
 978-1-4673-4714-3/13/$31.00 ©2013 IEEE 1140

2013 Ninth International Conference on Natural Computation (ICNC)

Inconsistent Data Repairs in Database Integrations

Bo Liu
Department of Computer Science

Jinan University
Guangzhou, China

Abstract—In the operations of multiple database integrations,
one of the most prominent data quality problems is the existence
of inconsistencies. Due to independence of data management
among different information sources, there exist several
possibilities for repairs of integrated data. In order to get good
repairs and preserve the correct data, this paper introduces a
new algorithm for repairing inconsistent data among multiple
tables based on functional dependencies, which keeps integrity of
source databases without deletions of tuples. The algorithm
determines the tuples that are potentially updated by analyzing
related attribute statistic measures, and is of objective, accurate
and effective properties. A repairing system structure is
presented, and some comparisons with other related work are
given at last.

Keywords- integration; functional dependency; inconsistency;
repair

I. INTRODUCTION
The main quality problems existed among several data sets

include inconsistencies, duplicates, and so on. An integrated
database is produced from multiple sources, even though each
source has the same scheme and the same data constraints, by
operations of the integration, violations of integrity constraints
may emerge.

Current database management systems (e.g. Oracle) can
define data constraints as a part of a database scheme, which
prevents violations of constraints from going into the database
However, some violations may happen in many ways[1]. For
example, new constraints may be added without being checked
for violations by legacy data; or, integrity constraints may be
turned off temporarily for backup; or, constraints fail to hold
after several databases have been merged.

Functional dependency (FD) is one kind of database
integrity constraints. Let R be a relational scheme of an
instance D, X ⊆ R, Y ⊆ R, an FD X→Y holds on D, denoted as
D X→Y, if for every two tuples t1 and t2 in D, such that
t1[X]=t2[X], t1[Y]=t2[Y].

Example 1：Consider two instances in table 1 and table 2
from two database sources, which have the same scheme and
satisfy a functional dependency (referred as fd :X→Y)
respectively. Tuples are labeled as t1, …, t8.

TABLE I. INSTANCE D1

TABLE II. INSTANCE D2

Suppose an integration view: v= D1∪D2. Apparently, v
violates fd: X→Y. There are some repairs of v, such as:(1)
delete t5 from D2; (2) update t5[Y]=b1 from D2; (3) delete t2
from D1.

In order to solve quality problems, data repairs are usually
carried out by insertions, deletions or modifications of tuples.
Literature [2] proposes the concept of active integrity
constraint (AIC), and insertion or deletion tuples should be
given under specific constraint conditions. Jef Wijsen presents
the method based on modifications, which replaces the errors
with variables[3]. Literature [4] proposes a sampling method
based on modifications with the minimum number of updated
tuples. Literature [5] introduces the update-based repairing
algorithms for satisfying FDs and INDs (Inclusion
dependencies).

By analyzing several repairing approaches according to
functional dependencies, it is easily to discover that the
deletion-based method is comparatively simple, but part of
useful information from the sources may be missing; and the
update-based method ensures completeness of source
information, but the choice of modified values is a difficulty
problem. Literature [5] proves that computing the minimum-
cost repair based on non-deletions is NP-complete. So current
methods based on modifications have limitations in efficiency
and accuracy.

The paper will study a repairing method based on FDs. The
background of the work is similar to that of literature [5],
which intends to repair violations according to FDs by
modifications. However, the method proposed in [5] needs

 X Y Z
t1 a1 b1 c1
t2 a2 b2 c2
t3 a3 b3 c3
t4 a1 b1 c4

The research is supported by Guangdong Natural Science Foundation
under Grant No.S2012010008831 and State Key Laboratory of Software
Engineering under Grant No. SKLSE2012-09-37.

 X Y Z
t5 a1 b3 c5
t6 a2 b4 c6
t7 a4 b4 c7
t8 a5 b5 c7

 1141

some subjective parameters for computing and comparing cost
of repairs, which effect accuracy and practicability. The paper
introduces a new objective heuristic algorithm in the light of
attribute statistic measures related to FDs.

The remainder of the paper is organized as follows. Section
Ⅱ gives some related concepts. An algorithm for repairing
inconsistent data that violate FDs is introduced in section Ⅲ. A
universal repairing system structure is given in section Ⅳ. In
section Ⅴ, comparisons with related work are studied. Finally,
it concludes with general remarks on the work and the further
direction for future research.

II. PRELIMINARIES
In general, given a set of FDs ∑ over a relation R, and two

instances r and r′ of R, a repair of an inconsistent instance r is
another instance r′ that satisfied ∑. Here only repairs obtained
by modifications are considered, and the criterion of minimal
changes is used. Some definitions of repairs are given as
follows according to [4], where △(r, r') is the difference set
between instances r and r′, and |△(r, r')| is the number of
tuples in △(r, r').

Definition 1. (Repair by modifications) Given a set of FDs
∑ over a relation R, and two instances r and r′ of R, r′ is a
repair of r w.r.t ∑ if r′ ∑ and TIDs(r′)= TIDs(r), where
TIDs(r) is the set of all identifiers of tuples in r.

Definition 2. (Cardinality-Minimal Repair) A repair r′ of r
is cardinality-minimal iff there is no repair r′′ of r such that
|△(r, r'')| <|△(r, r')|.

Definition 3. (Set-Minimal Repair) A repair r′ of r is set-
minimal iff there is no repair r′′ of r such that |△(r, r'')| ⊂ |△(r,
r')| and for each attribute cell c∈△(r, r''), r''(c)= r'(c).

In the paper, we use the concept of repairs in definition 2,
and cardinality-minimal repair is referred as repair simply.

Definition 4. (Violation set) Given an FD fd over a relation
R and an instance r, a violation set over fd on r is a set of
culprits[5], denoted as Vio_FD (r, fd), where c∈Vio_FD(r,
fd), c⊆r, ∀ t1, t2∈c, t1[X]=t2[X]∧t1[Y]≠t2[Y].

Example 2: In table 1 and table 2, given an FD fd: X→Y,
and an integration view: v= D1∪D2, according to definition 4,
Vio_FD(v, fd)={{t1, t5},{t4, t5} ,{t2, t6}}.

In the following, definition 5 and definition 6 describe two
confidence measures of tuples.

Definition 5. (tuple confidence) Given an FD fd: X→Y
over a relation R, and an instance r, and a tuple t ∈ r,
confidence of t over fd is

])[(
])[],[(),(

XtP
YtXtPfdtConf = (1)

where P(t[X], t[Y]) is frequency of (t[X],t[Y]) in r, and P(t[X])
is frequency of (t[X]) in r.

Definition 6. (tuple relative confidence) Given an FD
fd: X→Y over a relation R, and an instance r, and a tuple t∈r,
relative confidence of t over fd is

([], [])(,)
([])

P t X t YRConf t fd
P t Y

= (2)

where P(t[X], t[Y]) is frequency of (t[X], t[Y]) in r, and P(t[Y])
is frequency of (t[Y]) in r.

Theory 1. Given an FD fd: X→Y over a relation R, and an
instance r, for a tuple t∈r, if t∉Vio_FD(r, fd), then Conf(t,
fd)=100%.

Prove: Let t′∈r, and t′[X]= t[X], because t∉Vio_FD (r,fd),
then t′[Y]= t[Y], therefore

P(t[X], t[Y])= P(t[X])

%100
])[(

])[],[(),(==
XtP

YtXtPfdtConf

However, RConf(t, fd) is probably not 100%. Because
P(t[X]) may be less than P(t[Y]), in addition, P(t[X], t[Y])≤
P(t[X]) and P(t[X], t[Y])≤P(t[Y]), so RConf(t, fd)≤100%.

III. A REPAIRING ALGORITHM

A. Train of Thought
Given a violation set Vio_FD (r, fd), and fd: X→Y, for c∈

Vio_FD (r, fd), if there are n number of tuples in c, then n-1
number of tuples in c will be repaired. However, it is difficult
to decide which tuples are modified to satisfy low cost and
result in high accuracy. The main idea of the paper is selecting
the tuples with the lower confidence to repair. In other words,
firstly, choose the tuples with the highest confidence based on
fd in each element c∈Vio_FD (r, fd), if there are more than
one such tuples, then from them choose the one with the
highest relative confidence based on fd, and let the tuple be t,
denote Refvalue(c) as (t[X],t[Y]), such that inconsistent data of
the other tuples in c which are different from t are repaired by
Refvalue(c).

For example, in example 2, we get Vio_FD(D1 ∪ D2,
fd)={{t1, t5},{t4,t5} ,{t2, t6}}.

Let c1={t1, t5}, c2={t4, t5} , c3={t2, t6}.

For c1, due to Conf(t1, fd)> Conf(t5, fd), so
Refvalue(c1)=(a1, b1), and t5[Y] is repaired by b1, the same
situation to c2 .

 For c3, Conf(t2, fd)= Conf(t6, fd), but RConf(t2, fd)>
RConf(t6, fd), so Refvalue(c3)=(a2, b2), and t6[Y] is repaired by
b2.

B. Repair Algorithm
The repair algorithm based on FDs is described in Fig.1.

Some explanations are shown in the following.

 1142

Figure 1. FD-REPAIR Algorithm

In line 2, Vio_FD (r, fd) returns a violation set over fd on r;

In line 4, bestconf is initialized, which gives the minimal
values of confidence and relative confidence;

In line 6 to line 8, use operator “>>” to compare (Conf(t,
fd), Rconf(t, fd)) with current bestconf. If Conf(t, fd) is larger
than the corresponding value in bestconf, or Conf(t, fd) is equal
to the corresponding value in bestconf and Rconf(t, fd) is larger
than the corresponding value in bestconf, then bestconf is
replace by (Conf(t, fd), Rconf(t, fd)), successively, Refvalue(c)
is given or updated;

In line 11, the tuples except t in c are repaired by
Refvalue(c).

C. Time Complexity of FD-REPAIR Algorithm
In FD-REPAIR algorithm, let the number of tuples in r be

n, the complexity of computing violation set is O(|F|n), the
complexity of computing bestconf is O(|F|n2), so time
complexity of FD-REPAIR algorithm is O(|F|n2), where |F| is
the number of dependencies.

D. Implementation of the Main Procedures Based on SQL

The main procedures of repairing inconsistent data can
make use of SQL standard language to implement. Suppose an
fd: X→Y over instance r, then some procedures of FD-
REPAIR algorithm by expanded SQL sentences are shown as
follows.

(1) Function Vio_FD (r, fd)

Vio_FD=NULL;
for each tuple t in r

insert into c
select * from r as t1

 where t[X]= t1[X] and
 not (t[Y]= t1[Y]));

Vio_FD= Vio_FD∪c;
 end for;

In the above sentences, Vio_FD is the returned result, and
c is a culprit of tuples.

 (2)Compute confidence Conf(t, fd) and RConf(t, fd),where
t∈c, c∈Vio_FD.

 select count(*) as n1
 from r where r.X=t[X];
 select count(*) as n2
 from r where r.Y=t[Y];
 select count(*) as n
 from r where r.X=t[X] and r.Y=t[Y];

Conf(t, fd)=n/ n1;
RConf(t, fd)=n/ n2;

IV. A QUALITY REPAIRING SYSTEM STRUCTURE
Quality repairing is one of tasks in database integrations.

It is based on source information systems, quality rules or data
constraints and integration requirements. Fig.2 shows a
quality repairing system, where the quality rule database
stores FDs, and can be expanded to store other kinds of data
constraints or quality rules, such as inclusion dependencies,
domain rules, etc. Violation detection is implemented before
data repair.

The quality repairing system is universal, independent,
and extendable. It can be embedded into an integration
application, and the source applications are not effected by it.
The quality rule database can also be modified.

Figure 2. Structure of A Quality Repairing System

Algorithm FD-REPAIR
Input: Database instance r, FD set F.
Output: Database repair D′
Method:
1. for each fd in F
2. if (Vio_FD (r, fd) is not empty) then
3. for each c in Vio_FD (r, fd)
4. bestconf={0, 0};
5. for each t∈c do
6. if (Conf(t, fd), Rconf(t, fd))>> bestconf) then
7. bestconf=(Conf(t, fd), Rconf(t, fd));
8. Refvalue(c)=(t[X], t[Y]); //fd: X→Y
9. end if;
10. end for;
11. Repair(c, Refvalue(c));
12. end for;
13. end if;
14. end for;
15. return D′.

……

Application 1

Data quality repairing system

Define rules

Integration
database

Define integrated
objects

Quality rule
database

Application n

Detection

Data repair Violations

 Meta
database

Meta data
management

Source 1 Source n

 1143

V. COMPARISON WITH RELATED WORK
There are some related research work introduced in section

Ⅰ, which repair inconsistencies by modification methods.
Especially, the work in literature [5] is based on FDs and INDs
(Inclusion Dependencies). Although our work doesn’t study
repairing methods in respect to INDs, it can be compared with
the work in literature [5]. Firstly, two points of differences
between the work in literature[5] and our work are given in the
following.

(1)Different criterion of choosing repaired objects

Literature [5] introduces a heuristic method based on the
minimal repairing cost. The cost of repairing a tuple is
evaluated by equation (3), where inscost is the cost of inserting
tuple t (for INDs-based repairing), and dis(D(t, A), D′(t, A)) is
the difference between the old value of attribute A and the new
value of attribute A for tuple t, w(t) is confident weight of tuple
t defined by users.

cost(t)=
⎩
⎨
⎧

⋅
∈

∑ ∈ otherwiseAtDAtDdistw
RnewtifRtins

iRAttrA

ii

)),,(),,(()(
)()(cos

'
)(

 (3)

There is a big disadvantage over the equation (3), the cost
of evaluating a tuple is determined by a set of subjective
parameter weights given by users and a similarity computation
method chosen by users. In contrast, computing cost of
repairing a tuple and setting parameters are unnecessary in our
method. Making use of the objective confidence measures
which are simple and accurate.

(2) Different time complexity

Time complexity of GEN-REPAIR algorithm presented in
[5] is O(|C|2n3meg), where |C| is the number of dependencies, n
is the number of tuples of a database instance, meg is the
number of equivalent classes. Apparently, time complexity of
FD-REPAIR presented in section Ⅲ is lower.

The main ideas of other related work are also different from
ours. The follows give more details about them.

The method proposed in literature [2] requires repairing
rules with explicit operations, including insertions, deletions
and updates; i.e., based on a special form of integrity
constraints, called active integrity constraint (AIC), whose
body consists of a conjunction of literals which should be false
and the head contains the actions which have to be performed
if the body is true (i.e., the constraint is violated). Although
the AICs can lead to fewer repairs to be considered, it is
difficult to define an explicit repairing action in an AIC.

Jef Wijsen presents the method which uses variables to
substitute error data according to constraints and constructed a
core table containing all possible repairs[3]. For full
dependencies and conjunctive queries, all updating repairs can
be summarized into a single tableau G such that the consistent
answer to any conjunctive query can be obtained by executing
the query on G. The tableau G, called nucleus, will be
homomorphic to all updating repairs and will be maximal in
the sense that any other tableau that is homomorphic to all

updating repairs, is also homomorphic to G. The approach is
only suitable for consistent queries.

Literature [4] proposes a sampling method, which
generates a random sample of cardinality-set-minimal repairs.
In order to avoid repairing a tuple that violates one FD may
introduce a new violation of another FD, the presented
algorithm performs the repair of one cell at a time, rather than
one tuple at a time. As to efficiency challenge, it introduces a
mechanism that partitions the input instance into blocks that
can be repaired independently. However, the algorithm can’t
be sure to get good results.

Solmaz Kolahi and Laks V.S Lakshmanan[6] introduce an
approximate algorithm that for a fixed set of functional
dependencies and an arbitrary input inconsistent database,
produces a repair whose distance to the database is within a
constant factor of the optimum repair distance. It gives V-
repairs which are databases that contain variables representing
incomplete information. A V-repair reflects two types of
changes made to the original database to resolve functional
dependency violations: changing a constant to another constant
whenever there is enough information for doing so, and
changing a constant to a variable whenever a constant can’t be
suggested for an incorrect value. V-repairs are homomorphic to
a consistent relation, but they are not necessarily homomorphic
to the original relation.

In a whole, our method is comparatively simple and
effective in the practical applications.

VI. EXPERIMENTAL STUDY
A synthetic dataset BankCust(Bank-id, ID-number,

LoanID, Amount, Province, City) is created for checking
efficiency and repairing results of FD-REPAIR, and 20000
tuples are produced, in which error rate is 1‰. The algorithm
was implemented in PL/SQL with Oracle DBMS, and run on a
PC with Intel Pentium Dual CPU 1.6GHz, 2GB RAM and
Window XP. The FDs are as following:

 (BankID, CustID)→LoanID;

City→Province;

 LoanID→Amount.

The results in Fig.3 shows that as the dataset size changes,
running time is almost increased linearly. In addition, all error
data are repaired correctly, because errors in the instance are
in low confidence. These demonstrate the accuracy and
efficiency of our method.

VII. CONCLUSION
From description and analysis of the above, it can be

concluded that our work is simple, valid and efficient. The
main contributions of the research include the following two
aspects:

1) The paper proposes an algorithm of repairing
violations, which depends on objective evaluation measures
(ie., confidence, relative confidence) of tuples in the database

 1144

0
1
2
3
4
5
6
7
8

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

Number of tuples

Ru
nn

in
g

 t
im

e(
s)

Figure 3. Running time of DQR-REPAIR

instance, repairing a violation set by the tuple with the
highest confidence.

2) The paper gives some simple forms of extended SQL
query sentences to support efficient violation detections and
conference computations of tuples.

The work will be expanded to repair databases which
violate the other kinds of constraints, such as

CFDs(Conditional Functional Dependencies) [7], INDs and so
on, in the future.

REFERENCES
[1] Hendrik Decker, Davide Martinenghi, “Inconsistency-tolerant integrity

checking,” IEEE Transactions on Knowledge and Data Engineering, vol.
23, pp. 218-234, 2011.

[2] Luciano Caroprese, Segio Greco, “Active integrity constraints for
database consistency maintenance,” IEEE transaction on Knowledge and
Data Engineering. vol. 21, pp .1042-1058, 2009.

[3] Jef Wijsen, “Database repairing using updates,” ACM Transactions on
Database Systems, vol. 30, pp .722-768, 2005.

[4] George Beskales, Ihab F. Ilyas,Lukasz Golab, “Sampling the repairs of
functional dependency violations under hard constraints,” Proceedings
of the VLDB Endowment, vol. 3, pp. 197-207, 2010.

[5] Philip Bohannon, Wenfei Fan, Michael Flaster, Rajeev Rastogi, “A
cost-based model and effective heuristic for repairing constraints by
value modification,” SIGMOD 2005, pp. 143-154, 2005.

[6] Solmaz Kolahi, Laks V.S Lakshmanan, “On approximating optimum
repairs for functional dependency violations,” Proceedings of the 12th
International Conference on Database Theory, pp. 53-62, 2009.

[7] Wenfei Fan, Floris Geerts, Xibei Jia, Anastasios Kementsietsidis,
“Conditional functional dependencies for capturing data
inconsistencies,” ACM Transactions on Database Systems, vol. 33, pp.
444–491, 2008.

