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1. Introduction

Nowadays, robotics is an essential part in manufacturing
processes automatization. Concerning mobile robots, autonomous
navigation entails a great challenge. A mobile robot (MR) can be
very useful in different situations where humans could be in
danger or when they are not able to reach certain targets because
of terrain conditions. Then, mobile robotics field is an interesting
and challenging subject for science and engineering, and it has
many different approaches [12].

The research field of Robot Motion Planning was launched at
the middle of the 1960s; however, after the publication of Lozano-
Pérez [14] in 1979 the interest in this area grew. After 30 years, the
existing research can be widely classified in twomain approaches:
classical [2] and heuristic. Classical methods dominated this field
during the first 20 years; roughly speaking most of them were
variations and/or combinations of Potential fields, Roadmaps, Cell
Decomposition, and Mathematical programming. Heuristic meth-
ods interest were born when scientists confronted many of the

drawbacks of classical approaches since the NP-completeness
nature of Motion Planning problems. Representative methodolo-
gies in the heuristic classification are the Probabilistic Roadmaps,
Rapidly Exploring Random Trees, Neural Networks, Genetic
Algorithms [1,7,11], Simulated Annealing, Ant Colony Optimiza-
tion, Particle Swarm Optimizer [3,6], Stigmergy, Wavelets, Tabu
Search, and Fuzzy Logic [21]. A general review of the major
contributions to the MP field that covers classical and heuristic
approaches through a 35-year period is given in [15]; there were
surveys of around 1400 papers and cited 82 representative works.

Actual reports [17,22] show that the interest in ant-based
algorithm meta heuristics is growing in mobile robotics. ACO-MH
is inspired in the foraging behavior of real ants for finding the
optimal path from the nest to where the food is. Some ant species,
as well as other social insects use an indirect communication
method known as stigmergy; this is a concept introduced by the
French biologist Pierre-Paul Grassé in 1959. With stigmergy, each
ant communicates with another one by modifying their local
environment. The ants achieve this task by laying down
pheromone along their trails [4]. ACO-MH solves mainly combi-
natorial optimization problems defined over discrete search
spaces. The ant-based algorithms developed as a result of studies
of ant colonies are referred as instances of ACO-MH [6].

This work presents a new proposal to solve the problem of path
planning for mobile robots; it is based in Ant Colony Optimization
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Meta-Heuristic (ACO-MH) to find the best route according to
certain cost functions; the novel method was named SACOmd,
where d stands for distance, and m for memory. One of the main
contributions of this work is the inclusion of memory capabilities
to the ants in order to avoid stagnation; moreover, the algorithm is
able to influence the decisionmaking process based on the exciting
distance between the source and target nodes. An other contribu-
tion is the use of the fuzzy cost function to evaluate the best routes
as well as the use of the method to easily control the performance
of the Fuzzy Inference System (FIS).

From the papers surveyed, there was not found any similar
proposal. However, there are other works sharing similar ideas in
the sense of using ACO-MH as a global planner; for example, in [16]
is presented a hybrid model that combines ACO and Artificial
Potential Fields (APF) algorithm. In [23] was proposed a newmeta-
heuristic method of ACO to solve the vehicle routing problem,
using a multiple ant colony technique where each colony works
separately. In [10] the robot has to visit multiple targets, like the
traveling salesman problem but with the presence of obstacles, the
robot in this case is modeled as a point robot; that is, the robot
occupies an exact cell in the discrete representation of the
workspace, using several robots as ants; this robot team
architecture has to be in constant communication with each other
at all times to share pheromone information.

This paper is organized as follows. Section 2 introduces the
reader to the MR field in order to present the general structure of
this proposal. In Section 3 the ACO algorithm is explained in the
context of mobile robotics. In Section 4 the new proposal of ACO-
MH is presented to solve the path planning problem, the specific
characteristics of workspace are given, as well as the fuzzy cost
function used and the method to tune it; moreover the dynamic
characteristic to avoid obstacles is given. The experimental
results are given in Section 5. Finally, in Section 6 are the
conclusions.

2. Navigation architecture proposal

Navigation in mobile robotic ambit is a methodology that
allows to guide an MR to accomplish a mission through an
environment with obstacles in a good and safe way. The two basic
tasks involved in navigation are the environment perception, and
path following. The concept ofmission, refers to the realization of a
set of navigation and operation goals; in this sense, the MR should
possess an architecture able to coordinate the on board elements:
sensorial system, movement and operation control, in order to
achieve correctly the different objectives specified in the mission
with efficiency that can be carried out either in indoor or outdoor
environments. Generally global planning methods complemented
with local methods are used for indoor missions since the
environments are known or partially known; for outdoor applica-
tions, local planning methods are more suitable, becoming global
planning methods a complement because of the scant information
of the environment.

The navigation problem of an MR can be divided in four
subproblems [20]:

� World perception. It senses the world symbolizing it into
features.
� Path planning. Uses the features to create an ordered sequence
of objective points that the robot must attain.
� Path generation. The goal is to obtain a path through the
sequence of objective points.
� Path tracking. It is in charge of controlling that the MR follows a
path.

It is common that ‘‘path planning’’ and ‘‘path generation’’ are
referred just as ‘‘path planning’’, because some navigation schemes
compute the safer instantmotion of the vehicle as ‘‘path planning’’,
instead of generating a path.

Fig. 1. Main screen of the software interface.
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The Navigation solution presented in this work is able to handle
the four subproblems aforementioned. Fig. 1 shows the main
screen of the ACO Test Center (ACOTC); as it is called this
development, it allows to perform path planning with SACO and
SACOdm. A graphical interface, as well as the translation of the
obtained solution (optimal path) from the virtual to the real world,
was implemented to test the proposed methods. The ACOTC has
two operational modes: Mode I for virtual environments, allows
the user to designmaps for indoor conditions over plain terrain, the
relational diagram for this mode is given in Fig. 2; Mode II is for on-
line navigation of the real MR, in this case the Boe-Bot from
Parallax [13,19], its relational diagram is given in Fig. 3.

Mode I is the default operational mode; in this mode, the user
can design maps for two dimensions (2D) indoor applications
(plain terrain), or a map of real terrain (2D) can be uploaded for
virtual testing of the route planning algorithm.

Mode II is selected by pressing theNavigate Button, the first task
of this mode is to establish communication via Bluetooth between
ACOTC and the MR. This mode is the on-line global path planner
with dynamic obstacles avoidance. The ACOTC will sent the
different objective points (coordinates ðx; yÞ) of the optimal path to
the MR, in order to achieve coordinated control for tracking the
desired path. The MR sensorial on-board equipment will inform to
ACOTC whether a new obstacle has appear; if so, the global path

Fig. 2. Flow diagram of the framework.
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planner will generate a new path starting from the actual MR
position.

3. Simple ant colony optimization algorithm

The simple ant colony optimization algorithm (SACO) is an
ACO-MH implementation that adapts the behavior of real ants to
solution of minimum cost path problems on graphs. A number of
artificial ants build solutions for the optimization problem by
issuing and exchanging information about the quality of these
solutions making allusion to the communication system of the real
ants [4,5].

Considering an ‘‘ant’’ as a punctual mobile robot MR in 2D, an
specification of the robot position in relation to a fixed coordinate
system is called a configuration q and it is given by (1), where

p ¼ ðx; yÞ is the MR position, and u is the orientation,

q ¼ ðp; uÞ ¼ ðx; y; uÞ (1)

The set of all the feasible values of q is the Configuration Space CS. If
theMR is no punctual, it will take up a subspace from CS, hence the
MR can be modeled by a circle with radius j, and center p ¼ ðx; yÞ
in the Cartesian space. The subset of CS that a real robot takes up is
defined as RðqÞ,

RðqÞ ¼ fqi 2CS=kq; qik � jg (2)

A punctual obstacle in the environment is an object represented by
bi, and a set of obstacles is B,

B ¼ fb1; b2; bng (3)

Fig. 3. Flow diagram of the framework.
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the subset of CS that an obstacle occupies is biðqÞ, in such away that
the Configuration Space free of any obstacle is defined as CSfree in
(4). Hence, RðqÞ \BðqÞ ¼ ? for CSfree, and RðqÞ \BðqÞ 6¼? for a CS

with forbidden subspace regions because the presence of
obstacles.

CSfree ¼ q2CS=RðqÞ \
[q
i¼1

biðqÞ
 !

¼ ?

( )
(4)

The path planning problem is the search of a succession of punctual
configurations q in CSfree called Q, such as qa is the actual

configuration, and q f is the final configuration, this is expressed by
(5),

Q ¼ fqa; . . . ; q f jqi 2CSfreeg (5)

The paths obtained with (5) are not all feasible, since this
expression considers punctual MR; so, RðqÞ might not fit in many
configurations of a real MR. This proposal considers ‘‘ants’’ of size
RðqÞ, this consideration will reduce the search space considerably,
since the size of cells can be chosen adequately according the MR
size. The new expression that considers a configuration of a real
robots RðqÞ instead q can be rewritten as (6),

QðRðqÞÞ ¼ fRðqaÞ; . . . ;Rðq f ÞjRðqiÞ 2CSfreeg (6)

If xkðtÞ denotes a QðRðqÞÞ solution in time t, f ðxkðtÞÞ expresses the
quality of the solution. In general terms, the steps of SACO are as
follows:

(1) Each link ði; jÞ is associated with a pheromone concentration
denoted as ti j.

Fig. 4. The workspace has been discretized in a matrix of 50� 50 nodes

interconnected. The blue box is an obstacle, an ant can have until eight options,

only the options with a value of ‘‘0’’ are eligible (green arrows), and the nodeswith a

value of ‘‘1’’ are not eligible (yellow arrows). (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of the article.)

Fig. 5.Membership functions of the Effort input once they had been tuned with the

STA, the tuning factor is k ¼ 0:75.

Fig. 6. Membership functions of the Distance input once they had been tuned with

the STA, the tuning factor is k ¼ 0:75.

Fig. 7. Membership functions of the Weight output. The STA does not require to

modify the membership functions parameters of the output.

M.A.P. Garcia et al. / Applied Soft Computing 9 (2009) 1102–11101106



(2) A number k ¼ 1; . . . ;nk are placed in the origin node (the nest).
(3) On each iteration or epoch all ants build a path to the destiny

node (the food source). For the next node selection it is used the
probabilistic formula:

pki jðtÞ ¼

tai jðtÞX
j2Nk

i

tai jðtÞ
if j2Nk

i

0 if j =2Nk
i

8>>>><
>>>>:

(7)

In Eq. (7), Nk
i is the set of feasible nodes connected to node i

with respect to ant k; tai j is the total pheromone concentration

of link ði; jÞ, where a is a positive constant used as gain for the

pheromone concentration influence.
(4) Remove cycles and compute each route weight f ðxkðtÞÞ. A cycle

could be generatedwhen there are no feasible candidates nodes,
that is, for any node i and ant k,Nk

i ¼ ?; then predecessor of that
node i is included as a former node of the path.

(5) Compute pheromone evaporation using the Eq. (8).

ti jðtÞ ð1� rÞti jðtÞ (8)

In Eq. (8),r is the evaporation rate value of the pheromone trail.

The evaporation is added to the algorithm in order to force the

exploration of the ants, and avoid premature convergence to

sub-optimal solutions. For r ¼ 1, the search is completely

random.While an ant takesmore time for crossing a path, there

is more time for the pheromone trail to evaporate. On a short

path, which is crossed quickly, the density of the pheromone is

higher. Evaporation avoids convergence to local optimums.

Without evaporation, the paths generated by the first ants

would be excessively attractive for the subsequent ones. In this

way, exploration of the search space is not too restricted.
(6) Update pheromone concentration by using Eq. (9).

ti jðt þ 1Þ ¼ ti jðtÞ þ
Xnk
k¼1

Dtki jðtÞ (9)

(7) The algorithm can be ended in three different ways:
a. When a maximum number of epochs have been reached.
b. When it has been found an acceptable solution, with

f ðxkðtÞÞ< e.
c. When all ants follow the same path.

4. SACOdm proposal

Several aspects has been considered to improve the SACO
algorithm for MR applications. The original transition formula (7)

was modify to accelerate the decision process. The strength of this
improvement is better appreciated in free space path optimization.
This addition works as follows: j is the Euclidian distance between
the source and target nodes, and b is a value that amplifies the
influence of j, the valid range of b is ½0;1Þ. The new transition
formula is (10)

pki jðtÞ ¼

tai jðtÞX
j2Nk

i

jbtai jðtÞ
if j2Nk

i

0 if j =2Nk
i

8>>>><
>>>>:

(10)

In addition, a memory capability was added to avoid the algorithm
stagnation, this capacity is represented by g and basically it is a
reference value. A counter keeps track of the already visited nodes
by marking them with ‘‘1’’ in the workspace temporally, as if they
were obstacles; this is with the intention of avoiding testing again
the memorized nodes, once the algorithm reached the g value, the
nodes are available for retesting by removing the temporal marks.

For the case of path planning, the algorithm includes a proposal
of using a fuzzy cost function based in heuristic knowledge that can
be easily adjusted to improve performance using the Simple
Tuning Algorithm (STA) [9].

4.1. The workspace

The map where the mobile robot navigates is a search space
discretized into a matrix representing a graph of 50� 50nodes,
where ‘‘0’’ means a feasible node (plain terrain) and ‘‘1’’ are
obstacles, see Fig. 4. It is remarkable to say that each artificial ant of
the algorithm is a scale representation of the real MR, whichmeans
the proposed method considers robot’s dimensions; for example,
there are going to be situations during the optimization process,
where some paths are rejected if the robot does not fit in the space
between two obstacles. Under this premise, several computations
are saved since some nodes are rejected before the algorithm
spends time using them to build paths. The 50� 50map represents
a 4 m2area, in a 1:4 scale (cm).

For this method, it is assumed all nodes are interconnected. In a
mapwith no obstacles, there are 2500 feasible nodes; therefore the
matrix of links E would be extremely large. For this reason E is not
used, and the pheromone amount value is assigned at each node,
which reduces considerably the complexity of the algorithm and
then the processing time. This is equivalent to assign the same
pheromone concentration to the eight links around every node. If
an analogy with reality is made, this can be seen as ants leaving
food traces in each node they are visiting, instead of a pheromone
trail on the links.

Fig. 8. Path A and Path B have the same distance; however path A implies less effort for robot navigation.
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Once the ants are placed in the origin node, each ant starts
navigating, and the decision process for choosing the next node
consist in a 3� 3 window of the whole graph. The ant can choose
one of the eight nodes around it using the transition probability
formula (10).

4.2. The fuzzy cost function

The cost of the path f ðxkðtÞÞ to determine the optimal one is
evaluated by a Fuzzy Inference System (FIS), which contemplates
not only the length of the path but the difficulty for the navigation.
The FIS considers two inputs: Effort (Fig. 5), and Distance (Fig. 6).
The first one represents the energy spent by the robot to make
turns across the path; for example, the effort become increased if
the robot has tomake a left turn after a long straight line, because it
has to decelerate more; Distance is the accumulated Euclidean
distance at the moment between the visited nodes. The output,
shown in Fig. 7, is a weight assigned to the cost of the path; the
more weight is given, the less desirable becomes the path. The
output of the FIS is added to the total Euclidean distance of the
path, giving the final weight of each one generated by ants. If there
are different routes with the same length, the FIS should make a
difference of cost giving preference to the straighter paths like
those shown in Fig. 8. The FIS variables can be seen in Table 1; and
the FIS rule matrix in Table 2.

4.3. Tuning of the fuzzy cost function

The FIS can be tuned for a better performance using the Simple
Tuning Algorithm (STA) proposed in [8,9], it is applied to facilitate
the tuning process of the FIS, since sometimes becomes over-
whelming to find the optimal parameters necessaries for a well
performance of the fuzzy system. By applying the STA, time and
effort are reduced by using a single parameter, the tuning factor k.
It is based on the properties of the fuzzy surface, allowing the
modification of the FIS behavior by means of manipulating the
ranges of the membership functions of the input variables,
remaining without any modification the output membership
functions [8,18]. In this work, the FIS was used as a decision
support system to differ the straighter paths from the winding
ones. The output surface without applying STA is shown in Fig. 9,
and after applying the STA in Fig. 10.

The STA method basically consists of four steps:

(1) Tuning factor selection. A number k2 ½0;1� is used to define
the tuning adjustment level. k ¼ 0 is the biggest settling time
and k ¼ 1 the smallest.

(2) Normalization of the ranges of the fuzzy controller’s
variables. The range of each input fuzzy variable is modified
in order to have the lower and upper limits equal to�1 andþ1,
respectively.

(3) Tuning factor processing. Once the range is normalized, the
new vector of operation points will be given by:

Vopfinal ¼ ðVopinitialÞ
rðkÞ (11)

where Vopinitial is a vector with normalized values of the

membership in the x-axis and rðkÞ is the polynomial:

rðkÞ ¼ 30k3 þ 37k2 þ 52kþ 1

40
(12)

(4) Renormalization of the ranges of the fuzzy variables.
Convert the normalized range to the previous range of the
system. This can be computed multiplying the vector by a
constant factor.

4.4. Dynamic obstacles avoidance

The algorithm has the capability of sensing changes in the
environment, if a new obstacle is placed over the robot’s route at

Table 1
The FIS has two input variables, Effort and Distance.

Input variables Output variable

Effort Distance Weight

NE: Normal Effort VSD: Very Small Distance MW: Minimum Weight

NEE: Normal Extra Effort SD: Small Distance SW: Small Weight

BE: Big Effort D: Distance W: Weight

BEE: Big Extra Effort BD: Big Distance BW: Big Weight

VBE: Very Big Effort VBD: Very Big Distance VBW: Very Big Weight

The output variable is Weight.

Table 2
Fuzzy rule matrix.

Distance

VSD SD D BD VBD

Effort NE MW MW SW SW MW

NEE MW SW W SW MW

BE SW W W W SW

BEE BW BW W BW VBW

VBE VBW VBW BW VBW VBW

There are 25 rules for the two input variables.

Fig. 9. Surface of the FIS output before applying the STA.

Fig. 10. Surface of the FIS output after applying the STA. It was used an adjusting

factor k ¼ 0:75.
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time t, it starts a rerouting process in order to avoid the blocking
object and get to the destiny node. It has to be considered that after
some epochs, the pheromone concentration ti j is already increased
over the visited nodes; then, when a new obstruction appears, it
causes evaporation of the pheromone trail around it. This premise
prevents stagnation around the obstacle, and ti j of the surrounding
area is given by the minimum pheromone value over the search
map at t.

5. Experimental results

Several comparative experiments were conducted to evaluate
the new proposed features of SACOdm over SACO. In all the
experiments, the starting point is in (2,2), and the target point is in
(48,48).

Experiment 1. Testing SACO in free space (no obstacles).

The ACOTC was programmed as follows: Ants amount ¼ 3,
Epochs ¼ 10, Initial pheromone ðti jÞ ¼ 0:5, Evaporation ðrÞ ¼ 0:2,
a ¼ 2. Since SACO does not consider b and g values, a ‘‘0’’ was
given for each variable. We took statistic values of 20 runs. The
mean time was 53.99 s with a standard deviation of 19.55. The
minimal time to obtain the route was 25.42 s, the maximal time
was 91.30 s. The minimal route cost was 97.97 for this route, the
maximal cost was 100.41, the mean costs was 98.53 with a

standard deviation of 0.73. Eight times of 20 the best route was
found. If we let that the algorithm run one or twomore epochs, the
best route will be found always.

Experiment 2. Testing SACOdm in free space.

The benefits of modifying Eq. (10) will be tested. The ACOTCwas
programmed as follows: Ants amount ¼ 3, Epochs ¼ 10, ti j ¼ 0:5,
r ¼ 0:2, a ¼ 2, b ¼ 1 and g ¼ 0. For 20 runs, the mean time was
4.95 s with a standard deviation of 0.13; the minimal and maximal
time were 4.48 and 5.1 s, respectively. The minimal route cost was
97.97 all the times, so the best routewas foundalways. For one ‘‘ant’’
and three epochs, the SACOdm only needed 0.60 s to find the route.

Experiments 1 and 2, considered a scenario with no obstacles,
SACOdm was better than SACO finding the optimal route in this
kind of scenarios, basically the addition of jb in Eq. (10) was the
reason. Fig. 11 show four tests for the same problemwith different
parameters.

Fig. 11. (a) Route generated by the first ant in the first epoch, withb ¼ 0 and g ¼ 1, (b) same situation butwithb ¼ 0 and g ¼ 100, (c) The routes of three ants in the first epoch

with b ¼ 0:1 and g ¼ 1, (d) same situation but with b ¼ 0:5 and g ¼ 1.

Table 3
In the three tests ti j ¼ 0:5.

Exp. 3 Ants (k) Epochs rho a b g tðsÞ LðkÞ

3(a) 3 20 0.2 2 0 0 88.0 127.3

3(b) 3 15 0.2 2 1 7 12.14 127.3

3(c) 3 5 0.5 2 1 1 12.08 127.3

Test 1 is for SACO, Tests 2 and 3 are for SACOdm.
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Experiment 3. Comparative table. SACO vs. SACOdm.

In Table 3 the results of several experiments using different
parameters are given. The test was made using the map of Fig. 1.

Experiment 4. Dynamic obstacle avoidance.

In this example, it is shown how the obstacle is avoided after it
appeared once the path was found and the MR was tracking the
path. The algorithm searched again for the optimal path from the
actual position. See Fig. 12.

6. Conclusions

The SACOdm proposed method seems to be a promising path
planning system for autonomousmobile robot navigation since the
given solutions are not only paths, but the optimal ones. It is
remarkable to mention the reduced time of execution of SACOdm
against SACO, approximately a 91% (speed up around 10). We
tested several maps, there are some maps where both methods
needed exhaustive computations that can be reduced changing
parameter values. A system that automatically infers these values
could be for future work; since SACOdm has some properties that
works better in free spaces, and in many maps. However, SACO is
more explorative because it is not biased by b capability to choose
determined nodes, but it is b feature that makes faster SACOdm in
free spaces. A solution to this problem is to begin the planning task
using jb of SACOdm, then after a time, it is convenient to reduce its
influence in SACOdm probabilistic transition equation; by doing
this the algorithmwill be able to solvemaps very fast in free space,
specially if there exist big diagonals in the route. The memory
capability, g , of SACOdm allows to remember some nodes to avoid
them in a predetermined time; with this capability no problem
was found storing few nodes, less than 100, but it needs further
experimentationwith differentmaps. One good feature of SACOdm
is that it can be reduced to SACO just programmingwith ‘‘0’s’’ theb
and g features. The use of a fuzzy cost function that depends on the
effort and distance to evaluate the cost of a route worked fine, and
we think it is a good idea because we are handling two objectives:
the best route, and the effort, as it was a single objective problem.
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