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 An efficient prediction model based on fractal mathematics is developed. 

 An improved ant colony algorithm for optimizing energy consumption is proposed. 

 The proposed approach shows excellent energy efficiency and resource utilization. 
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Abstract

With the rapid development of cloud computing, how to reduce energy con-
sumption as well as maintain high computation capacity has become a timely
and important challenge. Existing Virtual Machines (VMs) scheduling schemes
have mainly focused on enhancing the cluster resource utilization and reducing
power consumption by improving the legacy ”bin-packing” algorithm. However,
different resource-intensive applications running on VMs in realistic scenarios
have significant effects on the system performance and energy consumption.
Furthermore, instantaneous peak loads may lead to a scheduling error, which
can significantly impede the energy efficiency of scheduling algorithms. In this
paper, we propose a new scheduling approach named PreAntPolicy that con-
sists of a prediction model based on fractal mathematics and a scheduler on the
basis of an improved ant colony algorithm. The prediction model determines
whether to trigger the execution of the scheduler by virtue of load trend predic-
tion, and the scheduler is responsible for resource scheduling while minimizing
energy consumption under the premise of guaranteeing the Quality-of-Service
(QoS). Through extensive analysis and simulation experiments using real work-
load traces from the compute clusters of Google, the performance results demon-
strate that the proposed approach exhibits excellent energy efficiency and re-
source utilization. Moreover, this approach offers an effective dynamic capacity
provisioning model for resource-intensive applications in a heterogeneous com-
puting environment and can reduce the consumption of system resources and
energy when scheduling is triggered by instantaneous peak loads.
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1. Introduction

cloud computing has emerged as a new business model of computation and
resource storage based on on-demand access to potentially significant amounts
of remote data center capabilities [1]. More and more data centers have succes-
sively been established because of the rapid development of cloud computing.
However, these data centers are running a large number of applications that
do not only consume considerable computing and storage capacity, but also
consume huge amount of energy. It is reported that data centers in the US
accounted for approximately 3% of the total electricity consumption in 2011
[2], and that the operational expenses will exceed the costs to purchase server
hardware by 2015 [3]. Motivated by these facts, reducing power consumption
and cutting down energy cost has become a primary concern for today’s data
center operators.

Many existing studies have been made to improve the energy efficiency of
data centers. A series of technical methods are proposed for different aspects,
including better cooling technology, temperature control, Dynamic Voltage and
Frequency Scaling (DVFS) [4], software components such as resource virtualiza-
tion [5], and load-balancing algorithms. An effective approach for energy saving
in data centers is to dynamically adjust the data center capacity and provide
resources for the application systems by scheduling algorithms. However, the
scheduling algorithm in the field of cloud computing is known to be a challenge,
as it requires a careful understanding of resource demand characteristics, as well
as through consideration of various energy cost factors. Traditional schedul-
ing algorithms pay more attention to allocating resources fairly, but in most
realistic scenarios, different resource-intensive applications running on virtual
machines also have an important effect on the system performance and energy
consumption. Therefore, these aspects should be taken into account seriously.
Cloud computing applications always use multiple types of resources, such as
CPUs, memory, network bandwidth, and so on. From this perspective, the abil-
ity to schedule a variety of resources becomes indispensable. Finally, because
each scheduling is based on the resources required of the virtual machines in
the current moment, instantaneous peak loads may lead to a scheduling error,
which can significantly impede the energy-saving performance of scheduling al-
gorithms. In order to reserve resources more effectively, a scheduling algorithm
needs to consider the load trend of a data center when it makes scheduling
decisions.

To address these problems, we aim to design, implement, and evaluate an
energy-aware scheduling algorithm that integrates a fractal prediction model for
optimizing energy consumption in a cloud computing environment by shutting
down redundant machines. In contrast to the existing work based on the legacy
”bin-packing” algorithm, we formulate the problem as a convex optimization
problem-one that considers resource-intensive applications and a heterogeneous
computing environment. Moreover, our algorithm avoids scheduling errors trig-
gered by a specific threshold.

The major contributions of this paper are as follows:
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1) We develop an efficient prediction model based on fractal mathematics.
The model can assist the algorithm to decide to turn on/off hosts. Through
this wayit help to avoid the performance and energy loss which is triggered by
instantaneous peak loads on account of scheduling.

2) We propose an improved ant colony algorithm that is used to optimize
energy consumption and meet resource-intensive application demands in the
heterogeneous cloud computing environment.

The remainder of this paper is organized as follows: Section 2 presents a
survey of related work in the current literature and highlights the motivation of
this. In Section 3, we describe the overall architecture model of the proposed
approach followed by a detailed description of the load indicator, the developed
fractal prediction model, and the improved ant colony algorithm applied to
the scheduler. Section 4 presents the evaluation for our proposed algorithm
and demonstrates its benefits under various working conditions. Finally, the
conclusions are drawn in Section 5.

2. BACKGROUND AND MOTIVATION

2.1. RELATED WORKS
This section surveys the related work reported in the current literature to

reduce energy consumption and optimize resource utilization in the cloud com-
puting area.

Based on the DVFS technology, Wang et al. [6] proposed an algorithm to
reduce the energy consumption of parallel jobs. With the premise of not in-
creasing the overall execution time, the algorithm appropriately extends the
execution time of non-stressed tasks while lowering the voltage and frequency
of processors to reduce energy costs. There is no doubt that this algorithm is
an energy-efficient scheduling policy under the multi-core environment. Nev-
ertheless, it does not consider parallel operation for the demand of other re-
sources in addition to the CPU. Hosseinimotlagh [7] proposed a cooperative
two-tier energy-aware scheduling approach for real-time tasks to benefit both
cloud providers and their customers. However, it does not make full use of the
resources of the whole cluster. Similarly, Watanabe et al. [8], in contrast, fo-
cused on dependency between tasks and proposed new task schedulers for cloud
computing aiming to achieve energy savings. By using statistical method, Wu
[9] built an energy consumption model of the Cloud Computing system and pro-
posed a virtual machine scheduling algorithm to improve the energy efficiency
of the system. In order to save resources, it does have very good effect by using
this way. Whereas, task dependency leads to low cloud utilization.

Using an internal energy savings plan in the operating system, Nathuj and
Schwan [10] proposed a virtual energy management structure called Virtual
Power Management(VPM). It adopts a specific energy-saving measure for the
whole system by intercepting hardware instruction requests from the guest op-
erating system. This approach uses the client computer operating system to
simplify the mass of the energy-saving decision phase, but it is difficult for the
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method to make a comprehensive implication for the whole system. This is
because the single guest operating system can only monitor the local execu-
tion environment. Therefore, from a global perspective, it is very difficult to
guarantee the energy saving effect .Analogously, Liu et al. [11] presented an op-
timization model for task scheduling to minimize energy consumption in cloud
computing data centers. The proposed approach was formulated as an integer
programming problem to minimize energy consumption by scheduling tasks to
a minimum number of servers while keeping the task response time constraints.
The number of servers that required to service a homogenous workload is some-
how large. However, uneven network load distribution may be caused due to
such a greedy approach.

Stoess [12] regarded energy-savings management as an optimization prob-
lem coupled with energy constraints. In order to support energy conservation,
energy cost constraints are assigned to individual nodes, and the corresponding
energy monitoring system is applied. This scheme is based on hard energy-
saving constraints that ensure that application efficiency is in place. Thus, it
may increase the time of Service-Level Agreement (SLA) violation. At the same
time, it does not apply to the current private cloud environment. However, this
approach make a contribution to promoting and popularizing the idea of green
and low carbon systems. Focusing on reducing energy consumption through
migration of virtual machines, Hossain et al. [13] proposed a solution which
attached a potential score associated with energy-saving to each running virtual
machine. Every running time, the algorithm merges the virtual machine with
the highest score to the one with the lowest and shuts down redundant physical
machines(PMs). Unsurprisingly, this algorithm can reduce energy consumption
caused by the migration of virtual machines. However, migrating energy con-
sumption is just a part of the energy source in the cloud computing environment.
This algorithm is more suitable as a component of an energy-efficient scheduling
algorithm. Besides, a long scheduling delay, which can significantly hinder the
performance of some services, can easily occur.

Treating the scheduling of virtual machines as 0-1 knapsack problems, Srikan-
taiah and Kansal [14] provided a new train of thought for the resource optimiza-
tion of cloud computing. Based on the same approach, Buyya [15] proposed an
energy-saving computing framework that maximizes the advantages of hetero-
geneous resources using the improved Best Fit Decreasing (BFD) algorithm to
allocate resources for virtual machines. The 0-1 knapsack problem can be a
good simulation of optimization problems for energy saving or load constraints.
However, for multi-objective optimization problems, including task execution
efficiency, energy saving, and load balancing, or some other targets, the simu-
lation efficiency will be affected by the competition between multiple targets.
Moreover, given that it is difficult to set appropriate weights, the overall effect
is not ideal.

Niu et al. [16] proposed a Semi-Elastic Cluster (SEC) computing model for
organizations to reserve and dynamically resize a virtual cloud-based clusters.
Similarly, Kliazovich et al. [17] emphasized the role of communication fabric
and presented a scheduling solution, named e-STAB, which takes the traffic
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requirements of cloud applications into account for energy-efficient job allocation
and traffic load balancing in data center. Nevertheless, it is difficult to know
how the execution time of each task will change in this situation. Focusing on
energy-aware fault tolerant scheduling in public, multi-user cloud systems, Gao
et al. [18] explored a way to make cloud service provider achieve high error
coverage and fault tolerance confidence while minimizing the global energy cost
under user deadline constraints. However, from the perspective of global, it is
not an optimal scheme to place the virtual machine.

Szymanski [19] explored the use of a recently-proposed Future-Internet net-
work combined with a Maximum-Flow Minimum-Energy routing algorithm to
achieve low-latency energy-efficient communications in Global Scale Cloud Com-
puting systems. In order to maintain sustainable Cloud computing facing with
ever-increasing problem complexity and big data size, Cao [20] proposed an
energy-efficient scientific workflow scheduling algorithm to minimize energy con-
sumption and CO2 emission while satisfying certain Quality-of-Service (QoS).
Nonetheless, the method that pursuing low latency, low energy consumption
urgently may lead to a variety of errors.

2.2. MOTIVATION
Motivated by the defects in most existing scheduling algorithms, we propose

a new scheduler for optimizing energy consumption. Our approach investigates
the source of power consumption in the cloud computing environment from a
global perspective. It also takes into account the impacts of heterogeneity in the
computing environment, as well as different applications resource requirements.
Furthermore, we devise a prediction model based on fractal mathematics [21]
to assist the algorithm make appropriate decisions to turn the system on/off,
making the scheduler more practical. Finally, our approach is also lightweight,
independent, and easy to deploy because its implementation is very simple.
Meanwhile, this algorithm runs only on the management node.

3. The PROPOSED SCHEDULING APPROACH

This section starts with the presentation of the model of the proposed
scheduling approach followed by a detailed description of the load indictor.
Then we focus on the algorithm design and implementation.

3.1. MODEL OF THE PROPOSED SCHEDULING APPROACH
The model of the proposed scheduling approach is shown in Fig.1. It consists

of four functional modules. The monitoring module is responsible for periodi-
cally gathering resource usage from the physical machines in the cluster such as
CPU utilization and disk utilization. The prediction model determines whether
to trigger the execution of the scheduler through load trend prediction and re-
sults evaluation. The scheduler is responsible for migrating virtual machines to
the specified hosts according to the instructions from the prediction model. The
allocation model is in charge of dispatching a new task to a virtual machine,
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Figure 1: Model of the proposed scheduling approach

and it allocates appropriate resources for the task. The overall workflow of this
model can be roughly described as: the prediction model predicts the coming re-
source utilization of a data center through the data collected by the monitoring
model. Then the scheduler schedules virtual machines based on the instructions
from the prediction model. The main job of the allocation model is assigning an
appropriate virtual machine to a new cloud task produced by clients. Because
the prediction model and the scheduler own the core of our algorithm, we will
discuss the two module design, implementation and algorithm in detail later.

3.2. LOAD DESCRIPTION
In this study, we focus on two types of resources: CPU and disk I/O band-

width. However, it has been illustrated that our algorithm has the ability to
allocate multiple types of resources. We present a unified and standardized
description of the load indicator in order to provide comparability between
heterogeneous physical nodes. The CPU load indicator of the ith host ma-

chine in the cluster is expressed as Loadcpu i =
N∑

k=1

Usage(k)/Capacitycpu i,

where N represents the number of active virtual machines on this host ma-
chine, Capacitycpu i is its CPU capacity and Usage(k) represents the CPU
usage of the kth virtual machine running on this host. CPU capacity is mea-
sured by core count. Thus, the CPU load of a cluster, which is made up of

M physical machines, can be expressed as Loadcpu total =
M∑
i=1

Loadcpu i/M . In

the same way, the disk load indicator of the ith host machine in the cluster is

expressed as Loadio i =
N∑

k=1

Dk/Totalio i where Dk represents the disk usage
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of the kth virtual machine running on this host. Totalio i is the capacity of
disk bandwidth of the host machine. Disk capacity is measured by the data
transmission rate (MB/s). Thus, the disk load of a cluster that consists of

M physical machines can be expressed as Loadio total =
M∑
i=1

Loadio i/M . Fi-

nally, the logic resource capacity of the ith single host machine in the cluster is
Resi−log ic = σ ×Capacitycpu i + (1− σ)Totalio i where σ stands for the weight
factor of the CPU capacity and (1-σ) represents the weight factor of disk I/O
bandwidth capacity.

3.3. DESIGN OF PREDICTION MODEL
This section presents the prediction model we developed for predicting the

usage of each type of resource. Dinda [22] found that the CPU load had a
very strong nature of self-similarity and a long correlation through extensive
research. Motivated by this, we used fractal mathematics to predict resource
usage in a period of time in the future. In our model, continuous time is divided
into a series of discrete time points with a fixed interval like tk−i+1, ... , tk−1,
tk, tk+1,..., tk+i. We aim to predict Gk+1, ..., Gk+I , which represents the usage
of the CPU in the cluster at time tk+1, ..., tk+i on the basis of Gk−i+1, ..., Gk−1,
Gk. It can be observed that our model prediction dataset has the same number
of values as the history dataset after one prediction. Through this strategy, error
scheduling caused by an instantaneous peak load can be prevented. Similarly,
we can forecast the disk I/O bandwidth load in the same way.

Thus far, the most effective way to study, parse, and construct fractals is by
using an Iterated Function System (IFS). According to the IFS collage theorem,
there must be an IFS whose attractor is approximate to a given set. Therefore,
we can perform compression transformation to a given set and paste the re-
sults together to reconstruct it. Barnsley [23] introduced a practical method to
construct IFS, called Fractal Interpolation Theory. With its assistance, all we
need do is to apply deterministic iteration to any point and we can obtain the
attractor. The attractor line contains the forecast values we need. The affine
transformation formula [23] is as follows. Formally, we can set (x, y) to (x0, y0),
(x1, y1), ... , (xN , yN) where x0 < x1 < < xN , and Wn is the attractors of the
IFS.

Wn

[
x
y

]
=

[
an 0
cn dn

] [
x
y

]
+

[
en

fn

]
(1)

And the following two conditions are satisfied:

Wn

[
x0

y0

]
=

[
xn−1

yn−1

]
(2)

Wn

[
xN

yN

]
=

[
xn

yn

]
(3)
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From Formulas (1)(2)(3), the following equations can be acquired:




anx0 + en = xn−1

anxN + en = xn

cnx0 + dny0 + fn = yn−1

cnxN + dnyN + fn = yn

(4)

where dn is a special parameter in fractal mathematics which is called coor-
dination factor. It is usually specified by the external. In this paper, dn is the
ratio of the average load to the max load in the history dataset. When dn is
given, the other coefficients of Wn can be expressed as:





an = xn−xn−1
xN−x0

cn = yn−yn−1
xN−x0

− dn
xN y0−x0yN

xN−x0

fn = xN yn−1−x0yn

xN−x0
− dn

xN y0−x0yN

xN−x0

en = xN xn−1−x0xn

xN−x0

(5)

Finally, we apply deterministic iteration to any point to obtain the attractor.
The algorithm of the fractal prediction model is intuitively described as follows:

Table 1: Parameters Description

Description Unit Symbol
The number of similar days - Ns

The number of interpolation points - Np

The ith similar day - Si

The IFS of the ith similar day - Si IFS
The current day - C
The IFS of the current day - C IFS
The attractor in the fractal mathematics - A
A random and normalized data - R
The IFS with weight - IFSw

The interval between interpolation points minutes I
The current time - Tnow

The minimum load in the historical dataset - Qmin

The maximum load in the historical dataset - Qmax

The average load in the historical dataset - Qave
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Algorithm 1 Fractal Prediction

1: procedure BuildIFSforDay(D)
2: i = 0
3: beginT ime = Tnow − (Np − 1) ∗ I
4: while beginT ime != Tnow do
5: makeHistoricalDataSet(i)
6: i = i + 1
7: beginT ime = beginT ime + I
8: end while
9: j = 0

10: while j! = Np do
11: makeNormalizedDataSet(j)
12: j = j + 1
13: end while
14: BuildIFS(D)
15: end procedure
16: procedure FractalPrediction
17: for i from 0 to Ns step 1 do
18: BuildIFSforDay(Si)
19: end for
20: BuildIFSforDay(C)
21: IFSw = weightProcess(Si IFS, C IFS)(0 ≤ i < Ns)
22: A = DeterministicIteration(R, IFSw)
23: k = 0
24: while k! = Np do
25: getPredictedValue(k)
26: + + k
27: end while
28: end procedure

Make the current day as a starting point and treat the Ns previous days
as similar days. The day just prior to the current day is specially named
thebenchmarkday. Take I minutes as an interval and the current time as a
start, and collect Np forward interpolation points in the load record of the
benchmark day. A historical data set composed of the Np interpolation points is
produced by makeHistoricalDataSet procedure. The makeHistoricalDataSet
procedure normalizes the historical data set using the following formula:





xi = Ti−Tmin
Tmax−Tmin

yi = Qi−Qmin
Qmax−Qmin

(6)

where Ti is the current time and Qi is the corresponding load. Tmin and Tmax

represent the minimum and maximum time values, respectively. Accordingly,
Qmin and Qmax are the load values at Tmin and Tmax. Then, xi and yi denote
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the normalized interpolation points. BuildIFS procedure generates IFSs for the
current day, benchmark day and all the other similar days. Then, these IFSs
are consolidated into one IFS with weight through weightProcess procedure
and the weighting factors can be specified by the experience. In general, if
a similar day is closer to the current day, the weighting factor of its IFS is
bigger. DeterministicIteration function is responsible for doing deterministic
iteration to any point using the weighted IFS and get its attractor. The last
step is to get the predicted values we need using the attractor. All process is
in getPredictedV alue function. First, it estimates the maximum and minimum
load values according to the historical data, then get yi at time xi when you want
to predict with the attractor line. Finally, the predicted load can be obtained
by doing an inversion operation on Formula 6. If there are more than half of
predicted loads that are lower than the predetermined threshold, our prediction
model will send a notification to the scheduler that it is necessary for the running
virtual machines to be reassigned to hosts for power-saving adjustment.

3.4. DESIGN OF SCHEDULER
The scheduler is based on the improved ant colony algorithm [24]. It has

been proven to be a robust, versatile and population based approach which can
be used to solve different combinatorial optimization problems. Meanwhile, the
ant colony algorithm has been shown to compare favorably with other heuristic
algorithms like genetic algorithms, evolutionary programming, and simulated
annealing. We make use of the improved ant colony algorithm to allocate run-
ning virtual machines to those hosts that have a large capacity of resources while
running on low operational power. In this way, we can shut down redundant
hosts to reduce energy consumption and improve resource utilization.

To assign Nv virtual machines to Nh host machines, the scheduling algorithm
of the scheduler is as follows:

Every artificial ant carries a merged queue called a Ai MQ, which consists
of virtual machines. The merged queue is made up of four queues of virtual
machines and the process of makeMergedQueue is described as follows:

We assume that the first queue consists of virtual machines that are run-
ning CPU-intensive jobs. The second queue consists of those virtual machines
running I/O-intensive jobs. The third queue is made up of the virtual machines
running both CPU-intensive and I/O-intensive jobs (hereafter, referred to as
WEIGHT jobs), and the virtual machines of the last queue running those jobs
whose demands for CPU and I/O are both low (hereafter, referred to as LIGHT
jobs). All running virtual machines in the cluster are distributed in the four
queues, and the virtual machines of each queue are arranged in accordance with
the demand for resources, ranging from largest to smallest. It assumes that a[m]
stands for the first queue mentioned above, b[n] represents the second queue,
c[p] is the third queue, while d[q] is the last queue. The suffix parameters, m,
n, p, q, are not necessarily equivalent. If a[0] is bigger than b[0], the sequence of
the merged queue is c[pi] (0 ≤ pi ≤ p− 1), d[qi] (0 ≤ qi ≤ q − 1), a[0], b[0], a[1],
b[1], ... . If the virtual machines of the a or b queue are the first to be completed
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Algorithm 2 Scheduling Algorithm

1: procedure Intialization
2: for i from 0 to Na − 1 step 1 do
3: Ai AL = {V M j}(0 ≤ j < Nv)
4: Ai HC = ∅
5: Ai P = ∅
6: makeMergedQueue(Ai)
7: end for
8: end procedure
9: procedure AntTask(x)

10: while |Ax MQ|! = 0 do
11: for i from 0 to Nh − 1 step 1 do
12: calProbabilityForHost(i)
13: end for
14: if Ax select Hr (0 ≤ r < Nh) then
15: move Hr from Ax AL to Ax HC
16: for j from 0 to Nv − 1 step 1 do
17: if (V M j is in Ax MQ) and (V M j RR ≤ Hr Ca) then
18: add {V M j , Hr} to Ax P
19: delete V M j from Ax MQ
20: −− |Ax MQ|
21: end if
22: end for
23: end if
24: end while
25: end procedure
26: procedure ImprovedAntColonyAlgorithm
27: for t from 1 to Nm step 1 do
28: Intialization()
29: for i from 0 to Na − 1 step 1 do
30: AntTask(i)
31: end for
32: UpdateAction()
33: GetPlan()
34: end for
35: end procedure
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Table 2: Parameters Description

Description Unit Symbol
The number of ants - Na

The number of hosts - Nh
The number of virtual machines - Nv

The number of iterations - Nm

The ith ant - Ai

The AL set of the ith ant - Ai AL

The HC set of the ith ant - Ai HC

The merged queue of the ith ant - Ai MQ

The migration plan of the ith ant - Ai P

The energy consumption produced by the ith ant’s migration plan kW·h Ai Co

The ith host - Hi

The logic resource capacity of the ith host - Hi Ca

The pheromone of the ith host left by ants - Hi Ph

The jth virtual machine - V M j

The resource requirement of the ith ant - V M j RR

and added into the merged queue, the rest virtual machines of the other queue
are added directly into the merged queue according to the established order.

In the 12th line of Algorithm 2, the ant calculates the probability for hosts
as Formula(7):

Pj(t) =





Ej(t)
α×Fj

β

∑
(Ek(t)α×Fk

β)
, j, k ∈ AL

0, otherwise

(7)

where Pj represents the probability that the ant chooses the jth host, Ej is
the pheromone concentration of the jth host, Fj is the cost performance of the
jth host, α stands for the importance of the pheromone concentration, and β
represents the importance of cost performance. AL is the set of hosts that ants
can continue to select. These hosts are defined as not falling within the set HC.
Meanwhile, their logic resource capacity is larger than the resource demands of
the virtual machine at the head of the merged queue. HC is a set of hosts that
are already selected by the ants. When an ant selects the jth host, it should
place this host in HC and place as many virtual machines as possible on this
host.

In the 32nd line of Algorithm 2, the UpdateAction procedure updates the
global pheromone concentration according to the following formulas:

Ej(t + 1) = (1 − ρ)Ej(t) + ∆Ej (8)

∆Ej =
M∑

k=1

∆Ek
j (9)
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∆Ek
j =

{ Q
Pk

, if ant k passes the jth host during t to t+1 iteration

0, otherwise
(10)

ρ in Formula 8 represents the pheromone volatilization rate, and ∆Ej is the
pheromone released by all the ants in the period of t iteration. If ant k passes
the jth host during t to t + 1 iteration, it will release Q

Pk
pheromone on this

host. Otherwise, ant k will not release any pheromone on it. Q is a constant
and Pk is the total real power of all hosts that ant k has passed. We assume
that ant k has passed through U host machines and Pk

i is the real power of the
ith host that it has passed.

Pk =
U∑

i=1

P i
k (11)

P i
k = (

T

L
)Loadi +

L − T

L
(12)

T in Formula(12) represents the rated power of the ith host machine, Loadi is
its real-time load and L is a coordination factor.

The GetP lan procedure selects the optimal scheduling in the loop which
owns the minimal actual total power. If the actual total power of this opti-
mal scheduling is smaller than the last cycle, then replace the final optimal
scheduling with this one.

4. EXPERIMENTAL EVALUATION AND RESULTS

We have implemented our algorithm model and evaluated the quality of our
solution using trace-driven simulation experiments. To make the simulation
more targeted and reduce unnecessary complexity in the process of simulation,
we developed a light and powerful simulator for cloud computing scheduling
algorithms that references CloudSim [25]. However, it must be emphasized that
we diminished the scale of both tasks and a data center because we use a ”flat”
operation entity model. Every task is bound to only one virtual machine, and
the resource requirements of each task are set to equal the task usage. This
means that a task does not reserve resources when it is applied to the resource
provisioning model for resources. In order to reduce the number of operations
in the entity model, we adopted some scale reduction measures that have no
influence on performance comparisons. In the experiments, the data center is
composed of 100 physical machines. We set the CPU capacity of each machine
to 0.25, 0.5, 0.75, or 1. This represents the majority of the machines’ configura-
tions in the Google cluster. In our simulation experiments, we implemented the
greedy First-Fit (FF ) scheduling algorithm, the Round-Robin (RR) scheduling
algorithm (which are used by some cloud computing platforms), and the Min-
imum Migration Power[13] (MM), which was proposed in the recent year. In
our simulations, the rated power of each machine is generated randomly from
400 to 800 Watt and we set the running power of an idle machine to half of its
rated power.
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Figure 2: Simulation Core Process

4.1. Simulation Scenarios
Although we reduced the scale of the Google trace data without any dis-

tortion to simplify our simulation, many parameters still need to be decided.
The simulation scenarios are as follows: the length of simulation is 24 hours.
The low threshold of the CPU and disk utilization is set to 70%, and the high
threshold is 90%. The system monitoring time interval is 20 minutes. In the
improved ant colony algorithm, α is 2, β is 5, L is 2 and ρ is 0.5. The number
of ants is 100 and the maximum iteration time is 100. The weighting factor of
IFS is set to 0.4, 0.4, and 0.2. The weight coefficient for CPU capacity in logic
resources capacity of each host machine is 0.7 and the disk weight coefficient is
set to 0.3 accordingly. Ns is specified to 3, I to 20 and Np to 5 in the fractal
prediction model. We conduct our experiments with different combinations of
multiple sets of parameters. Finally we decide to give the above combination of
parameters because these values can fully display the functionality and perfor-
mance of our algorithm. Meanwhile, the amount of resource consumed of this
algorithm is acceptable under these values.

4.2. Simulation Target
First, we will prove that our prediction model, which is based on fractal

mathematics is effective and reasonable. Then we will prove that the algorithm
in this paper performs better than the other algorithms in reducing the power
consumption of data centers and promoting the resource utilization of host
machines. The First-Fit (FF ) algorithm, the Round-Robin (RR) algorithm,
and the Minimum Migration Power (MM) scheduling algorithm are used to
compare with our algorithm.
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4.3. Simulation Core Processes
The simulation core process is shown in Fig.2. At first, all the Task-producing

and Load-monitoring events within the scope of the simulation interval are
mounted to the timeline of the timescheduler according to their timestamp.
Then, the timescheduler begins to deal with all kinds of events in order. During
this period, with the implementation of Task-producing events, Task-updating
events are generated and added to the timeline. The simulation experiment
ends until the presupposed simulation time expires.

4.4. Simulation Test And Result Analysis
4.4.1. CPU-load prediction

To verify the validity of the fractal prediction model, CPU load is selected
as the input data of this model. However, if the fractal prediction model can
predict CPU load effectively, other resources with autocorrelation will be equally
as effective.

Fig. 3 shows the comparison between the predictions of CPU usage which
adopts fractal mathematics and the real usage. The graph shows that the pre-
dicted values are always close to the real ones even during peaks. We use Pearson
product-moment correlation coefficient (PPMCC) to measure the trend similar-
ity of real CPU load and predictive value of CPU load. The Pearson correlation
coefficient is calculated as follows.

r =
∑

XY −
∑

X
∑

Y
N√

(
∑

X2 − (
∑

X)2

N )(
∑

Y 2 − (
∑

Y )2

N )
(13)

Having r close to 1 means the level of the positive correlation between X and
Y is very high. We replace X with the predictions of CPU usage and replace
Y with the real CPU usage. Finally, the value of r is very close to 1 (r ≈ 0.95)
which indicates that our fractal prediction model provides an accurate prediction
of the load trend for the resources which have a very strong self-similarity and
a long correlation.

4.4.2. Energy Consumption Test

Table 3: Energy Consumption Statistics

Index

Algorithm
PreAntPolicy FF RR MM

Average energy consumption(kwh) 360.54 1512.94 1458.66 923.90

Maximum energy consumption(kwh) 748.22 1790.48 1995.49 1306.06

Minimum energy consumption(kwh) 203.79 1291.93 1156.63 690.48

AVEDEV of energy consumption(kwh) 56.19 71.13 107.57 82.39
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Figure 3: CPU-load prediction

Figure 4: Energy Consumption Contrast Test

Fig. 4 depicts the case of energy consumption for four algorithms. A sta-
tistical table of test data is given at the same time. Table 3 shows that our
algorithm, nameed PreAntPolicy, has the least average energy consumption
during the experiment interval than FF , RR as well as MM algorithms. It
represents 76.17%, 75.28%, and 60.98% improvement over FF , RR, and MM ,
respectively. Meanwhile, the maximum and minimum values of PreAntPolicy
of the energy consumption test are far lesser than the other algorithms which
means that PreAntPolicy has a very excellent energy saving effect and is highly
controllable. The AVEDEV indicator proves that the fluctuation of energy con-
sumption of PreAntPolicy is also satisfactory and acceptable. PreAntPolicy
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Table 4: CPU Utilization Statistics

Index

Algorithm
PreAntPolicy FF RR MM

Average CPU utilization of one host 0.73 0.67 0.21 0.08

Maximum CPU utilization of one host 0.89 0.75 0.45 0.10

Minimum CPU utilization of one host 0.54 0.57 0.08 0.06

AVEDEV of CPU utilization of one host 0.04 0.03 0.06 0.01

Figure 5: CPU Utilization Contrast Test

performs much better in energy consumption because it takes into account the
impacts of heterogeneity in the computing environment, as well as different
applications resource requirements. With the help of improved ant colony al-
gorithm, PreAntPolicy makes virtual machines running on the hosts as cost-
effective as possible, and achieving the combinatorial optimization of energy
consumption and resource requirements. The prediction model based on frac-
tal mathematics also helps the algorithms to reserve resources for the future
load. However, FF , RR and MM algorithms only provide the assignment of
running virtual machines in a fixed manner without taking any combinatorial
optimization measures for energy consumption and resource requirements. Si-
multaneously, no prediction model is supplied for load prediction. At the same
time, by the way of making virtual machines running on a small number of
hosts which own high cost performance and turning off redundant machines,
the average resource utilization of a physical machine is promoted.
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Figure 6: Physical Machine Switch Contrast Test
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Figure 7: Virtual Machine Migration Times Contrast Test

4.4.3. CPU Utilization Test
Fig. 5 and Table 4 show that the average CPU utilization of PreAntPolicy

increases by about 6%, 52% and 65% compared to FF , RR, and MM , respec-
tively. Meanwhile, the maximum CPU utilization of PreAntPolicy can access
90% which is much better than other algorithms. The minimum CPU utilization
of PreAntPolicy and AVEDEV is not the best among all the test algorithms.
The main reason is FF algorithm places as many virtual machines as possible
on the chosen host. It just puts the focus on resource capacity and and its lack
of the sight of energy consumption. However, PreAntPolicy is more holistic.
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Table 5: Physical machine (PM) Switch Times Statistics

Index

Algorithm
PreAntPolicy FF RR MM

Average PM switch times 169.44 2378.82 1506.29 1326.72

Maximum PM switch times 250.00 2750.00 2501.00 1937.00

Minimum PM switch times 127.00 2070.00 866.00 989.00

AVEDEV of PM switch times 16.00 89.97 210.48 138.06

4.4.4. PM Switch Times Test
Fig. 6 and Table 5 show that PreAntPolicy has obvious advantage in the

average host switch times against other test algorithms. It represents a decrease
of 1157.28, 2209.38, and 1336.85 times over MM , FF , and RR respectively. Us-
ing load trend prediction model based on the fractal mathematics, our algorithm
can reserve resources for applications intelligently. The difference between our
prediction model and others is that our model can predict the load trend but
not just a single future load through historic dataset. Through this strategy,
error scheduling caused by an instantaneous peak load can be prevented and
unnecessary host switches can be avoided.

4.4.5. VM Migration Times Test
Because the FF and RR algorithms do not migrate virtual machines, we

need only compare PreAntPolicy with MM. From Fig.7 and Table 6 we can
find that the average migration time of PreAntPolicy is 724.60 and the MM
is 8741.46. It means that PreAntPolicy has a huge advantage with an av-
erage of 8016.86 times less migration compared to the MM . The maximum
and minimum values of migration times are far less than MM simultaneously.
PreAntPolicy reduces the migration number of virtual machines effectively be-
cause PreAntPolicy considers energy consumption from a global perspective
and takes into account the impacts of different applications resource require-
ments. After every migration triggered by the scheduler of PreAntPolicy, all
virtual machines run on cost-effective hosts. A cluster is in the energy-saving
state right now in which case virtual machines do not need frequent migrations
in a short time. However, the MM algorithm just put focus on energy con-
sumption caused by migration. Meanwhile, it does not take the heterogeneous
of tasks into consideration. Under this conditions, MM ’s scheduler is triggered
frequently which leads to frequent migration of virtual machines.

5. CONCLUSION

In this paper, we propose an energy-aware scheduling for virtual machines
in heterogeneous cloud computing systems. The scheduling approach is mainly
composed of a prediction model and a scheduler. Simulation experiments using
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Table 6: VM Migration Times Statistics

Index
Algorithm PreAntPolicy MM

Average VM migration times 724.60 8741.46
Maximum VM migration times 5388.00 10842.00
Minimum VM migration times 55.00 4092.00

AVEDEV of VM migration times 733.46 673.69

real traces obtained from production compute clusters of Google were conducted
to investigate the energy efficiency of the approach and the experimental results
showed that the proposed approach can reduce energy consumption by up to
76.17% compared to first-fit and 75.28% for round-robin, while the QoS has
not engaged any significant decline. The PPMCC(0.95) calculated within our
test case has shown the validation of the prediction model which assists our
scheduler significantly in reducing the number of virtual machine migrations and
the number of physical machine switch. Moreover, the scheduler based on the
improved ant colony algorithm supports multiple types of resource scheduling
which meets the requirements of resource-intensive applications in a real world
scenario.
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