest works in agent-
based Cloud service composition, we focus on demonstrat-
ing the effectiveness of adopting agent-based techniques
for Cloud service composition by showing the desirable
property that our agents can autonomously and success-
fully deal with changing service requirements through self-
organization and collaboration. In the future, we plan to
conduct experiments on a much larger scale to evaluate
the scalability of the agent-based Cloud service compo-
sition approach in real world settings by deploying the
testbed using RESTful web services APIs for accessing
Cloud resources following [5]. Additional directions for fu-
ture work consist of: (i) Engineering agent behaviors for

creating and maintaining SCTs through agent collabora-
tion. (ii) Implementing and integrating utility-based func-
tions into Cloud participants for determining appropriate
quotations that maximize agents’ earnings. (iii) Implement-
ing and evaluating multi-round SR-CNP executions for con-
ducting a distributed search among SPAs across multiple
Clouds to determine the best (e.g., cheapest and/or most ef-
ficient regarding performance) Cloud service compositions.
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