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The authenticity of edible vegetable oils is a very important issue due to consumer health and commercial rea-
sons. Gas chromatography-mass spectrometry (GC-MS) was applied to analyze the fatty acid composition of
sixty six samples from six different kinds of edible vegetable oils. The fatty acid profiles of these edible vegetable
oils were used to classify the type of edible oils. For improving the classification accuracy of vegetable oils with
respect to type, the support vector machine (SVM) technique, optimized using the genetic algorithm (GA),
was employed to construct the classification model. The effectiveness of the GA-SVM combination in classifica-

;E(Z}i,;rgr\:jeséetable oil tion was compared with that of other well-known strategies for classification, such as minimum distance
GA-SVM classification (MDC) and linear discriminant analysis (LDA). In addition, the Kennard-Stone algorithm was
Kennard-Stone algorithm used to select the representative training samples and compared with the random sampling method. The
Fatty acid misclassification rates were 8.48% and 3.03% for training and test set, respectively, by the GA-SVM model
GC-MS

using the linear kernel. Only one or two samples will be misclassified in the process of GA-SVM classification.
The classification task based on fatty acid data can be successfully achieved by the GA-SVM technique combined
with the Kennard-Stone algorithm. The results reveal that this strategy is of great promise in flexible and
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accurate classification of edible vegetable oils.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Edible vegetable oils have been an indispensable ingredient of our
diet in daily life since they contain a variety of essential fatty acids
that are necessary for the human body by accelerating the absorption
of fat-soluble vitamins [1,2]. They can also provide the body with a
direct source of energy. The most salient feature of vegetable oils is
that their nutritional value is higher than animal oils. The long-term
consumption of animal fats, comprising primarily saturated fatty acids,
will increase the risk of hypertension and coronary heart disease [3],
which makes edible vegetable oils especially attractive for people. The
performances and qualities of different types of vegetable oils vary
during homemade cooking and food production depending on their
compositions [4]. Therefore, the authenticity of edible vegetable oils is
a very important issue while considering commercial and consumer
health reasons. In the present study, the continued need for improving
the classification accuracy of edible vegetable oils is investigated.

Nowadays, routine methods of analysis of vegetable oils involve
many instrumental analysis techniques, such as near and mid-infrared
spectrometry [5,6], fluorescence [7], chemiluminescence [8], chroma-
tography [9,10], nuclear magnetic resonance spectroscopy [11], and
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mass spectrometry [12]. Among these instrumental techniques men-
tioned above, gas chromatography-mass spectrometry (GC-MS) is fre-
quently used to identify the vegetable oil type by analyzing their fatty
acid composition [13-16]. However, due to the complex composition
of the vegetable oil, the resulting chromatograms may be formed by
the overlapping of several analytical peaks. Furthermore, the chromato-
grams of different vegetable oils may be too similar to be distinguished
directly. To further the improvement of previous methods, many re-
searchers have proposed the spectroscopic techniques in combination
with chemometrics methods as an alternative method that can be
used for the discrimination of different categories and the detection of
adulterants in oils [17-19]. The commonly used chemometrics methods
include principal component analysis (PCA) [20], linear discriminant
analysis (LDA) [21], and minimum distance classification (MDC). In
the present study, a support vector machine (SVM) technique [22]
was employed to construct the classification model with genetic algo-
rithm (GA) [23] to get the optimized solution for edible vegetable oil
classification.

SVM is a promising machine learning technique with comprehen-
sive theoretical foundation. Because of the powerful ability in
interpreting the linear or nonlinear relationships between the sample
information and their properties, SVM has exhibited desirable general-
ization performance in numerous applications. GA simulates the
Darwinian evolution of natural selection and genetic mechanism natu-
ral evolution. As a popular global stochastic optimization technique,
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GA has been successfully used for global search and optimization prob-
lem [24]. Here, GA is invoked to seek the optimal parameters for the
classification model, including penalty constant and kernel parameter
in a kernel transform of SVM. Using GA to get the optimal solution read-
ily makes SVM an adaptive parameter-free method for edible vegetable
oil identification, without any parameters to be adjusted. A synergetic
optimization of the parameters also enables a flexible modeling
approach for SVM according to the performance of the total model.
The proposed strategy has been applied to the classification of 66 sam-
ples from six different kinds of edible vegetable oils. The effectiveness of
the GA-SVM in classification ability was compared with that of other
well-known strategies for classification, such as minimum distance
classification (MDC) and linear discriminant analysis (LDA). To further
improve the classification accuracy, the Kennard-Stone algorithm was
employed for the selection of samples for each type of vegetable oil.

2. Experimental section
2.1. Chemical reagents and sample collection

All reagents used in the experiment were of analytical grade. Petro-
leum ether (boiling point 30-60 °C), methanol, and methylbenzene
were provided by Sinopharm Chemical Reagent Co. Ltd (shanghai,
China), potassium hydroxide from Shenghao chemical reagent Co. Ltd
(Guangzhou, China), hydrochloric acid (12 M) from Kaixin chemical
reagent Co. Ltd (Hengyang, China).

All solutions were prepared using ultrapure water, which was ob-
tained through a Millipore Milli-Q water purification system (Billerica,
MA, USA) and had an electric resistance >18.3 MQ.

A total of 66 samples of edible vegetable oils were acquired from
local supermarkets, including 14 samples of soybean oil, 14 samples of
rapeseed oil, 10 samples of peanut oil, 12 samples of sesame oil, 8 sam-
ples of corn germ oil, and 8 samples of camellia oil. Different brands or
different batches of pure edible oil samples were used in the experiment
rather than simply replicates of same oil product. The brands of edible
oils include fulinmen, luhua, jinlongyu, ganhua, knife, shengzhou,
duoli, xinyuan, xiangmanyuan, and huishan. These samples were split
into two groups for training and prediction sets; 7 soybean oils, 7 rape-
seed oils, 5 peanut oils, 6 sesame oils, 4 corn germ oils, and 4 camellia
oils were selected and combined into a training set to create a classifica-
tion model. All the rest of the samples, which were not involved in
constructing the classification models, were used as a prediction set.

2.2. Sample preparation

Edible vegetable oil of 100 mg was added into a mixture (2 mL) of
petroleum ether and methylbenzene (v/v 1:1) and shaken until the oil
completely dissolved (~10 min). Then 2 mL KOH (0.5 M in methanol)
was added and shaken for another 5 min to simultaneously saponify
and methyl esterify the oil. After that, the solution was incubated with
2 mLHCl (2 M) for 3 min to neutralize the excessive potassium hydrox-
ide. The final organic solution on the top was filtered using a 0.45 pm
filter for GC-MS analysis.

2.3. GC-MS analysis

The fatty acid profiles of vegetable oil samples were determined
using GC-MS (Leco Pegasus® 4D, USA) equipped with a DB-5MS capil-
lary column (30 m x 0.25 mm x 0.25 um) and a time-of-flight mass
spectrometer. Helium (99.99%) was used as the carrier gas at a constant
flow rate of 1 mL/min. The oven temperature was programmed from
60 °C to 215 °C at 15 °C/min, to 250 °C at 10 °C/min, and to 260 °C at
2 °C/min. Then it was finally increased at 280 °C at 5 °C/min and held
for 2 min. Injections (1 pL each) used a 40:1 with the injector inlet
temperature is 250 °C.

Time of flight mass spectrometer was operated by electron
ionization (EI), transfer line and EI temperatures, 270 °C and 250 °C,
respectively. The solvent was delayed for 10 min.

The masses to display were recorded in total ion chromatogram
(TIC). The m/z ranged from 30 to 500 amu, and the acquisition rate
was 20 spectra per second. The electron energy was 70 eV and detector
voltage was 1500 V.

In our experiments, no internal standard was used, but all the oil
samples were treated and repeated for three times according to the de-
scribed sample preparation procedure, and GC-MS analyses were also
performed three times for every prepared sample to record the final
GC-MS data. We found there were no significant changes between
the GC-MS data obtained from a same oil sample, suggesting the
saponification and methylation procedures [25,26].

3. Chemometrics methods
3.1. Training and prediction set selection

The set of samples of edible oils was partitioned into two groups: a
training set and a prediction set. Half of the samples were used for
training purposes in classification studies, and the rest, constituting
the prediction set, were used to evaluate the prediction capability of
the classification model. There are several algorithms that can be used
for the selection of samples for training and prediction sets. Among
these algorithms, random sampling (RS) is widely used because of its
simplicity. Using this algorithm, a training set is randomly extracted
from the original data, and there is no need to select the representation
of the data set. Another alternative approach is the Kennard-Stone (KS)
algorithm [27,28], which aims to select a representative subset to
ensure training samples spread evenly throughout the sample space.
In this paper, both algorithms were employed for partitioning data
in classification.

3.2. Genetic algorithm optimized support vector machine

Support vector machine (SVM) is a promising machine learning
technique with a comprehensive theoretical foundation and usually dis-
plays desirable generalization performances in giving the solutions for
both linear and nonlinear problems. SVM classified the samples by
constructing a hyperplane, which maximizes the distance between the
two classes. For the problem of nonlinearity, SVM generally uses a
kernel function, by which the data are transformed from the original
variables to a feature space in which the model becomes linear.
There are two most commonly used kernel functions, which are
Gaussian radial basis function (RBF) kernel and the linear kernel. A
Gaussian radial basis function transform is frequently utilized if
the preknowledge of the problem dealt with is lacking. Both of the
two kernels are conducted and compared in the present investiga-
tion. The penalty constant C is introduced to adjust the confidence
limit of machine learning and the proportion of empirical risk; pa-
rameter o of the Gaussian kernel function defines the non-linear
mapping from the original space to the high-dimensional feature
space and influences the properties of the SVM classifier. GA was
used to automatically determine the optimal parameters, C and o, and
to ensure SVM with the highest predictive accuracy and generalization
ability simultaneously.

GA is a parameter searching and optimization technique based on
emulating the evolutionary process of the nature, such as breeding,
mating, and mutation phenomenon in natural selection and genetic
evolution. GA starts from any initial population and then produces a
group of individuals that are new, more adaptive to the environment
by random selection, crossover, and mutation operation. Binary strings
were adopted to encode the chromosome. The first and the second
half of a binary string were converted to two decimal values that
stand for the parameter C and parameter o, respectively. The problem
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of optimal solution can be achieved by its continuous reproduction and
evolution from generation to generation. For a classification problem,
the fitness value is usually the percentage of correct classification,
which is determined by cross validation. In this paper, the fitness
value is estimated using the classification error of SVM over 5-fold
cross validation for the training set. The fitness function could be
expressed as follows:

Fitness = Ne x 100% (1)
Nr

where N, is the number of misclassified samples, N express the total
number of the samples in the training set. The prediction set is never
used for any optimization of parameters by the GA. The aim of the GA
algorithm is to minimize this value. In 5-fold cross validation, the train-
ing samples are randomly partitioned into 5 subsamples. Of the 5
subsamples, a single subsample was retained as the validation data,
and the remaining 4 subsamples were used for construction model.
Optimizing the parameters of the SVM model by GA keeps the model
from getting trapped into local optima and improves the model perfor-
mance; it also enables SVM to be an adaptive parameter-free modeling
technique for determining edible oil type.

All the calculations were implemented using the MATLAB version
7.10. The LibSVM toolbox was used for SVM classifications.

4. Results and discussion
4.1. Characteristics of fatty acid profiles of various edible vegetable oils

Fig. 1 shows an overlay of the typical total ion chromatographic
profiles of the derivatives of fatty acids for different edible vegetable
oils obtained using GC-MS, covering a range of time from 700 s to
1400 s. The main composition of edible vegetable oils is triglyceride,
which is composed of a variety of different fatty acids. It can be found
that the types of fatty acids included in the six different kinds of
vegetable oils were quiet similar. Typically, tetradecanoic acid (C14:0),
palmitic acid (C16:0), heptadecanoic acid (C17:0), hexadecenoic acid
(C16:1), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2),
and octadecatrienoic acid (C18:3) could be found in all these six edible
vegetable oils. Tridecanoic acid (C13:0) and docosenoic acid (C22 :1)
were contained in five kinds of the collected edible vegetable oils, the
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Note: 1, 2, 3... 14 stands for C12:0, C13:0, C14:0... C24:0 (Listed in Table 1),
respectively

Fig. 1. Overlay of the typical total ion chromatogram of the derivatives of fatty acids for
different edible vegetable oils obtained using GC-MS.

former including rapeseed oil, peanut oil, corn germ oil, sesame oil,
and camellia oil, the latter containing soybean oil, rapeseed oil, corn
germ oil, sesame oil, and camellia oil. Although different vegetable oils
shared several kinds of fatty acids, the fatty acid contents may vary.
Camellia oil had the highest oleic acid, which may be more than 75%.
Contents of tetradecanoic acid, stearic acid, linoleic acid, and
octadecatrienoic acid in soybean oil were higher than that in other
oils. There was more palmitic acid in corn germ oil than in sesame oil,
while the contents of linoleic acid and oleic acid were quite similar.
Rapeseed oil was high in stearic acid. Peanut oil and rapeseed oil were
high in oleic acid and low in linoleic acid. As a whole, the highest per-
centage level of monounsaturated fatty acid (MUFA), polyunsaturated
fatty acid (PUFA), and saturated fatty acid (SFA) belong to camellia oil,
soybean oil, and soybean oil, respectively. The lowest percentage level
of PUFA and SFA belong to camellia oil, respectively. Among the fatty
acids mentioned above, palmitic acid (C16:0), stearic acid (C18:0),
oleic acid (C18:1) and linoleic acid (C18:2) were the main fatty acids
in vegetable oil. The percentage level of unsaturated fatty acids in the
six kinds of vegetable oils was 80% and above. Furthermore, the compo-
sition and the content of each component of corn germ oil and sesame
oil were exactly similar. More detailed information about the distribu-
tion of fatty acids in the six kinds of vegetable oils is presented in
Table 1. The relative peak area is used from the FA profiles in our
study. Despite these differences, it is still hard for one to distinguish
the vegetable oil type accurately by directly using their TIC profiles.
Thus, the potentials of chemometrics methods in distinguishing the
edible vegetable oil type were investigated.

4.2. Clustering different kinds of edible vegetable oils using PCA

Before building the classification model, the relationship between
the six kinds of edible vegetable oils was investigated using PCA. For
chemometrics analysis, the relative contents of fourteen common fatty
acids obtained using GC-MS were used to constitute the data matrix.
The GC-MS data are scaled into (0, 1) for chemometrics analysis. Princi-
pal components (PC) are uncorrelated variables, which are linear com-
binations of the variables in the measurement matrix. The first PC
possesses the most information and accounts for the largest variation
in the original data. Then the second, third, fourth ... principal compo-
nents in turn are calculated, which account for successively smaller
amounts of variation. Each PC is orthogonal to each other. Fig. 2A dis-
plays the projection results of all the 66 edible vegetable oil samples
on the first two PCs. The first two PCs explained 64.88% and 23.26% of
the total variation, respectively. The plot shows the obvious cluster ten-
dency of the different classes of samples. It can be seen that the samples
of camellia oil had their feature distributions and can be separated from
other oils. Rapeseed oil and peanut oil were partially overlapping. The
samples of corn germ oil cannot be distinguished from those of sesame
oil or soybean oil in the projection map. It may be that the composition
of corn germ oil is very similar to that of soybean oil and sesame oil. As
shown in Table 1, the SFA, MUFA, and PUFA contents in corn germ oil
and sesame oil are fairly similar, and the major components, oleic acid
(C18:1) and linoleic acid (C18:2), are nearly equal. The content of
linoleic acid (C18:2) is also quite similar in soybean oil and corn
germ oil. The loading plot from the PCA based on the extracted con-
centration of analytes is shown Fig. 2B. The loading plot is useful to
extract the implied analyte that has a higher effect on the PC score.
According to the loading plot, three analytes (palmitic acid (C16:0),
oleic acid (C18:1), and linoleic acid (C18:2)) distributed far from
the center are the analytes contributed most to differentiation
among different oils. The unsatisfied clustering results seem to indi-
cate that PCA algorithm can only be employed for initially explora-
tion the distribution trends of the oil samples. In order to classify
these vegetable oils, three classification methods, including LDA, MDC,
and GA-SVM, were investigated to predict the identity of the samples
in the prediction set.
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Table 1

The relative contents of the fatty acids in different edible vegetable oils.?
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Percentage level (%)

Fatty acid
Al) Bb cb Dh El) Fl)

C12:0 - 0.08 4+ 0.01 0.27 4+ 0.03 0.05 + 0.01 - -
C13:0 - 0.45 £ 0.00 0.63 £ 0.09 1.72 £ 0.21 0.78 & 0.02 0.54 4+ 0.07
C14:0 1.26 £ 0.11 0.34 4+ 0.03 0.04 4+ 0.01 0.62 4+ 0.06 0.06 + 0.01 0.90 + 0.20
C16:0 5.80 4 1.01 3.73 £ 031 6.23 4+ 0.30 9.14 4+ 0.94 5.14 4+ 0.78 1.51 £ 0.02
C17:0 1.84 £ 0.05 0.55 4+ 0.03 2.97 + 0.04 2.05 4 0.07 0.73 + 0.04 0.62 4+ 0.01
C16:1 0.56 + 0.06 0.30 & 0.03 0.07 £ 0.02 0.14 £+ 0.03 0.26 4 0.05 2.81 4+ 0.09
C18:0 8.28 4+ 0.24 3.49 4+ 0.32 2.95 4+ 0.11 1.29 £+ 0.08 5.14 4+ 1.09 3.90 4+ 0.35
C18:1 31.55 £ 0.77 50.95 + 1.03 68.49 £ 2.06 39.65 + 2.03 43.44 £ 1.05 79.38 & 3.41
C18:2 45.00 4 0.31 39.76 + 1.04 18.28 £ 0.79 44.73 + 1.02 43.81 + 2.06 4.66 + 0.69
C18:3 549 + 0.57 0.34 4+ 0.05 0.05 + 0.01 0.56 4+ 0.08 0.11 4+ 0.02 3.64 + 033
C20:2 - - - 0.12 4 0.02 0.01 + 0.01 0.14 4+ 0.03
C20:3 - - - - - 1.03 +0.11
C22:1 0.47 £+ 0.05 0.02 £+ 0.01 - 0.15 £ 0.01 0.03 4 0.03 0.10 + 0.02
C24:0 - - 0.02 + 0.01 - - -

SFA® 17.18 8.64 13.11 14.87 11.85 7.47
MUFA? 32.58 51.27 68.56 39.94 43.73 82.29
PUFA® 50.49 40.10 18.33 45.41 43.93 9.47

@ The data are presented as the mean 4+ SD.

b A: soybean oil; B: rapeseed oil; C: peanut oil; D: corn germ oil; E: sesame oil; F: camellia oil.
¢ SFA: saturated fatty acid.

9 MUFA: monounsaturated fatty acid.

e

PUFA: polyunsaturated fatty acid.
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Fig. 2. Principal component analysis score plot (A) and loading plot (B).

4.3. Classifying edible vegetable oils based on random sampling (RS)

To accurately identify the edible vegetable oil samples, the GA-
optimized SVM was firstly employed to build classification models.
All the 66 samples were randomly divided into two independent
data sets, including a training set of 33 samples and a prediction set of
33 samples. Both training and prediction sets contain six kinds of edible
vegetable oils. The training set was used to construct the classification
model, and the prediction set was used to demonstrate the performance
of the classification model. Because of the arbitrariness of partition of
data set, the classification error rate of a model at each iteration is not
necessarily the same. When the data set was split into training and pre-
diction data sets by random sampling (RS), the above procedure was re-
peated 100 times to evaluate the predictive ability and reliability of
these models. This means that the total edible oil samples were ran-
domly partitioned into training and prediction sets 100 times, and the
classification errors for each classification model were calculated and
averaged. In the present study, the population size of GA is 20, the max-
imum number of generations is 200, and the crossover and mutation
rates are 0.9 and 0.1. In GA, the penalty constant C and parameter o
are modified in the range from 0 to 100. In SVM, the two kernel func-
tions were both employed independently and compared to determine
which kernel was the most suitable for this system. To estimate the pro-
posed method more accurately, both the error over 5-fold cross valida-
tion for the training set and the error on the test data set were used for
estimator of model performance in our study. The result obtained by the
GA-SVM using Gaussian kernel gives the cross validation misclassifica-
tion rate as 9.64% for the training set. The average error rate for the test
set is 11.55%. When the GA-SVM classifier using the linear kernel was
employed, there was a slight difference, with a cross validation classifi-
cation error of 9.64% and a testing classification error of 12.03%. The
results obtained by the GA-SVM with linear kernel are similar to that
using Gaussian kernel; there was no distinct difference. When all GA-
SVM classification terminates, one may count the number of times for
a particular category of edible oil is misclassified in 100 individual clas-
sification models. The most frequently misclassified edible oil categories
were sesame oils and corn germ oils. Once again, sesame oils and corn
germ oils are not easily distinguishable and more than 90% of the
error-prone vegetable oils are sesame and corn germ oil.
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Table 2
The classification results of the classification models based on random sampling

Misclassification rate (%)

Models

Cross validation Training set Prediction set
LDA 10.84 2.15 39.45
MDC 9.78 4.67 15.58
GA-SVM1? 9.64 0.18 11.55
GA-SVM2P 9.64 0.48 12.03

4 GA-SVM1: the model with the RBF kernel.
b GA-SVM2: the model with the linear kernel.

To further demonstrate the performance of GA-SVM, other classifi-
cation algorithms, including LDA and MDC, were also used for the clas-
sification of these edible vegetable oils. Table 2 shows the statistical
classification results of the classification models. Using LDA, the average
error rate for training and prediction set were 10.84% and 39.45%, re-
spectively. The predictive performance by LDA is poor. The average
misclassification rate for the test set was 15.58% by MDC. Comparing
the classification models, the GA-optimized SVM model has a better
predictive performance. Flexible feature mapping using Gaussian kernel
transform and the linear kernel, with kernel width and penalty constant
optimized synergistically using the GA, guaranteed the SVM technique
to generate an excellent classification model. Furthermore, it can be
seen from Table 2 that the average error rate for test sets for the four
models were obviously higher than that for training set. This may be
caused by lack of the representative training sets. The unrepresentative
training set may result in underestimation of model classification error.

4.4, Classification of edible oils based on KS algorithm

To improve the classification model, the KS algorithm was employed
to select the representative training set. Table 3 shows the misclassifica-
tion rate of different classification models using the KS algorithm. The
two GA-SVM classifiers both achieved a cross validation classification
error of 8.48% for the training set. The error rate for the prediction set
was 4.61 % by the GA-SVM model on the Gaussian kernel transform.
From Table 3, it can be observed that the prediction performance of
the SVM classifier using the linear kernel is slightly better than using
the other kernel, with a classification error of 3.03% for the test set.
Only one or two samples will be misclassified in the process of GA-
SVM classification. Compared with the random sampling, the misclassi-
fication rate reduced about 7% using the KS algorithm. The error rate by
LDA has dropped from 39.45% by RS to 9.09% for the test set by the KS
algorithm. The LDA model by the KS algorithm also gave a higher accu-
racy than that obtained by the RS technique. The MDC model presented
a classification error of 6.06% for the prediction set when using the KS
algorithm. Compared with 15.58% acquired by RS, there was a 9.52% im-
provement in classification accuracy. By selecting the representative
training set using the KS algorithm, the classification performance of
all the models was improved. The above results demonstrate that the
classification task of edible oil using fatty acid data can be successfully
solved by GA-SVM techniques combined with the Kennard-Stone
algorithm.

Table 3
The classification results of the classification models based on KS algorithm

Misclassification rate (%)

Models
Cross validation Training set Prediction set
LDA 9.13 6.06 9.09
MDC 8.56 3.03 6.06
GA-SVM1? 8.48 2.06 4.61
GA-SVM2P 8.48 0 3.03

¢ GA-SVM1: the model with the RBF kernel.
> GA-SVM2: the model with the linear kernel.

5. Conclusion

In the present study, MDC, LDA, and GA-SVM were employed to
construct classification models for edible vegetable oils using a fatty
acids data set of oil samples obtained from the GC-MS. It was verified
that a combination of chemometrics methods and GC-MS could be a
suitable tool for the classification of edible vegetable oils. Compared
with the LDA and MDC models, the GA-SVM techniques combined
with the Kennard-Stone algorithm can successfully classify the edible
vegetable oils. The performance of the proposed strategy in classifying
six different edible vegetable oils using the fatty acid data of GC-MS is
of great promise in flexible and accurate classification of edible vegeta-
ble oils. As SVM technique can be used for not only classification but also
regression analysis, the proposed method can be easily extended to the
detection of adulterants in oils. The strategy of fatty acid profiles might
be also useful to detect the adulteration with low quality oils.
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