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10.1 Overview of the acoustic emission technique

Acoustic emission (AE) is the term used to define transient stress waves emitted from
sudden release energy (ASTM E1316-13c, 2013) due to a deformation in the moni-
tored material, such as crack formation or growth (Pollock, 1986; Ziehl, 2008). AE
is a passive nondestructive evaluation/structural health monitoring (NDE/SHM) tech-
nique that does not need excitation or human intervention after the sensors are con-
nected to the data acquisition system. The waveform of each AE signal (AE hit) can
be used to calculate different parameters such as amplitude, duration, counts, rise
time, absolute energy, and signal strength along with different frequency parameters
as shown in Figure 10.1.

AE has the ability to locate cracks using triangulation. The location of each AE
source event (AE signals that are detected by at least two sensors) can be determined
using the arrival times of the compression waves. Assuming that the source lies in the
(x,y) plane, the arrival time at the mth transducer is given by:
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Figure 10.1 Schematic of acoustic emission waveform (ElBatanouny et al., 2014d).
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where v is the compression wave speed, d = (x,y) is the source location, and
d;y = (X, ym) 18 the location of the mth transducer. Because the absolute time of the
source event is unknown, only time differences can be measured. Equations of this
form are nonlinear and difficult to solve analytically, and numerical methods are
generally implemented. While at least three transducers are required in order to
measure two time differences and hence deduce the two unknowns x, y (Scruby et al.,
1985), using more sensors improves source location accuracy (Miller and Mclntire,
1987). Nonlinear least-squares methods can be used to solve the equations for x and y
(Scruby et al., 1985; Maji et al., 1990), and iterative procedures have been proposed by
Enoki and Kishi (1988) and Ohtsu (1987), who also took into account the anisotropy of
the compression wave speed in reinforced concrete (RC). The accuracy of source
location in RC structures using AE has also been investigated (Grosse and Ohtsu,
2008; Shokri and Nanni, 2014). Well-established source location algorithms are
usually embedded in AE data acquisition systems.

Due to the extreme sensitivity of the method, data filtering is a crucial step in AE
analysis. The main source of noise in the AE data in laboratory testing is wave reflec-
tions. Duration-amplitude (D-A) filters, also known as Swansong II filters (Fowler
et al., 1989), and rise time—amplitude (R-A) filters (EIBatanouny et al., 2014a) are
widely used for rejection of wave reflections from AE data. These filters are usually
developed through visual inspection of waveforms related to noise, and determining
the relation between AE parameters for these hits. Literature indicates that crack
maps can be produced with high reliability if proper data filters were used
(Abdelrahman et al., 2014; ElBatanouny et al., 2014a,b).

Quantitative waveform analyses, such as source characterization (Wadley and
Scrubby 1983; Kim and Sachse 1984) and moment tensor analysis (Ohtsu 1991,
1995), provide size, orientation, movement, and mode of AE sources, in addition to
source location of AE events. Quantitative analyses are based on the generalized the-
ory of AE (Ohtsu and Ono, 1984), which is based on the representation theorem of
seismic sources (Aki and Richards, 1980) and models AE sources using a seismic
moment tensor (Enoki and Kishi, 1988).

A simplified AE moment tensor analysis was introduced by Ohtsu (1991) using the
simplified Green’s function for moment tensor analysis (SIGMA) code, which has
proven to be effective for analyzing fracture processes (Yuyama 2005; Ohno and
Ohtsu 2010). Quantitative analyses have been applied to field geometries, such as a
large concrete block or column, the corner of a rigid frame, a dam, and so forth
(Yuyama, 2005). Moment tensor analysis has recently been implemented at the Uni-
versity of South Carolina during fatigue tests on compact tension specimens, enabling
detection of crack locations and orientations. Source characterization was likewise
performed to discriminate between ductile and brittle cracking mechanisms, and the
results were confirmed through SEM micrographs (Hossain et al., 2012). When the
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first compressive wave amplitudes are detectable and discernible at more than six
observation points (AE sensors) an accurate three-dimensional source location is
possible. If the specimen is comparable to a thin plate, a two-dimensional sensor place-
ment with four sensors can be applied (Shigeishi and Ohtsu, 1992).

Moment tensor analysis is applicable even if there is access only to the outside of
the structure (i.e., if all AE sensors must be placed on the outside plane). Murakami
et al. (1993) reported that the analysis was successfully made in a large concrete block
with all six sensors placed on the top plane. While the moment tensor approach can
provide information related to damage sources, the primary limitation of this approach
is the relatively dense sensor grid that must be used to obtain this information. There-
fore, trade-offs exist between implementation costs and the results desired, and these
must be taken into consideration for field applications.

Successful field applications of AE monitoring have been developed based on
waveform analysis combined with damage rates that are based on parameters of the
received waveform such as signal strength and energy. Much of the earlier work in
AE was based on empirical observations of damage and large datasets, and trend anal-
ysis was utilized to track and quantify trends in AE data rates. This approach was high-
ly successful in the fiber-reinforced polymer pressure vessel industry and also for
qualification of railroad tank cars (Fowler et al., 1989). More recently, formalized
pattern recognition techniques have been introduced to characterize the structure
and to determine natural “signatures” in AE datasets (Marec et al., 2008; Gutkin
etal., 2011; Li et al., 2012; Sause et al., 2012). Such techniques have evolved toward
machine learning and data mining, which have been used for classification, regression,
and prediction. Current investigations are implementing data mining tools for hypoth-
esis searching, rule extraction, and decision making (e.g., Bhat et al., 2003; Olivera and
Marques 2008; Qian et al., 2009; Omkar and Karanth 2008). Recently, Mejia (2012)
addressed a common and important pattern recognition problem in AE: the presence of
unwanted signals (or “noise”) in AE datasets. The study designed and implemented a
data mining scheme that enhanced the quality of AE datasets. The scheme was able to
produce characterization rules for both unwanted and meaningful signals, showing that
rule extraction using this technique could lead to the finding of general AE “signa-
tures” for particular damage mechanisms.

10.2 Mechanism of corrosion detection using AE

Corrosion of reinforcement is a major cause for deterioration of RC structures in
coastal areas or areas where deicing salts are used. In spite of the natural protection
concrete provides for the steel reinforcement to resist corrosion due to formation of
protecting passive oxide film around the steel as a result of the high alkalinity of con-
crete; however, chlorides can infiltrate through concrete cracks to break the passive
film and initiate corrosion in reinforcing steel.

Chloride-induced corrosion reduces the mechanical strength of steel reinforcement
and corrosion product exerts stress into the concrete structure that produces cracks that
deteriorate the steel—concrete bond, which directly affects serviceability performance.
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Figure 10.2 Corrosion process in concrete (http://concrete-forum.com/).

When steel starts to corrode, a gradual decrease of its diameter is produced, together
with the generation of an oxide with a volume 6 to 10 times higher than that of steel
(Li et al., 1998). The corrosion process is then accelerated by the presence of cracks,
which increases the rate of chloride infiltration. Corrosion affects the durability of con-
crete structures and decreases its service life by: (1) reducing the cross-sectional area of
the steel strands minimizing their ductility and increasing stress concentrations at the
reinforcement interface (Yoon et al., 2000) and (2) degrading the integrity of the sur-
rounding concrete (Jaffer and Hanson, 2009). Figure 10.2 shows a schematic of the
corrosion process in concrete.

The mechanisms that enable correlation between AE data and corrosion intensity
are: (1) accumulation of chlorides and breakdown of the passive film (Perrin et al.,
2010; Prateepasen and Jirarungsatian, 2011) and (2) the microcracking of the concrete
that occurs due to the expansive nature of the corrosion products (ElBatanouny et al.,
2011, 2014c; Mangual et al., 2013a,b). The primary advantage of AE monitoring is its
unique ability to detect and quantify the microcracking process as it occurs, making it
an extremely sensitive monitoring method. Later stages of corrosion damage, such as
visible surface cracking, are also easily detected and quantified.

10.3 Case studies for corrosion detection using AE

The use of AE to detect corrosion damage in RC started in the 1980s (Weng et al.
1982; Abdelrahman, 2013). However, most of the studies focused only on passively
reinforced rather than prestressed concrete (PC). The main focus of earlier studies
was to investigate the ability of AE to detect corrosion initiation. Literature indicates
that AE parameters such as number of AE hits and/or events have the ability to detect
corrosion as well as changes in the rate of the corrosion process (Li et al., 1998;
Zdunek et al., 1995; Idrissi and Limam, 2003).

Figure 10.3 shows the results of AE events and current versus time (Li et al., 1998).
This figure indicates the ability of AE to detect microcracking associated with corro-
sion damage. In addition, AE activity increased prior to the increase in galvanic
current, which illustrates the ability of AE to detect corrosion damage earlier than
can be achieved using electrochemical measurements.
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Figure 10.3 AE versus galvanic current readings (Li et al., 1998).

Recent studies also have investigated the use of AE-based condition assessments
such as SiIGMA, R-A value, and b-value (Farid Uddin et al., 2004; Ohtsu and Tomoda,
2008). Figure 10.4 shows the results of b-value versus time during an accelerated
corrosion test using wet/dry cycles on a small scale specimen (Ohtsu and Tomoda,
2008). During this test, half-cell potential (HCP) measurements started decreasing at
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Figure 10.4 Variation of b-values in cyclic wet/dry test (Ohtsu and Tomoda, 2008).
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approximately 100 days. A drop in the b-value was observed at the same time, indi-
cating that corrosion damage is occurring. The rise in the b-value at approximately
40 days of testing was attributed to corrosion initiation, as the chloride concentration
exceeded the threshold at this time.

10.4 Corrosion classification using AE

Most of the earlier studies focused on RC specimens and showed that AE can
detect corrosion damage, but they did not directly relate AE activity to the rate
of corrosion and in determining the extent of corrosion. Although the mechanism
of corrosion activity in RC and PC is similar, the manufacturing process and
shape of prestressing strands facilitates corrosion initiation at a lower chloride
concentration as compared with steel rebars (Moser et al., 2011). This section sum-
marizes recent efforts at the University of South Carolina for corrosion detection
and classification of prestressing strands in PC and post-tensioned concrete (PT)
specimens with different scales and durations of corrosion exposure. In these
studies, 1/2 in. (12.7 mm) seven-wire low-relaxation prestressing strands were
used in all specimens. AE R6i sensors (peak resonance at approximately 55 kHz,
with integral 40 dBg (referred to as dB for simplicity) preamplification) were
used to monitor corrosion in all the studies. It is noted that all the AE data shown
is filtered. The main filters used are D-A filters, which are based on inspection of
AE signals to differentiate noise from genuine AE data. The limits used in the D-A
filters from ElBatanouny et al. (2014c) are shown in Table 10.1. For more informa-
tion regarding the filtration techniques, please refer to the referenced manuscripts
(ElBatanouny et al., 2014c; Mangual et al., 2013a,b).

10.4.1 Small-scale specimens

A total of 20 specimens were tested under an accelerated corrosion test setup. The
specimens were reinforced with an embedded 1/2-inch-diameter prestressing strand;

Table 10.1 AE duration-amplitude data filter (EIBatanouny et al.,
2014c¢)

Rejection limits Rejection limits Rejection limits

Amp (dB) Dur (us) Amp (dB) Dur (us) Amp (dB) Dur (us)

40—42 >400 50—52 >1500 60—65 >4500
42—44 >600 52—54 >2000 65—70 >6500
44—46 >800 54—56 >2500 70—75 >7500
46—48 >1000 56—58 >3000 75—80 >9000

48—50 >1200 58—60 >3500 90—100 >10,000
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dimensions of each specimen were 4.5 in. X 4.5 in. x 20in. (114 mm X 114 mm X
1270 mm). The test matrix included 11 precracked specimens and 9 pristine specimens
to evaluate the effect of cracks on AE attenuation. Specimens were immersed in a tank
filled with a 3% NaCl solution at room temperature to a level 0.25 in. (7 mm) below
the reinforcing strand. A copper plate with the same length of the specimens was
placed below each specimen to serve as the cathode.

Accelerating the corrosion process was established by forming a galvanic cell using
a rectifier to impress a direct external current to the specimens. The current that flows
between the dissimilar metals controls the degree of corrosion activity in the cell. The
rectifier was connected between the copper plate (cathode) and the prestressing strand
(anode). Figure 10.5 shows a diagram of the corrosion cell for a single cracked spec-
imen placed in the test vessel (Mangual et al., 2013a).

The results showed that stresses induced by volume expansion resulted in dense AE
that was correlated to the onset of corrosion and nucleation of cracks as shown in
Figure 10.6. Comparing AE data with electrochemical HCP measurements showed
that the cumulative signal strength (CSS) relates well with potential variations as
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Figure 10.5 Schematic of the accelerated corrosion setup (Mangual et al., 2013a).
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Figure 10.6 Amplitude (dB) versus duration (us) plot (Mangual et al., 2013a).
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shown in Figure 10.7. It also allowed discrimination between different corrosion
stages. The magnitude of the slope in the CSS versus time curve was able to portray
the depassivation process and onset of corrosion as corroborated by HCP. This shows
that AE is capable of detecting and discriminating between early corrosion stages
while mimicking the behavior of resistivity changes in the concrete.

Source location based on AE data enabled the accurate detection of events as a
result of passivity breakdown along the reinforcement and debonding (Mangual
etal., 2013a). Figure 10.8 shows the source location results for a precracked specimen.
As seen in the figure, most of the AE activity concentrated near to the crack where
corrosion is predicted to take place as a result of chloride accessibility in this region
(no AE activity was detected at the exact crack location, as it is already formed). At
the conclusion of the test, the specimens were taken apart, and the strand was removed
for visual inspection of corrosion. The strand was then cleaned and reweighed to mea-
sure the steel mass loss as detailed in Mangual et al., (2013a). As shown in Figure 10.9,
heavy corrosion damage, in terms of formation of longitudinal and tangential cracks,
was observed in some specimens.
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Figure 10.7 CSS and HCP versus time.
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Figure 10.8 Source location and number of events for a precracked specimen.
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Figure 10.9 Corrosion damage in steel and concrete.

ElBatanouny et al. (2011) proposed that AE intensity analysis can be used to clas-
sify corrosion damage. The method was first proposed by Fowler et al. (1989) to quan-
tify damage in fiber reinforced polymers (FRP) vessels and tanks by calculating two
parameters: historic index, H(), and severity, S,. Historic index is a form of trend anal-
ysis that measures the rate of change in the CSS, while severity is the average of a
certain number of hits (50 hits) with the highest signal strength. The increase in these
parameters can be related to accumulation of damage. Historic index and severity can
be calculated using Eqns (10.4) and (10.5), where N is number of hits up to a time (?),
S,i 1s the signal strength of the ith event, and K is an empirically derived factor that
varies with the number of hits. In this study, the value of K was selected to be: (a)
N/A if N <50; (b) K=N—30if 51 <N <200; (c) K=0.85N if 201 <N <500
and (d) K=N—75if N > 501.

N
N A
H(t) = N K Z’;Vk“ ol (10.4)
o Ei:l Soi
1 =50
Sr =15 ;Sm- (10.5)

Intensity analysis results were correlated with HCP measurements and measured
sectional mass loss, yielding two AE-based corrosion classification charts for pre-
cracked and uncracked specimens as shown in Figure 10.10. For precracked speci-
mens, the chart divides the corrosion damage into four categories as illustrated in
Mangual et al. (2013a) as follows: (1) No damage: at this level the steel is still in
the passive condition and no corrosion damage occurred, (2) Depassivation: at this
level corrosion has just initiated with sectional mass loss less than 15%, (3) Cracking:
refers to the level at which cracks due to corrosion started to form and the sectional
mass loss is less than 21%, and (4) Severe damage: more cracks form and the sectional
mass loss exceeds 21%. For pristine specimens, specimens in which depassivation was
absent laid in region A of the intensity analysis grading chart, whereas depassivated
specimens lay in the B region (Mangual et al., 2013b). These charts enable early detec-
tion of corrosion and classification of corrosion damage. Such charts also could extend
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Figure 10.10 AE-based corrosion classification charts for: (a) precracked specimens and
(b) pristine specimens (Mangual et al., 2013a,b).

the use of AE to personnel who are less acquainted with methods of performing dam-
age evaluation, without the need to send the collected data to an AE specialist. It is
noted that these figures include uncertainties associated with AE monitoring that
should be studied and quantified in future studies.

10.4.2 Medium-scale specimens

Long-term corrosion tests were performed on medium-scale PC beams to provide bet-
ter representation of actual environments for corrosion. The corrosion was accelerated
using three-day-wet/four-day-dry cycles with a 3% NaCl solution as shown in
Figure 10.11. Each beam was reinforced with two 1/2in. (12.7 mm) prestressing
strands located in the compression zone and measured 16 ft 4 in. in length (4.98 m).
The beams were T-shaped with a total height of 15 in. (380 mm), a web thickness
of 6in. (150 mm), and a flange width and depth of 24 in. (610 mm) and 3 in.
(75 mm), respectively. The test included three specimens, where two were precracked
to 0.016 in. (0.4 mm), specimen CC-0.4; and 0.032 in. (0.8 mm), specimen CC-0.8;
while the last specimen was pristine. The specimens were continuously monitored
by AE for 140 days. No corrosion damage was detected in the pristine specimen
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Figure 10.11 Corrosion test setup and AE sensor layout (in mm; 1 in. = 25.4 mm)
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(ElBatanouny et al., 2014c).

from any method due to the limited ability of chlorides to penetrate through concrete
subjected to prestressing force.

The results of the precracked specimens showed that the AE parameter CSS is
able to detect corrosion with a higher sensitivity than HCP. As shown in Figure 10.12,
HCP for specimen CC-0.8 showed that corrosion initiated within the first week of
testing agreed with CSS results that showed a high rate of corrosion activity. For
specimen CC-0.4, HCP results only approached the corrosion threshold toward the

(a) 1.00 4y 0
1
1
075 -'.l'ﬂu‘.,r\ ‘r\'p‘gaq.’u\\n:‘!:'rsr\‘ = 4 —200
>‘f’ Corrosion threshold WY
£ 050 ) ] —400
1) CSSs
19
O (25 fr====HCP 4 -600
0.00 . L -800
0 50 100 150
Time (days)
(b) 1.00 | css -0
1
1
0.75 ll L 200
>‘{) | Corrosion threshold
E o050 H L _400
g |fad
] -~
© 025 |[VV v :’J"' SN 1z} vy Vi \ F-600
0.00 L L -800
0 50 100 150

Time (days)

Potential (mV)

Potential (mV)

Figure 10.12 CSS and HCP versus time. (a) Specimen precracked crack width (a) 0.016 in.
(0.4 mm), specimen CC-0.4 and (b) 0.032 in. (0.8 mm), specimen CC-0.8 (ElBatanouny

et al., 2014c¢).
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end of the test while AE was showing a steady increase in the AE activity, illustrating
that corrosion is occurring. To further investigate the corrosion activity, linear polar-
ization resistance (LPR) measurements were also taken to calculate the corrosion
rate. Based on Andrade et al. (1990) classification, LPR results showed that CC-
0.4 had a moderate corrosion rate, while CC-0.8 had a high corrosion rate. This
agrees with the AE results, where the rate of AE activity for CC-0.8 was higher
than that of CC-0.4. Visual inspection of damaged prestressing strands showed clear
evidence of pitting (localized) corrosion in both specimens as shown in Figure 10.13.
This corrosion type leads to a significant reduction in the residual capacity of the
specimens. Crack width is a significant factor in the formation and intensity of pitting
in terms of pit depth. Load testing of the beams at the conclusion of the test showed a
reduction in the capacity of the beams where corrosion was detected by AE, as
compared with the pristine specimen where no corrosion was detected. This indi-
cated that AE has the ability to detect corrosion before a reduction in the strength
of the structure occurs. Therefore, adapting this method for real-time corrosion moni-
toring can reduce, if not eliminate, the risk of sudden failure as a result of corrosion
damage (ElBatanouny et al., 2014c).

Intensity analysis was performed on the cracked specimens using the limits set in
the small-scale specimens study as shown in Figure 10.14. The results showed that
AE intensity analysis can enable the detection and classification of corrosion damage.
This is true for small- and medium-scale specimens, illustrating that the method may
be independent of specimen size and duration of exposure. These results were also
compared with LPR results and had a good agreement.

o

Figure 10.13 Photographs showing pitting corrosion: (a, b) specimens CC-0.4 and CC-0.8,
respectively, and (¢, d) SEM micrographs of specimens CC-0.4 and CC-0.8, respectively
(1 in. = 25.4 mm) (ElBatanouny et al., 2014c).
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Figure 10.14 Corrosion intensity analysis results for cracked specimens (ElBatanouny et al.,
2014c).

10.5 Special considerations and potential
applications in the field

AE is a nonintrusive method that has the ability to detect damaged areas through
source triangulation. The high sensitivity of the method enables it to perform global
assessment of the structure. However, effective filtering protocols are needed for field
applications to reject noise related to environmental containments such as rain, hail,
and wind with debris.

The method is currently deployable in elements such as piles and foundations. For
superstructures, a method to separate AE data from corrosion and that from other sour-
ces such as service loading should be developed. More studies should be conducted on
the applicability of the developed charts for field applications. Uncertainties related to
noise rejection, AE wave speed, and signal attenuation in the field should also be
investigated (ElBatanouny et al., 2014d).

10.6 Special considerations for wireless
sensing

AE systems have been steadily developing over the past decades to become afford-
able and deployable. Currently, a self-powered wireless AE system is commercially
available in the United States through Mistras Group, Inc. This makes AE suitable
for remote/real-time/rapid inspection of massive structures using a minimal number
of sensors. The authors of this chapter successfully implemented AE wireless
systems in a previous project with the Savannah River National Laboratory, where
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AE sensors were embedded in a mesoscale test bed to monitor cracks in grout used
for in situ decommissioning of nuclear structures (Ziehl et al., 2012; ElBatanouny
et al., 2012).

The wireless AE system “smart node” reduces the data transferred wirelessly by
sending the waveform parameters without including the waveforms. The waveforms
are saved on an SD card that is attached to the node for more detailed signal process-
ing. This data-reduction technique enables the system to process and send data wire-
lessly in real-time and reduces the possibility of data loss due to insufficient buffer.
However, the capacity of data collection of the wireless system is less than that of
wired systems. Therefore, future efforts should focus on comparing AE data
collected from wireless AE systems with those of wired AE systems. Since all
damage-evaluation techniques proposed are based on wired systems, a probabilistic
analysis should be conducted to evaluate and modify damage assessment limits for
wireless systems.

10.7 Summary

The feasibility of AE to detect corrosion was evaluated by comparing AE results with
electrochemical methods, sectional mass loss, and visual evidence of corrosion dam-
age. AE parameters such as cumulated events and signal strength were found to detect
the initiation of corrosion prior to electrochemical measurements. The method can be
effectively used in places where there is no provision for electrochemical measure-
ments. AE-based intensity analysis charts can enable the detection and classification
of corrosion damage using empirical limits for corrosion levels. This chart classifies
corrosion damage in specimens with different sizes and exposure times showing
that it may be independent of size and duration.

Unlike some electrochemical techniques, the proposed AE corrosion classification
charts have the ability to detect and quantify corrosion damage at early stages. This
enables the development of AE into a damage quantification tool for maintenance pri-
oritization because significant damage (such as macrocracking and spalling) is not
required for detection. The proposed chart can also be used to estimate safe remaining
service life as it is linked to cross-sectional mass loss results. However, the uncer-
tainties associated with the relation between AE and mass loss should be quantified
prior to full implementation.
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