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to the classical theory of plasticity started to appear [2–5]. 
At first, the application of the plasticity theory to engineer-
ing problems required simplifying assumptions to derive a 
solution [6]. Then, thanks to the availability of powerful 
computers and the development of the finite element (FE) 
method between the nineteen-seventies and nineteen-nine-
ties, the number of contributions to the theory of plasticity 
increased considerably and introduced the need for consid-
ering computational aspects to treat the governing equa-
tions. Several numerical methods [7, 8] have been proposed 
as a generalization of the well-known elastic predictor-
radial corrector algorithm and, to date, the problem has 
been addressed by a large number of research papers1 [9, 
10]. Nowadays, the theory of plasticity is one of the most 
successful branch of Mechanics and it is based on rigorous 
thermodynamics principles. It provides a general frame-
work for the continuum description of the constitutive 
behaviour of plastic materials, i.e., solids that show perma-
nent (or plastic) deformations after being first loaded and 
then unloaded [9, 11]. The theory is often referred to as 
rate-independent plasticity, since it is restricted to condi-
tions for which permanent deformations do not depend on 
the loading rate [9].

The mathematical (analytical or computational) mod-
eling of elastoplastic problems is essential for a wide 
range of fields, including scientific research, structural 
design, manufacturing processes, and technological pro-
duction. Several material types, such as metals, concrete, 
rocks, clays, and soils, may be in fact considered as plastic 
under specific conditions and practical applications cover 
industrial sectors as mechanical, civil and earth engineer-
ing, biomedical, and aerospace [12]. This highlights the 

1 As an example, if we type the keyword ’computational rate-inde-
pendent plasticity’ in ScienceDirect, we get 13, 843 papers.

Abstract The need of accurately reproducing the behav-
iour of elastoplastic materials in computational environ-
ments for the solution of engineering problems motivates 
the development of efficient and robust numerical schemes. 
These engineering problems often involve complex designs 
and/or conditions and are further complicated by the neces-
sity of employing highly nonlinear and nonsmooth elasto-
plastic constitutive equations and constraints to describe 
material behaviour. Therefore, the numerical solution of 
such problems is not trivial and requires careful analyses to 
guarantee algorithm robustness, accuracy, and convergence 
in a reasonable amount of time. The aim of the present 
paper is to provide the reader with both an analysis and dis-
cussion, helpful in choosing the suitable numerical scheme 
when considering the implementation of a plasticity model. 
After a brief overview of the fundamental concepts for 
classical plasticity theory, we revise the state-of-the-art 
of computational methods by discussing conventional and 
less-conventional algorithms,  formulated in a unified set-
ting to allow for a comparison. Several approaches are 
implemented and discussed in representative numerical 
simulations.

1 Introduction

The origin of plasticity dates back to the mid-nineteenth 
century with the work published by Tresca [1]. Later, 
around the first half of the twentieth century, contributions 
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importance of the mathematical modeling in the prediction 
of material behaviour.

Computational modeling represents a topic of significant 
interest due to the need of accurately describing the behav-
iour of real materials in numerical environments (e.g., com-
mercial FE codes). Several engineering problems, e.g., 
metal forming or crash analyses of vehicles, are impossible 
to solve due to the involved complex designs and bound-
ary conditions, highly non-linearity and non-smoothness of 
the governing constitutive equations, and/or the presence 
of constraints on variables. Therefore, algorithmic schemes 
associated to plastic constitutive equations should guaran-
tee accuracy, robustness, convergence, and stability of the 
solution as well as should reduce the computational cost 
and CPU time as much as possible.

The objective of the present paper is to give a useful 
insight into the numerical treatment of plasticity equa-
tions, which can support both engineers and researchers 
interfacing with complex simulations. To this purpose, we 
aim to perform a methodological analysis, and not only a 
comprehensive review, of classical and less-classical algo-
rithmic schemes. With the term ’less-classical’ (or ’less-
conventional’) we refer to algorithms that have been rarely 
or recently addressed in the literature or that lack detailed 
analyses, despite their potential. To the authors’ knowledge, 
the literature is very rich on classical algorithms, but no 
works propose an analysis and comparison of all the algo-
rithms considered in the present paper in a unified context.

In the following, we first provide a brief overview of 
the continuum mechanics theory for plasticity in a unified 
mathematical setting. Then, we address the computational 
issues involved in the solution of the resulting constitutive 
initial value problem. To perform the analysis, we present a 
detailed discussion on several numerical state-update pro-
cedures for plasticity. The discussion starts with an over-
view of the integration schemes proposed in the literature 
and, then, it focuses on the solution schemes, ranging from 
conventional to less-conventional algorithms. The formula-
tion is performed in a unified context to allow for a com-
parison. The analysis includes mainstream algorithms (e.g., 
return-map schemes) and recent and potential numerical 
solutions (e.g., mathematical programming, incremen-
tal energy minimization). The properties, advantages, and 
weaknesses of each approach are highlighted. Finally, we 
complete the discussion by presenting the results of several 
numerical simulations.

Given our purpose, we focus on a simplified plasticity 
problem by making the following assumptions: we concen-
trate on three-dimensional bodies made of isotropic elasto-
plastic materials within the small strain framework and we 
limit the discussion to bodies undergoing sufficiently slow 
processes such that we take the rate-independent material 
response as a good approximation of the real behaviour. 

Moreover, we restrict the implemented schemes to the case 
of associative plasticity.

The paper is organized as follows. Section 2 provides the 
theoretical formulation of plasticity. We place the attention 
on the constitutive initial value problem suitable for the 
subsequent algorithmic treatment. Section 3 addresses the 
main topic of this paper, namely, the overview and analy-
sis of computational approaches to plasticity. A discussion 
on the treatment of the incremental initial boundary-value 
problem is provided. Section  4 focuses on the integra-
tion schemes typically applied to the rate equations, while 
Sect. 5 addresses the solution schemes. Section 6 presents 
and discusses representative numerical simulations to illus-
trate the effectiveness and performance of some numerical 
schemes in a wide class of problems. Finally, we conclude 
with Sect. 7.

Remark 1 (Notation) In the following sections, we denote 
scalars with italic letters (e.g., a, �, A, Σ), vectors and sec-
ond-order tensors with boldface letters (e.g., �, �, �, �), 
and fourth-order tensors with uppercase bold blackboard 
letters (e.g., �, �). We make use of the notations || ∙ || and 
| ∙ | to indicate the Euclidean norm and the absolute value 
function, respectively. The notations (∙ ⋅ ∙), (∙:∙), and (∙⊗ ∙) 
denote, respectively, the inner (or dot), double contrac-
tion, and tensor product. The product between fourth-order 
and second-order tensors is indicated without any symbol. 
Notations (∙̇), tr (∙), and (∙)−1 denote, respectively, the time 
derivative, the trace, and the inverse of ∙.

2  Continuum Formulation

This section reviews the mathematical problem that 
describes the strain and stress state of an isotropic elasto-
plastic continuum body under assigned external actions 
within the three-dimensional framework of infinitesimal 
deformation. The formulation is limited to isothermal static 
processes. A detailed review on the physical and mathemat-
ical background is beyond the scope of the present paper 
and the reader is referred to comprehensive papers and text-
books [3, 10–15].

2.1  Kinematics and Equilibrium Equations

We consider an isotropic elastoplastic body under pre-
scribed body forces, boundary tractions and displacements, 
given as functions of time t ∈ I ⊂ ℜ+. The body occupies 
an open and bounded domain Ω ⊂ ℜ3 with smooth bound-
ary Γ = �Ω. The boundary is split into a Dirichlet and 
a Neumann boundary, respectively ΓD and ΓN, such that 
Γ = ΓD ∪ ΓN  and ΓD ∩ ΓN = �. Accordingly, any material 
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point in the body can be associated to a point � ∈ Ω in 
order to treat the body as a continuum.

Every material point moves with respect to its position 
by a displacement�. Body deformation is characterized for 
infinitesimal deformations through the linearized Green 
strain tensor ���, defined as:

where ∇(⋅) denotes the gradient.
The interaction between the external world and the body 

can be described through body and surface force fields, 
which cause internal stresses, modeled by the Cauchy 
stress tensor �. The equilibrium between the applied exter-
nal body force per unit mass � and the internal stresses is 
expressed by the local momentum balance equation:

where � denotes the mass density, � the velocity field, and 
div� the divergence of �.

The boundary conditions are written as follows:

where � and � are a displacement and a surface force field 
assigned on ΓD and ΓN, respectively; � is the outward unit 
vector normal to ΓN.

The initial conditions are written as follows:

where �0 and �0 are the initial values for the displacement 
and velocity fields, respectively.

The formulation is completed by the constitutive equa-
tions described in the following.

2.2  Constitutive Equations

In the framework of macroscopic phenomenological mod-
eling, we adopt the continuum thermodynamic theory with 
internal variables [16], limiting the discussion to the case 
of rate-independent material response. Such an approach 
presents several advantages for engineering simulations, 
as modeling simplicity, easier numerical implementation, 
and lower computational times, compared to the other 
approaches (e.g., microscopic approaches).

2.2.1  Internal Variables

To identify the variables describing material behaviour, we 
consider the plastic flow as an irreversible process character-
ized in terms of the history of the total strain tensor ��� and two 
kinematic variables: the plastic strain tensor ���p and a set of 
strain-like internal variables�. Such a set can be composed 

(1)��� =
1

2

[
∇� + (∇�)T

]

(2)div� + 𝜌� = �̇ in Ω × I

(3)
{

� = � on ΓD × I

� ⋅ � = � on ΓN × I

(4)
{

�(0) = �0 in Ω

�̇(0) = �0 in Ω

of second-order tensors and/or scalars, which describe inter-
nal irreversible phenomena (e.g., material hardening) and are 
often referred to as hardening parameters.

Following standard arguments, the thermodynamically 
conjugates to the kinematic variables are, respectively, the 
stress tensor � and a set of stress-like internal variables or 
thermodynamic forces�.

Accordingly, following [10], we may distinguish between 
a strain-space and a stress-space formulation of plasticity. In 
the strain-space formulation, which is in general adopted in 
a computational framework, the plastic flow is described in 
terms of the strain-like variables (���,���p, �), while the stress-
like variables (�,�) are assumed as dependent functions. 
However, the response functions, i.e, the yield condition and 
the flow rule, are formulated in stress-space in terms of (�,�)
, as discussed in the following sections. Here, we focus on a 
strain-space formulation.

2.2.2  Additive Decomposition of the Strain

We assume that the total strain ��� can be decomposed into the 
elastic strain ���e and the plastic strain ���p. Accordingly:

Recalling the split of a second-order tensor into its volu-
metric and deviatoric components [16], we may write ��� as 
follows:

where � is the second-order identity tensor, while � = tr (���) 
and � are, respectively, the volumetric and deviatoric com-
ponents of ���.

Similarly, we may write ���e and ���p, as follows:

where �i = tr (���i) and �i (i = e, p) are, respectively, the vol-
umetric and deviatoric components of ���e and ���p. Recall that 
physical evidences have shown that volume changes are 
almost exclusively a consequence of elastic deformation in 
case of metals [12]; therefore, in such a case, plastic defor-
mation is assumed to be only of deviatoric or shearing type, 
i.e., �p = 0, and thus:

Therefore, we obtain:

(5)��� = ���e + ���p

(6)��� =
1

3
�� + �

(7)���e =
1

3
�e� + �e

(8)���p =
1

3
�p� + �p

(9)���p = �p

(10)
{

� = �e + �p

� = �e

Author's personal copy
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2.2.3  Free-Energy

The Helmholtz free-energy is assumed to be a function of 
the total strain, plastic strain, and strain-like internal vari-
ables, i.e.,

or, adopting an additive decomposition, it can be written as:

The Gibbs free-energy is defined through a Legendre trans-
formation of the Helmholtz free-energy, as:

We define the elastic tangent as:

In case of isotropic linearized elasticity, both Ψ and G are 
quadratic forms, respectively, as:

Here, the symbol ∗ indicates the appropriate product 
between �, �, and �; � is the matrix of generalized plas-
tic moduli; the elastic tangent ℂ admits the following 
representation:

where �vol and �dev are the volumetric and deviatoric compo-
nents of the fourth-order identity tensor �. Material param-
eters � and K are referred to as the shear and bulk modulus, 
respectively.

2.2.4  Conjugate Variables

As a consequence of the second law of thermodynamics 
[10], the stress � is expressed through the Helmholtz free-
energy, as follows:

and, recalling the split of a second-order tensor into its vol-
umetric and deviatoric components, as:

where p = 1∕3 tr (�) and � are, respectively, the pressure 
and the stress deviator.

In case of isotropic linearized elasticity, the following 
relationship holds from Eq. (15):

(11)Ψ = Ψ(���,���p, �) = Ψ(���e, �)

(12)Ψ(���e, �) = Ψe(���e) + Ψp(�)

(13)G = �:��� − Ψ

(14)ℂ =
�2Ψe

�(���e)2

(15)Ψ =
1

2
���e:ℂ ���e +

1

2
� ∗ 𝔻 ∗ �

(16)G =
1

2
�:ℂ−1� +

1

2
� ∗ 𝔻

−1 ∗ �

(17)ℂ = 3K 𝕀vol + 2� 𝕀dev

(18)� =
�Ψ

����e

(19)� = p� + �

(20)� = ℂ���e

and using Eqs. (5), (10), and (17), p and � are expressed as 
follows:

Similarly, the thermodynamic forces � associated to � are 
expressed through the Helmholtz free-energy, as follows:

The relation conjugate to Eq. (18) is:

2.2.5  Yield criterion

The constrained evolution of stresses and thermodynamic 
forces is conveniently described by a convex scalar func-
tion f, called yield criterion. At each time, the state (�,�) 
must lie in the closed connected set E�, called admissible 
region, defined as:

A purely elastic behaviour takes place if (�,�) lies within 
the interior of E�, called elastic region, expressed as:

while plastic behaviour is observed if (�,�) evolves on the 
boundary of E�, called yield surface, defined as:

The complement of E� is not attainable.
The yield criterion f can be defined in terms of the 

hydrostatic pressure; in such a case, f is pressure-sensi-
tive and suitable for the description of materials as soils, 
rocks, and concrete; otherwise, the criterion is pressure-
insensitive and suitable to describe materials as metals. 
We now recall some criteria generally used in engineering 
simulations.

Tresca yield criterion The criterion proposed by Tresca 
[1] is represented as:

or equivalently:

where �y is the shear yield stress representing the yield 
limit under a state of pure shear, while �y = 2�y is the uni-
axial yield stress; �max = 1∕2

(
�max − �min

)
 is the maxi-

mum shear stress, where �max = max
(
�I , �II , �III

)
 and 

�min = min
(
�I , �II , �III

)
, �I, �II, and �III being the princi-

pal stresses. Due to its definition in terms of the only shear 
stress, the Tresca criterion is pressure-insensitive.

(21)
{

p = K�

� = 2�(� − �p) = 2��e

(22)� = −
�Ψ

��
= −

�Ψp

��

(23)���e =
�G

��

(24)E� = {(�,�) : f (�,�) ≤ 0}

(25)int
(
E�

)
= {(�,�) : f (�,�) < 0}

(26)�E� = {(�,�) : f (�,�) = 0}

(27)f = �max − �y

(28)f =
(
�max − �min

)
− �y
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von Mises yield criterion The criterion proposed by von 
Mises [2] is represented as:

where �y is the uniaxial yield stress and 
√
3J2 is the von 

Mises effective or equivalent stress, J2 being the second 
scalar invariant of the stress deviator, defined as:

Due to its definition in terms of the only stress deviator, the 
von Mises criterion is pressure-insensitive.

Mohr–Coulomb yield criterion The criterion proposed 
by Mohr and Coulomb [17] is expressed as:

or equivalently:

where � is the shear stress, c is the cohesion, � is the angle 
of internal friction or frictional angle, and �n is the normal 
stress. Plastic yielding is now considered as the result of 
frictional sliding between material particles. Due to its defi-
nition, the Mohr–Coulomb criterion is pressure-sensitive.

Drucker–Prager yield criterion The criterion proposed 
by Drucker and Prager [18] consists of a modification of 
the von Mises criterion in which a term is added to include 
pressure-sensitivity. The yield function is expressed as:

where parameters � and c are material parameters.
Bigoni–Piccolroaz yield criterion The criterion pro-

posed by Bigoni and Piccolroaz [19] considers all the three 
stress invariants. The yield function takes the following 
form:

where q =
√
3J2 and F(p) is the meridian function which 

determines the shape of the yield surface along the hydro-
static pressure axis2. It is defined as:

where Φ is a function of stress, defined as:

while IΦ is defined as follows:

(29)f =
√
3J2 − �y

(30)J2 =
1

2
�:�

(31)f = � − c + �n tan�

(32)f =
(
�max − �min

)
+
(
�max + �min

)
sin� − 2c cos�

(33)f =
√
J2 + � p − c

(34)f = F(p) +
q

g(�∗)

2 We adopt the definition of p reported in Eq. (19), though Bigoni 
and Piccolroaz [19] used the definition p = −1∕3 tr (�).

(35)F =

�
−Mpc

√
(Φ − Φm)[2(1 − �)Φ + �] for Φ ∈ IΦ

+∞ for Φ ∉ IΦ

�

(36)Φ =
−p + c

pc + c

(37)IΦ =

[
−pc + c

pc + c
,

2c

pc + c

]

M, pc, c, m, � are material constants with the following 
properties:

In particular, pressure-dependency is controlled by M; c 
and pc denote the yield stresses in tension and compression, 
respectively; � and m regulate the shape of the yield surface 
in the meridian section.

The term g(�∗) in Eq. (34) is a deviatoric function, 
defined as follows:

where � and � are material constants determining the shape 
of the yield surface in the deviatoric plane, with the follow-
ing properties:

The Lode angle �∗ is a function of the second and third 
stress invariants characterizing the location of the stress in 
the deviatoric stress space and it is defined as:

with

In conclusion, the Bigoni–Piccolroaz criterion is based on 
a seven-parameter function which can be used for simulat-
ing the elastoplastic behaviour of several materials (ductile, 
pressure-sensitive, frictional, and quasi-brittle). Moreover, 
it presents features desirable for computational implemen-
tation and modeling, e.g., smoothness of the yield surface, 
ability of being calibrated for a large number of materials, 
general noncircular surface in the deviatoric plane, and 
possibility of being converted into classical yield criteria 
under limit conditions.

2.2.6  Evolution Laws

The plasticity model is defined through the definition of 
proper evolution laws for the plastic strain and strain-like 
internal variables (denoted, respectively, as plastic flow 
rule and hardening law), in the following form:

where �̇� is the non-negative consistency parameter, 
� = �(�,�) is the flow vector prescribing the direction of 
the plastic flow, and � = �(�,�) is the generalized hard-
ening modulus prescribing the type of hardening. The flow 

(38)M > 0, pc > 0, c ≥ 0, m > 1, 0 < 𝛼 < 2

(39)

g =
1

cos
[
�

6
� −

1

3
cos−1 (� cos 3�∗)

] with 0 ≤ �∗ ≤ �

3

(40)0 ≤ 𝛽 ≤ 2, 0 ≤ 𝜂 < 1

(41)�∗ =
1

3
cos−1

�
3
√
3

2

J3

J
3∕2

2

�

(42)J3 =
1

3
tr (�3)

(43)
{

�̇��p = �̇��

�̇ = �̇��
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rule (43)1 can be equivalently rewritten by exploiting Eq. 
(5), as:

The evolution laws are often defined in terms of a flow (or 
plastic) potential Υ = Υ(�,�) such that:

In such a case, Υ is a non-negative convex function of � 
and � and zero-valued at the origin. When the yield func-
tion coincides with the flow potential, i.e., Υ = f , plasticity 
is associative. In such a case, the evolution laws are called 
normality rules and the plastic strain rate is a tensor normal 
to the yield surface in the space of stresses. Experimental 
results showed that associative plasticity can be adopted to 
describe the behavior of metals, but not of materials as con-
crete and soils [9].

Equation (45) require that Υ is differentiable, despite 
many plasticity models are based on a non-differentiable Υ
, e.g., Tresca, Mohr–Coulomb, and Drucker–Prager mod-
els. In such cases, Υ is called pseudo-potential or general-
ized potential and the evolution laws can be treated with the 
introduction of the concept of subdifferential sets [15, 20, 
21]. The generalization of Eq. (43) is obtained by assuming 
� and � to be subgradients of Υ, i.e.,

An alternative approach to nonsmooth potentials was pro-
posed by Koiter [5]. It first assumes that a finite number n 
of normals 

(
�1, ..., �n

)
 is defined at a generic singular point 

of an isosurface of Υ. Any subgradient of Υ can be thus 
written as a linear combination c1�1 + ... + cn�n, with non-
negative coefficients c1, ..., cn. The flow rule follows:

where �̇�i (i = 1, .., n) are the non-negative consistency 
parameters. This approach is applicable when a corner 
appears as the result of the intersection of a number of reg-
ular surfaces (e.g., cap-cone models for geomaterials, sin-
gle crystal plasticity models) [9].

In the following, some evolution laws used in engineer-
ing practice are briefly recalled, for further details refer to 
[9]. We highlight that a flow rule associated with a pres-
sure-insensitive yield condition results into purely devia-
toric plastic flow.

Associative Tresca law The associative Tresca plas-
ticity law takes the Tresca yield function (28) as flow 
potential, which is differentiable when the three principal 

(44)�̇��e = �̇�� − �̇��

(45)

⎧
⎪⎨⎪⎩

� =
�Υ

��

� =
�Υ

��

(46)
{

� ∈ ��Υ

� ∈ ��Υ

(47)�̇��p =

n∑
i=1

�̇�i�i

stresses are distinct and non-differentiable when two 
principal stresses coincide. Therefore, the flow vector 
is defined as a subgradient of the Tresca function or the 
approach by Koiter [5] is generally adopted [9].

Associative von Mises law The associative von Mises 
plasticity law, also referred to as Prandtl-Reuss equation, 
takes the von Mises yield function (29) as flow potential. 
The corresponding flow vector is given by:

and is deviatoric due to the pressure-insensitivity of the 
yield function.

Associative and non-associative Mohr–Coulomb law 
The associative Mohr–Coulomb plasticity law takes the 
Mohr–Coulomb yield function (31) as flow potential and 
the approach by Koiter [5] is generally adopted. The non-
associative Mohr–Coulomb law takes, as flow potential, 
a Mohr–Coulomb yield function with the frictional angle 
� replaced by a different angle 𝜑 < 𝜙, called dilatancy 
angle. For � = 0, the plastic flow becomes deviatoric and 
the flow rule reduces to the associative Tresca law. For 
details, see also [9].

Associative and non-associative Drucker–Prager law 
The associative Drucker–Prager model takes as flow 
potential the Drucker–Prager yield function (33) which is 
singular at the apex of the yield surface and smooth else-
where. At the apex singularity, the flow vector is defined 
as a subgradient of the yield function [9]. The non-asso-
ciative Drucker–Prager law is obtained by taking, as flow 
potential, a Drucker–Prager yield function with the fric-
tional angle � replaced by a dilatancy angle 𝜑 < 𝜙, i.e.,

where � is obtained by replacing � with � in the definition 
of �.

Associative and non-associative Bigoni–Piccolroaz 
law The associative Bigoni–Piccolroaz model takes as 
flow potential the Bigoni–Piccolroaz yield function (34). 
The non-associative Bigoni–Piccolroaz takes as flow 
potential the function Υ = ||�|| [22].

2.2.7  Types of Plastic Behaviour

Material behaviour may exhibit hardening during plas-
tic deformation. This means that the yield surface may 
change in shape and size during plastic loading and the 
set � may contain strain-like internal variables which 
describe the hardening process (see Sect.  2.2.1). In the 
following, we briefly describe some classical model with 
or without hardening.

(48)� =

√
3

2

�

||�||

(49)f =
√
J2 + � p
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Perfect plasticity A model is perfectly plastic if 
no hardening is allowed, i.e., the yield level does not 
depend on the degree of plastification and the yield sur-
face remains fixed. The description of such a mechanism 
implies a single internal variable, taken to be ���p. As an 
example, perfect plasticity corresponds to a constant uni-
axial yield stress �y or constant cohesion c in Eqs. (28), 
(29), (31), and (33). Perfectly plastic models are suitable 
for the stability analysis of structures and soils and are 
widely employed for the determination of limit loads and 
safety factors.

Isotropic hardening The isotropic hardening mecha-
nism produces a uniform (isotropic) expansion of the 
initial yield surface, without shifting. The set � contains 
a scalar variable which determines the size of the yield 
surface. Two approaches, known as strain-hardening and 
work-hardening, are generally adopted [9].

Strain-hardening is characterized by a scalar strain-
like internal variable representing a measure of the 
accumulated plastic deformation. An example is the von 
Mises effective plastic strain, defined as:

which represents the total plastic strain accumulated from 
the beginning of the loading history. Its rate evolution 
equation reads:

or, equivalently, using Eq. (43)1 and the condition that 
‖�‖ = 1:

Accordingly, the uniaxial yield stress in Eq. (29) is a func-
tion of the accumulated plastic strain, i.e., �y = �y

(
e
p). The 

model is said to be linear hardening if:

otherwise nonlinear hardening. Here, �y,0 is the uniaxial 
initial yield stress and Hiso is the linear isotropic hardening 
modulus.

Work-hardening is characterized by a scalar variable 
defining the state of hardening and represented by the 
dissipated plastic work Wp whose evolution is:

Accordingly, the uniaxial yield stress in Eq. (29) is a func-
tion of the dissipated plastic work, i.e., �y = �y(W

p).
Kinematic hardening The kinematic hardening mech-

anism produces a shifting of the initial yield surface, 
without expansion. The description of such a mechanism 

(50)e
p
= ∫

t

0

�
2

3
‖�̇��p(𝜏)‖d𝜏

(51)ė
p
=

�
2

3
‖�̇��p(t)‖

(52)ė
p
= �̇�

(53)�y = �y,0 + Hisoe
p

(54)Ẇp = �:�̇��p

implies a single internal variable, usually taken to be 
the plastic strain ���p. As an example, the von Mises yield 
function is given by:

where � − � is the relative stress tensor, � being the sym-
metric back-stress tensor. The latter is the thermodynamic 
force associated with kinematic hardening and represents 
the translation of the yield surface in the space of stresses. 
To complete the formulation, the simplest evolution law for 
� is the linear kinematic (or Prager’s) hardening rule:

where ckin is a material parameter. Refinements with respect 
to the linear kinematic hardening law (56) have been pro-
posed in [23]; see [12] for details.

Combined isotropic and kinematic hardening Other 
models can be obtained by combining the above laws for 
isotropic and kinematic hardening. For example, a rela-
tively simple model with combined isotropic and kine-
matic hardening can be formulated by adopting the yield 
function (55) and allowing �y to be a function of ep.

2.2.8  Kuhn–Tucker Complementary Conditions

The model is completed giving the conditions on the 
consistency parameter �̇� and the yield criterion f. Specifi-
cally, �̇� is assumed to obey the Kuhn–Tucker (KT) com-
plementary inequality conditions [24, 25]:

In addition to conditions (57), �̇� satisfies the consistency (or 
persistency) condition:

which corresponds to the requirement that, for �̇��p and �̇ to 
be non-zero (i.e., �̇� > 0), the state (�,�) must move on �E�

, so that ḟ = 0. Conditions (57) and (58) are also known 
as loading/unloading and consistency conditions. The KT 
conditions reflect the multi-value nature of the evolution 
laws: zero rates for �̇��p and �̇ are related to an infinite num-
ber of stress-like variable states, which corresponds to the 
whole elastic domain [26].

Remark 2 (Interpretation of the Kuhn–Tucker comple-
mentary conditions  [10]). Following [10], these situations 
may occur:

1. (�,�) ∈ int
(
E�

)
⇒ f < 0. From conditions (57) we 

have: 

(55)f =
√
3J2(� − �) − �y

(56)�̇ = ckin�̇��
p

(57)�̇� ≥ 0, f ≤ 0, �̇�f = 0

(58)�̇� ḟ = 0
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 Thus, the rate form of Eq. (20) leads to: 

 The response is instantaneously elastic.
2. (�,�) ∈ �E�⇒ f = 0. Conditions (57) are automati-

cally satisfied even if �̇� > 0 and two situations can 
occur:

–– If ḟ < 0, from condition (58) we have: 

 Since Eq. (60) holds and (�,�) ∈ �E�, the response is 
called unloading from a plastic state.
–– If ḟ = 0, condition (58) is automatically satisfied. 

If �̇� > 0, then �̇��p ≠ � and �̇ ≠ � and the response is 
plastic loading; if �̇� = 0 is neutral loading.

2.2.9  Consistency Condition and Elastoplastic Tangent 
Modulus

To provide an interpretation of the consistency condition 
and the expression for the elastoplastic tangent modulus, 
we briefly summarize the results reported in [10]. We first 
consider the situation: (�,�)(t) ∈ �E� ⇔ f (t) = 0 at time 
t > 0. If ḟ > 0, then f (t + Δt) > 0 for some Δt > 0, which 
violates condition f ≤ 0. Therefore, ḟ ≤ 0. Then, we spec-
ify that:

Therefore, condition (58) corresponds to the requirement 
previously reported, that is, for �̇��p and �̇ to be non-zero 
(i.e., �̇� > 0), (�,�)(t) ∈ �E� must move on �E�, so that 
ḟ = 0.

To exploit condition (58), we derive the following time 
derivative of f at (�,�) ∈ E�:

Then, the following assumption, reported in [10], always 
holds for associative perfect plasticity.

Assumption 1 [10] The flow rule, hardening law, and 
yield condition in stress-space are such that the following 
inequality holds:

(59)
�̇�f = 0 and f < 0

⇒ �̇� = 0 ⇒ �̇��p = � and �̇ = �

(60)�̇ = ℂ �̇�� ≡ ℂ �̇��e

(61)
�̇� ḟ = 0 and ḟ < 0

⇒ �̇� = 0 ⇒ �̇��p = � and �̇ = �

(62)
{

�̇� > 0 ⇒ ḟ = 0

ḟ < 0 ⇒ �̇� = 0

(63)
ḟ = 𝜕� f :�̇ + 𝜕� f ∗ �̇ = 𝜕� f :ℂ(�̇�� − �̇��p) + 𝜕� f ∗ �̇ =

= 𝜕� f :ℂ �̇�� − �̇�
(
𝜕� f :ℂ � + 𝜕� f ∗ 𝔻 ∗ �

) ≤ 0

(64)𝜕� f :ℂ � + 𝜕� f ∗ 𝔻 ∗ � > 0

for all admissible states (�,�) ∈ �E�.

For proof, refer to [10].
It follows from Eq. (58) that:

where ⟨⋅⟩ = max (0, ⋅). Therefore, the consistency parame-
ter is a function of time. In view of Eqs. (63) and (64), we 
conclude that3:

Finally, we have:

where ℂep is the tangent elastoplastic modulus given by:

We remark that ℂep is generally non-symmetric for arbi-
trary �, except in the case of associative flow rule.

2.2.10  Equivalent Formulation of the Kuhn–Tucker 
Complementary Conditions

We now reformulate the KT complementary inequality 
conditions (57) as a nonsmooth (non-differentiable) equa-
tion and, then, we construct parametric smooth (continu-
ously differentiable) functions. The advantages are twofold: 
(i) we have to deal with only one scalar nonlinear equation, 
instead of the KT complementary inequality conditions; 
(ii) a smoothing function can be easier treated in numerical 
simulations.

Complementarity functions The KT complementarity 
inequality conditions (57) can be equivalently rewritten by 
using a complementarity functionΦ:ℜ2

→ ℜ, such that:

Complementarity problems and functions have been 
largely treated in the literature (see [27–30] and references 
therein). Among the others, widely used functions are the 
Fischer–Burmeister and the min function, as detailed in the 
following.

The Fischer–Burmeister (FB) complementarity func-
tionΦFB is defined as follows [31]:

(65)ḟ = 0 ⇔ �̇� =
⟨𝜕� f :ℂ �̇��⟩

𝜕� f :ℂ � + 𝜕� f ∗ 𝔻 ∗ �

3 Note that plastic or neutral loading takes place at (�,�) ∈ �E� if 
the angle in the inner product defined by ℂ between �� f  (i.e., the nor-
mal to �E� at �) and �̇�� is less or equal than �∕2 [10].

(66)for f = 0 and ḟ = 0, �̇� ≥ 0 ⇔ 𝜕� f :ℂ�̇�� ≥ 0

(67)�̇ = ℂ(�̇�� − �̇��p) = ℂ(�̇�� − �̇��) = ℂ
ep�̇��

(68)ℂ
ep =

⎧⎪⎨⎪⎩

ℂ if �̇� = 0

ℂ −
ℂ �⊗ ℂ 𝜕� f

𝜕� f :ℂ � + 𝜕� f ∗ 𝔻 ∗ �
if �̇� > 0

(69)Φ(�̇� , f ) = 0 ⇔ �̇� ≥ 0, f ≤ 0, �̇�f = 0

(70)ΦFB(�̇� , f ) =
√
�̇�2 + f 2 − �̇� + f
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such that condition (68) holds.

Proof We start by proving:

By defining ΦFB =
√
�̇�2 + f 2 − �̇� + f = 0, we have:

Squaring both members:

and simplifying, we obtain f �̇� = 0. If f ≤ 0, �̇� ≥ 0 for (71). 
Thus, condition (70) is verified.

Now, we prove:

We impose the following equality:

Then, squaring both members:

and simplifying, we obtain f �̇� = 0, that is veri-
fied by hypothesis. Therefore, we have √
f 2 + �̇�2 + f − �̇� = 0 = ΦFB and condition (73) is verified. 

□

The first derivatives of the FB function are:

while the second derivatives are:

As it can be observed, the FB function is differentiable eve-
rywhere except at (�̇� , f ) = (0, 0).

(71)ΦFB(�̇� , f ) = 0 ⇒ �̇� ≥ 0, f ≤ 0, �̇�f = 0

(72)
√
�̇�2 + f 2 = �̇� − f , �̇� ≥ f

(73)�̇�2 + f 2 = f 2 + �̇�2 − 2f �̇�

(74)�̇� ≥ 0, f ≤ 0, �̇�f = 0 ⇒ ΦFB(�̇� , f ) = 0

(75)
√
�̇�2 + f 2 = �̇� − f , �̇� ≥ f

(76)�̇�2 + f 2 = f 2 + �̇�2 − 2f �̇�

(77)

⎧⎪⎪⎨⎪⎪⎩

𝜕ΦFB

𝜕�̇�
=

�̇�√
�̇�2 + f 2

− 1

𝜕ΦFB

𝜕f
=

f√
�̇�2 + f 2

+ 1

(78)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕2ΦFB

𝜕�̇�2
=

1√
�̇�2 + f 2

−
�̇�2�

�̇�2 + f 2
�3∕2

𝜕2ΦFB

𝜕f 2
=

1√
�̇�2 + f 2

−
f 2�

�̇�2 + f 2
�3∕2

𝜕2ΦFB

𝜕�̇�𝜕f
=

𝜕2ΦFB

𝜕f 𝜕�̇�
= −

f �̇��
�̇�2 + f 2

�3∕2

The min complementarity functionΦMIN :ℜ2
→ ℜ is 

defined as follows:

such that condition (68) holds. The min function can be 
rewritten in the following equivalent form:

Proof We start by proving:

If ΦMIN = �̇� − ⟨�̇� + f ⟩ = 0 holds, only one of the two fol-
lowing cases occurs:

and

Thus, condition (80) is verified.

Now, we prove:

We impose the following equality:

Again, only one of the two following cases occurs for f:

and

that are both verified by hypothesis in (83). Therefore, con-
dition (83) is verified. □

The min function is a piecewise smooth func-
tion, whose non-differentiable points form the line {
(�̇� , f ) ∈ ℜ2 | �̇� = −f

}
.

Smoothing functions Different approaches to overcome 
the non-smoothness of the complementarity functions 
or to handle systems of nonsmooth equations have been 
developed (see [27] and references therein). Here, we 
consider smooth approximations for the complementarity 

(79)ΦMIN(�̇� , f ) = min
[
�̇� ,−f

]

(80)min
�
�̇� ,−f

�
= �̇� − ⟨�̇� + f ⟩

(81)ΦMIN(�̇� , f ) = 0 ⇒ �̇� ≥ 0, f ≤ 0, �̇�f = 0

(82)
�

�̇� + f ≥ 0

�̇� − ⟨�̇� + f ⟩ = 0
⇒ f = 0, �̇� ≥ 0

(83)
�

�̇� + f < 0

�̇� − ⟨�̇� + f ⟩ = 0
⇒ �̇� = 0, f < 0

(84)�̇� ≥ 0, f ≤ 0, �̇�f = 0 ⇒ ΦMIN(�̇� , f ) = 0

(85)�̇� − ⟨�̇� + f ⟩ = 0

(86)
�

�̇� + f ≥ 0

�̇� − ⟨�̇� + f ⟩ = 0
⇒ f = 0, �̇� ≥ 0

(87)
�

�̇� + f < 0

�̇� − ⟨�̇� + f ⟩ = 0
⇒ �̇� = 0, f < 0
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functions, restricting our attention to the FB and min 
functions defined above. Particularly, we approximate 
the complementarity function Φ:ℜ2

→ ℜ, defined in Eq. 
(68), with a smoothed functionΦ�:ℜ

2
→ ℜ, with � a posi-

tive smoothing parameter.
We start by introducing an approximation for the FB func-

tion in Eq. (69), called smoothed FB functionΦFB
�

 and defined 
as [32]:

such that:

Proof We start by proving:

By defining ΦFB
𝛿

=
√
�̇�2 + f 2 + 2𝛿 − �̇� + f = 0, we have:

Squaring both members, we obtain:

and simplifying, we have �̇�f = −𝛿. If f ≤ 0, �̇� ≥ 0 for (90). 
Thus, condition (89) is verified.

Now, we prove:

We impose the following equality:

Squaring both members:

and simplifying, we have f �̇� = −𝛿, that is verified by 
hypothesis (92). Thus, 

√
�̇�2 + f 2 + 2𝛿 − �̇� + f = 0 = ΦFB

𝛿
 

and condition (92) is verified. □

The first derivatives of ΦFB
�

 are the following:

while the second derivatives are given by:

(88)ΦFB
𝛿
(�̇� , f , 𝛿) =

√
�̇�2 + f 2 + 2𝛿 − �̇� + f

(89)ΦFB
𝛿
(�̇� , f , 𝛿) = 0 ⇔ �̇� ≥ 0, f ≤ 0, �̇�f = −𝛿

(90)ΦFB
𝛿
(�̇� , f , 𝛿) = 0 ⇒ �̇� ≥ 0, f ≤ 0, �̇�f = −𝛿

(91)
√
�̇�2 + f 2 + 2𝛿 = �̇� − f , �̇� > f

(92)�̇�2 + f 2 + 2𝛿 = �̇�2 + f 2 − 2�̇�f

(93)�̇� ≥ 0, f ≤ 0, �̇�f = −𝛿 ⇒ ΦFB
𝛿

= 0

(94)
√
�̇�2 + f 2 + 2𝛿 = �̇� − f , �̇� ≥ f

(95)�̇�2 + f 2 + 2𝛿 = �̇�2 + f 2 − 2f �̇�

(96)

⎧⎪⎪⎨⎪⎪⎩

𝜕ΦFB
𝛿

𝜕�̇�
=

�̇�√
�̇�2 + f 2 + 2𝛿

− 1

𝜕ΦFB
𝛿

𝜕f
=

f√
�̇�2 + f 2 + 2𝛿

+ 1

Now, we may observe that for any 𝛿 > 0, the function ΦFB
�

 
is smooth everywhere and differentiable at (�̇� , f ) = (0, 0).

Figure  1 shows the effect of the replacement of the 
KT complementary conditions (57) with the smoothed 
FB function defined in Eq. (87), varying �. As it can be 
observed, Φ� converges to the KT complementary condi-
tions as � decreases.

Several smoothing functions to the min function have 
been proposed in the literature. The common idea is to 
approximate, first, the max function in Eq. (79) and, 
then, to derive an approximation for ΦMIN defined in Eq. 
(78). Along this line, Chen and Mangasarian [33] intro-
duced a family of smoothing functions, where the generic 
Chen–Mangasarian (CM) smoothing function to the min 
function is defined by:

where �:ℜ → [0,+∞) is a piecewise continuous density 
function satisfying:

and

(97)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕2ΦFB
𝛿

𝜕�̇�2
=

1√
�̇�2 + f 2 + 2𝛿

−
�̇�2�

�̇�2 + f 2 + 2𝛿
�3∕2

𝜕2ΦFB
𝛿

𝜕f 2
=

1√
�̇�2 + f 2 + 2𝛿

−
f 2�

�̇�2 + f 2 + 2𝛿
�3∕2

𝜕2ΦFB
𝛿

𝜕�̇�𝜕f
=

𝜕2ΦFB
𝛿

𝜕f 𝜕�̇�
= −

f �̇��
�̇�2 + f 2 + 2𝛿

�3∕2

(98)ΦCM
𝛿

(�̇� , f , 𝛿) = �̇� − ∫
+∞

−∞

max
[
0, �̇� + f − 𝛿s

]
𝜌(s)ds

(99)∫
+∞

−∞

�(s)ds = 1

Fig. 1  Approximation of the Kuhn–Tucker (KT) conditions (57) 
through the smoothed Fischer–Burmeister (FB) function defined in 
Eq. (87), varying �
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Depending on the definition of �, several ΦCM
�

 can be 
derived [33].

Here, we consider the following CM function, known as 
Neural Networks (NN) smoothing function [33]:

Such a function is now differentiable. Figure 2a represents 
the effect of the replacement of the KT complementary 
conditions (57) with the NN smoothing function defined in 
Eq. (100), varying �.

Another CM function, known as Chen–Harker–Kan-
zow–Smale (CHKS) smoothing function, is defined as 
[33]:

Such a function is differentiable. Figure 3a represents the 
effect of the replacement of the KT complementary condi-
tions (57) with the CHKS function defined in Eq. (101), 
varying �.

Through the discussed smoothed complementarity 
functions, the KT conditions (57) are converted into a 
smooth unconstrained problem, whose solution approxi-
mates the solution of the original problem to a degree of 
accuracy depending on � [34]. Figure 4 presents a com-
parison between the approaches based on the FB, NN, 
and CHKS smoothing functions for � = 0.1. The formu-
lations based on the FB and CHKS lead to equivalent 
approximations of the KT conditions; the difference lies 
in the smoothing parameter, which is assumed to be � for 
the FB function and �2 for the CHKS function. Therefore, 
it can be observed in Fig. 4 that the FB function requires 
lower values of the parameter � to better approximate the 
KT conditions.

Remark 3 (Derivation of the NN function) The procedure 
to derive the NN function (100) consists in the introduction 
of the sigmoid function or s-function, defined as:

and of its integral, known as p-function:

(100)k1: = ∫
+∞

−∞

|s|𝜌(s)ds < +∞

(101)ΦNN
𝛿

(�̇� , f , 𝛿) = −f − 𝛿 ln

⎡
⎢⎢⎣
1 + exp

−
�̇� + f

𝛿

⎤
⎥⎥⎦

(102)ΦCHKS
𝛿

(�̇� , f , 𝛿) =
�̇� − f

2
−

√
(�̇� + f )2 + 4𝛿2

2

(103)S(x, �) =
1

1 + exp
−

x

�

, x ∈ ℜ

(104)P(x, �) = ∫
x

−∞

S(y, �)dy = x + � ln
[
1 + exp

−
x

�

]

(b)

(c)

(b)

Fig. 2  Approximation of: a the KT complementary conditions (57) 
through the Neural Networks (NN) smoothing function defined in 
(100), varying �; b the max function through the p-function; c the 
Heaviside step function through the s-function
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The s- and p-function can be treated, respectively, as an 
approximation of the Heaviside or unit step function (see 
Fig. 2c):

and of its integral, i.e., the max function (see Fig. 2b):

Remark 4 (Derivation of the CHKS function) The proce-
dure to derive the CHKS function consists in rewriting the 
max function, as follows:

Then, if we approximate the absolute-value function |x| 
with an hyperbole (see Fig. 3b):

the approximation of the max function in (106) follows (see 
Fig. 3c):

(105)H(x) =

⎧⎪⎨⎪⎩

0 if x < 0

0.5 if x = 0 ≈ S(x, 𝛿)
1 if x > 0

(106)⟨x⟩ = max [0, x] ≈ P(x, �)

(107)⟨x⟩ = max [0, x] =
x

2
+

�x�
2

(108)�x� ≈
√
x2 + 4�2

(109)⟨x⟩ = max [0, x] ≈
x

2
+

√
x2 + 4�2

2

(b)

(c)

(a)

Fig. 3  Approximation of: a the KT complementary conditions (57) 
through the Chen–Harker–Kanzow–Smale (CHKS) smoothing func-
tion defined in Eq. (101), varying �; b the absolute value function 
through a hyperbole; c the max function through a hyperbole

Fig. 4  Comparison between the approaches based on the Fischer–
Burmeister (FB), Neural Networks (NN), and Chen-Harker-Kanzow-
Smale (CHKS) smoothing functions

Author's personal copy



Computational Methods for Elastoplasticity: An Overview of Conventional and…

1 3

2.2.11  The Principle of Maximum Plastic Dissipation

We now provide an alternative formulation to the theory 
for associative plasticity by reporting the principle of maxi-
mum plastic dissipation. Such a principle plays an impor-
tant role in the variational formulation of plasticity. It is 
often credited to von Mises [3] and has been studied in sev-
eral works [35–37].

We define the plastic dissipationDp = Dp
(
�,� ;�̇��p, �̇

)
, as 

follows:

that represents the rate of work done or the dissipation due 
to plastic deformation.

The principle of maximum plastic dissipation states that, 
among all the admissible states (�∗,�∗), the actual state 
(�,�) maximizes the plastic dissipation (109), for a given 
state 

(
�̇��p, �̇

)
. Therefore, the following inequality yields:

or, equivalently:

Therefore, the actual state (�,�) is solution to the follow-
ing constrained optimization problem:

The maximum plastic dissipation principle has the advan-
tage of implying [10]:

i. associative evolution laws in stress-space;
ii. loading/unloading conditions in the KT complemen-

tary form (57);
iii. convexity of the elastic domain E�.

For the proof, refer to [10].
Inequality (110) and the weak formulation of the rate form 

of the momentum balance equation provide a variational for-
mulation of plasticity (see [10] for details). Moreover, ine-
quality (110) is valid also in cases for which the formulation 
no longer holds, e.g., in the case of elastic domains with a 
nonsmooth boundary [10].

2.2.12  Convex Analysis Setting

We now examine the elastoplastic theory by adopting the 
tools of convex analysis and subdifferential calculus [38] in 
order to deal with convex non-differentiable functions and 

(110)Dp = �:�̇��p + � ∗ �̇

(111)
(�,�) ∈ E�

Dp
(
�,� ;�̇��p, �̇

) ≥ Dp
(
�∗,�∗;�̇��p, �̇

)
∀(�∗,�∗) ∈ E�

(112)

(�,�) ∈ E�

(� − �∗):
[
�̇�� − ℂ

−1�̇
]
− (� − �∗) ∗ 𝔻

−1 ∗ �̇ ≥ 0

∀(�∗,�∗) ∈ E�

(113)max
(�∗,�∗)∈E�

Dp
(
�∗,�∗;�̇��p, �̇

)

multivalued operators [20, 39–41]. This allows to derive an 
alternative form for the evolution laws from a non-differen-
tial potential, which has a rigorous mathematical basis and 
becomes important for the analysis of the variational prob-
lem of elastoplasticity [39, 41].

We now transform inequality (110) to obtain the set-val-
ued mapping relating the states (�,�) and 

(
�̇��p, �̇

)
. Following 

[39], we make use of the indicator function of the closed con-
vex set E�:

which is called complementary pseudo-potential of dissipa-
tion and is denoted by Dp∗. The function is convex because 
of the convexity of the elastic domain, but non-differenti-
able in the classical sense. We can thus rewrite inequality 
(110) in the equivalent form:

Since it can be demonstrated that inequality (114) corre-
sponds to the convex inequality applied to a non-differen-
tial function [42], the states (�,�) and 

(
�̇��p, �̇

)
 are related by 

the following subdifferential relations:

which are equivalent to the evolution laws (43) and com-
plementarity conditions (57). Inequality conditions are 
no more present. It is noted that the evolution rules take 
the form of a differential inclusion where the rate of 
both plastic strain and strain-like internal variables is 
expressed as the subgradient of the convex complementary 
pseudo-potential.

The inverse relation of the evolution rules (115) is 
obtained straightforwardly by using the Fenchel transform 
[38]:

where Dp is the pseudo-potential of dissipation. This func-
tion is convex, non-negative, zero only at the origin, and 
non-differentiable at the origin, where its sub-differential 
set coincides with the elastic domain [15]. The fact that the 
pseudo-potential is homogeneous of degree one implies a 
rate-independent behaviour.

The inverse evolution laws are then:

Both functions are convex and related by the Fenchel 
inequality.

(114)IE�
(�,�) =

{
0 if(�,�) ∈ E�

+∞ otherwise

(115)
Dp

(
�,� ;�̇��p, �̇

)
− IE�

(�,�) ≥ Dp
(
�∗,�∗;�̇��p, �̇

)
− IE�

(�∗,�∗)

(116)
{

�̇��p ∈ 𝜕�IE�

�̇ ∈ 𝜕� IE�

(117)
Dp

(
�̇��p, �̇

)
= sup

�,�

[
�:�̇��p + � ∗ �̇ − IE�

(�,�)
]

= sup
(�,�)∈E�

[
�:�̇��p + � ∗ �̇

]

(118)
{

� ∈ 𝜕�̇��pD
p
(
�̇��p, �̇

)
� ∈ 𝜕�̇D

p
(
�̇��p, �̇

)
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Substituting the strain decomposition (5) in the constitu-
tive laws (18) and (22), we obtain the following constitutive 
differential equations from Eq. (118):

which are also known as Biot’s equations of standard dis-
sipative system [43].

Recall that, for non-associated models, the maximum dis-
sipation inequality (110) does not hold and appropriate exten-
sions must be sought. The generalization proposed in [26] 
allows for an implicit relation between the plastic strain rate 
and the stress. As a result, it is possible to extend the normal-
ity rule to a larger class of models including non-associated 
flow rule. The pseudo-potential is replaced by the bi-poten-
tial, which depends on both the stress and the plastic strain 
rate  [26]. The bi-potential is bi-convex, i.e., convex with 
respect to the stress and the plastic strain rate when consid-
ered separately. The partial sub-derivatives of the bi-potential 
yield the flow rule and its inverse.

2.3  Initial Boundary‑Value Problem

We are now able to formulate the local form of the initial 
boundary-value problem (IBVP) for a three-dimensional iso-
tropic elastoplastic body, as reported in Table 1.

The local form of  the elastoplastic constitutive initial 
value problem (IVP) takes the form reported in Table 2. As it 

(119)
{

𝜕���pΨ(��� − ���p, �) + 𝜕�̇��pD
p
(
�̇��p, �̇

)
∋ �

𝜕�Ψ(��� − ���p, �) + 𝜕�̇D
p
(
�̇��p, �̇

)
∋ �

can be observed, system (133) consists of first-order ordi-
nary  differential equations (ODEs), i.e., Eqs. (133)1 and 
(133)2, constrained by algebraic equations and inequalities, 
i.e., Eq. (133)3. Under plastic loading, system (133) forms a 
semi-explicit system of differential algebraic equations 
(DAE) of index two4 [44]:

provided that �̇� > 0. Moreover, the elastoplastic IVP is 
highly nonlinear for two main reasons: (i) the time-inte-
gration of the rate constitutive equations (133)1 and (133)2 
requires careful consideration of the KT complementary 
conditions (133)3; (ii) the state (�,�) is constrained to 
lie inside or on the yield surface which is either fixed or 
evolving. The object of next sections is concerned with the 
numerical solution of the stated IVP.

3  Computational Approach to the Elastoplastic 
Initial Value Problem

Due to the mathematical complexity of the elastoplastic 
equations in Table 2, the derivation of analytical solutions 
is limited to simplified situations, e.g., in case of perfect 
plasticity or when limit loads and steady plastic flows need 

4 The global index of a solvable differential algebraic system is the 
smallest positive integer m such that all equations are brought to the 
standard first-order differential form after m differentiations [44].

(128)

⎧⎪⎨⎪⎩

�̇��p = �̇��(�,�)

�̇ = �̇��(�,�)

f (�,�) = 0

Table 1  Initial boundary-value problem (IBVP) for a three-dimen-
sional isotropic elastoplastic body

Table 2  Initial value problem (IVP) for the elastoplastic constitutive 
equations of Table 1
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to be computed for bodies with simple geometries [3, 9, 
11]. Therefore, computational approaches are a standard 
practice to solve problems involving elastoplastic theories. 
Research studies along this line began around the nineteen-
seventies with the work by Wilkins [7] and have been con-
tinued to the present. The investigations have been mostly 
conducted for well-known yield criteria such as the von 
Mises, Tresca, Drucker–Prager, and Mohr–Coulomb crite-
ria, while few attempts have been made for the criterion by 
Bigoni and Piccolroaz [19], which demands more research.

The implementation of plasticity models in FE pro-
grams is generally carried out at two levels of computation, 
respectively the global and the local [45–51]. At the global 
level, the system of discrete nonlinear equations for the 
entire domain (see Table  1) is solved using, for example, 
nodal degrees of freedom such that forces and displace-
ments are computed iteratively. For each global iteration, 
the discrete constitutive equations (see Table 2) are solved 
at the local level (generally at each quadrature point). The 
iterative process is continued until the fulfillment of the 
global system of equations and the solution is calculated for 
each step of the analysis.

In the present paper, we focus on the local level of com-
putation. It consists in the solution of the elastoplastic IVP 
through a state-update procedure which first requires the 
numerical integration of the constitutive equations. The 
time-continuum constitutive equations are therefore trans-
formed into incremental (or time-discrete) counterparts to 
obtain the incremental elastoplastic constitutive problem. 
The solution of this incremental problem is necessary for 
solving the global system and influences its robustness, 
convergence, efficiency, and accuracy.

In a classical displacement-based formulation, the state-
update procedure is strain-driven (see Fig.  5): within a 
time increment Δtn = tn+1 − tn (tn+1 and tn being the current 
and previous time, respectively), the variables at the cur-
rent time, 

(
���
p

n+1
, �n+1,�n+1,�n+1

)
, are given as functions 

of the variables at the previous time, 
(
���
p
n, �n,�n,�n

)
, and 

of the incremental strain Δ���n = ���n+1 − ���n. Here and in the 
following, we make use of subscript n for all the variables 

evaluated at previous time tn, while we adopt subscript 
n + 1 for all the variables computed at current time tn+1.

In the following sections, we first focus on the time-inte-
gration of the constitutive equations presented in Table 2, 
then on the solution schemes for the discrete elastoplastic 
problem.

4  Integration Schemes

The present section provides a discussion that can be useful 
to the reader in deciding the integration scheme to adopt for 
the implementation of an elastoplastic model.

In general, an integration scheme should satisfy three 
requirements to be acceptable [52]: (i) consistency at least 
of order one, i.e., first-order accuracy; (ii) numerical sta-
bility; (iii) incremental plastic consistency. Conditions (i) 
and (ii) are necessary and sufficient conditions for attaining 
convergence of the numerical solution as the time incre-
ment tends to zero. To improve accuracy, higher-order 
approximations of the time derivative are needed. Condi-
tion (iii) is the algorithmic counterpart of the plastic con-
sistency condition (58).

Integration schemes can be classically classified within 
the categories of implicit and explicit algorithms. Moreo-
ver, they can be classified depending on the previous num-
ber of steps used for computing the solution. Precisely, the 
method is one-step if, ∀n ≥ 0, the solution at current time 
tn+1 depends on the solution at previous time tn; otherwise 
the scheme is multi-step [53].

In implicit integration algorithms the solution at tn+1 
depends implicitly on itself through a function defining the 
differential system [53]. On the one hand, these schemes 
generally provide great accuracy and stability as well as the 
satisfaction of the plastic consistency condition at the cur-
rent time [54]; on the other hand, they require an iterative 
process to solve the obtained system of equations, which 
implies a considerable computational effort. In this cate-
gory we find: (i) a first group that integrates the constitutive 
equations via an implicit linear multi-step scheme [52] and 
(ii) a second group that integrates the constitutive equations 
via an implicit one-step Runge–Kutta technique [44]. Fur-
ther discussions can be found in [54–58].

In explicit integration algorithms the solution at tn+1 is 
computed directly in terms of (some of) the previous val-
ues at tk with k ≤ n [53]. On the one hand, the methods are 
iterative-free, straightforward, and fast compared to the 
implicit ones, and can be used for any elastoplastic model 
[59–61]; on the other hand, they may present less accuracy 
than implicit methods and lack of stability and may not sat-
isfy the incremental plastic consistency. In this category we 
find: (i) a first group that integrates the constitutive equa-
tions via an explicit linear multistep scheme [52] and (ii) a 

STATE-UPDATE  
ALGORITHM 

εp
n, ξn

σn, χn

εp
n+1, ξn+1

σn+1, χn+1

n = ε∆ε n+1 - εn

Fig. 5  State-update procedure for the numerical solution of the elas-
toplastic constitutive IVP of Table 2 [10]
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second group that integrates the constitutive equations via 
an explicit one-step Runge–Kutta technique [62–67].

Few comparisons between implicit and explicit integra-
tion algorithms have been made in the literature for elasto-
plasticity, e.g., [66–68]. In [69, 70] the implementation of 
the forward- and the backward-Euler scheme are combined 
to obtain an accurate solution of the elastoplastic problem.

In addition to the above schemes, other less-conventional 
integration methods have been applied to elastoplasticity. Par-
ticularly, we recall the group-preserving integration, which 
exploits the internal symmetry of elastoplastic models [71, 
72], and the exponential-map integration, converting the 
constitutive equations to an equivalent system of differential 
equations in the augmented stress space [73–82]. Exponen-
tial-map integration is sometimes classified as explicit inte-
gration, since the solution process is explicit, and as group-
preserving integration, since it exploits internal symmetry 
properties. There are however some semi-implicit exponen-
tial schemes such as [78, 79, 83], where the idea is to improve 
the explicit scheme by finding the values of the control matrix 
at the middle of the elastoplastic part of the load step rather 
than at the beginning (see Sect. 4.4). A last group of methods 
is based on exact or angle-based integration that reduces the 
constitutive equations to a reduced number of ODEs by defin-
ing angles between plasticity variables and solving them ana-
lytically or through explicit Runge–Kutta techniques [84–92].

From the preceding discussion, we can summarize the 
integration schemes for elastoplasticity, as follows:

1. Linear multi-step methods
2. One-step Runge–Kutta methods
3. Group-preserving methods
4. Exponential-map integration
5. Exact or angle-based integration

Our analysis concerns the formulation of both conventional 
and less-conventional integration schemes in a uniform 
framework. First, we will review the general method and, 
then, we will report the plasticity models to which the method 
has been applied in the literature. For each method we will 
discuss on the fulfillment of the above three requirements. 
Classical schemes, as the linear multi-step and Runge–Kutta 
methods, are largely discussed in several textbooks and jour-
nal papers [9, 10, 93, 94].

4.1  Linear Multi‑Step Methods

For notational convenience, we set �: = (���p, �) and 
�: = (�, �) and we write system (128) in the following form:

subject to initial conditions:

(129)
{

�̇ = �̇��(�)
f (�) = 0

at the time of initiation of plastic deformation, i.e., 
t = t0 = 0.

The standard definition of a multi-step method with 
p + 1 steps (p ≥ 0) applied to a semi-explicit DAE system 
of index 2 is described as follows. The solution at current 
time, i.e., �n+1, depends on the previous p + 1 values �n−j, 
with j = 0, ..., p. More precisely, a linear (p + 1)-step method 
defines the algorithmic approximation �n+1 to the solution 
�(tn+1) by the following formula [95, 96]:

given �0,...,�p and n = p, p + 1, ... . Here, Δ𝛾n = ∫ tn+1
tn

�̇�dt is 

the discrete consistency parameter. The non-negative coef-
ficients an,j and bn,j ( j = 0, ..., p) are functions of the previ-
ous p + 1 time step sizes and define the specific method: if 
bn,−1 = 0, the method is explicit, otherwise implicit. If 
p = 0, the method is one-step. From now on, for the sake of 
notation simplicity, we will use aj, bj, and Δ�, instead of an,j
, bn,j, and Δ�n.

In the following, we first consider two important fami-
lies of one-step algorithms for elastoplasticity; then, 
we consider backward difference formulas which are 
multi-step methods allowing to construct higher-order 
approximations.

4.1.1  Generalized Trapezoidal Integration

The generalized trapezoidal integration is a family of one-
step algorithms that generalize the well-known trapezoidal 
rule and was introduced by Ortiz and Popov [52] in the 
elastoplastic context.

The scheme is obtained from system (130) by setting:

In an expanded form, system (130) is written as follows:

where:

(130)
�(0) = �0

(131)

�
�n+1 =

∑p

j=0
an,j�n−j + Δ�n

∑p

j=0
bn,j�n−j + Δ�nbn,−1�n+1

f
�
�n+1

�
= 0

(132)

⎧⎪⎪⎨⎪⎪⎩

a0 = 1

aj = 0 for j = 1, .., p

b0 = 1 − �

bj = 0 for j = 1, .., p

b−1 = �

(133)

⎧⎪⎨⎪⎩

���
p

n+1
= ���

p
n + Δ � [(1 − �) �n + � �n+1]

�n+1 = �n + Δ � [(1 − �) �n + � �n+1]

fn+1 = 0

(134)�n = �(�n,�n)

(135)�n+1 = �(�n+1,�n+1)
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� being an algorithmic parameter ranging from 0 to 1. The 
choice � = 0 corresponds to a fully explicit (forward-Euler) 
scheme, 𝜃 > 0 leads to an implicit scheme, and � = 1 recov-
ers the fully implicit (backward-Euler) scheme.

A detailed study on the accuracy and stability of this 
scheme (requirements (i) and (ii) discussed in Sect. 4) was 
presented by Ortiz and Popov [52] for perfect plasticity 
and possible non-associative flow rules. The scheme was 
shown to be first-order accurate for any � and second-order 
accurate for � = 1∕2. Stability was shown to depend on the 
shape of the yield surface: for surfaces with constant curva-
ture in the stress space (e.g., von Mises surface), uncondi-
tional stability is obtained for � ≥ 1∕2; with increasing cur-
vature, unconditional stability is guaranteed for values of � 
around 1; for surfaces with infinite curvature (e.g., Tresca 
and Mohr–Coulomb surfaces), the algorithm is uncondi-
tionally stable for � = 1. Incremental plastic consistency 
(requirement (iii) discussed in Sect.  4) follows automati-
cally from the enforcement of Eq. (132)3. As it can be 
noted, the incremental plastic parameter Δ� is determined 
with the aid of Eq. (132)3.

4.1.2  Generalized Midpoint Integration

The generalized midpoint integration is a family of one-
step algorithms that generalize the well-known midpoint 
rule and was introduced by Ortiz and Popov [52] in the 
elastoplastic context.

The scheme is obtained from system (130) by setting:

In an expanded form, system (130) is written as follows:

where:

(136)
�n = �(�n,�n)

(137)�n+1 = �(�n+1,�n+1)

(138)fn+1 = f (�n+1,�n+1)

(139)

⎧⎪⎪⎨⎪⎪⎩

a0 = 1

aj = 0 for j = 1, .., p

b0 ≠ 0

bj = 0 for j = 1, .., p

b−1 ≠ 0

(140)

⎧⎪⎨⎪⎩

���
p

n+1
= ���

p
n + Δ� �n+�

�n+1 = �n + Δ� �n+�
fn+1 = 0

(141)�n+� = �(�n+� ,�n+�)

(142)�n+� = �(�n+� ,�n+�)

(143)fn+1 = f (�n+1,�n+1)

and

Again, parameter � ranges between 0 to 1: � = 0 corre-
sponds to a fully explicit (forward-Euler) scheme, 𝜃 > 0 
leads to an implicit scheme, and � = 1 recovers the fully 
implicit (backward-Euler) scheme. The generalized mid-
point rule coincides with the generalized trapezoidal rule 
for � = 1, � = 0, and in case of von Mises yield criterion 
with associated linear hardening plasticity.

Also for this scheme, the work by Ortiz and Popov [52] 
provides a detailed study on the accuracy and stability 
characteristics. The scheme is first-order accurate for any 
� and second-order accurate for � = 1∕2. The generalized 
midpoint rule was shown to have better stability properties 
than the generalized trapezoidal rule, since it is uncondi-
tionally stable for � ≥ 1∕2, regardless of the choice of the 
yield surface. The considerations on the incremental plastic 
consistency, done for the generalized trapezoidal rule, are 
still valid for this scheme.

The analysis by Ortiz and Popov [52] concentrates on 
perfect plasticity and possible non-associative flow rules. 
Investigations for a von Mises model with isotropic hard-
ening were performed in [97] and with a combination of 
linear isotropic hardening and nonlinear Armstrong–Fred-
erick kinematic hardening in [73]. A study on the applica-
tion of a midpoint method to models with nonlinear kin-
ematic hardening was presented in [98]. The stability and 
accuracy analysis by Simo and Govindjee [99] focuses on 
materials with an associative hardening and flow rules and 
it is restricted to the case of linear elastic behaviour. Their 
results are in accordance with those by Ortiz and Popov 
[52].

A possible variation of the above generalized midpoint 
rule is obtained by replacing fn+1 in system (139) with 
[100]:

In this case, plastic consistency is enforced upon the gen-
eralized midpoint state, rather than the updated one. This 
alternative was discussed by Simo and Govindjee [99] who 
highlighted that the symmetry of the associated consistent 
tangent operators is ensured for fully associative models 
(a property not generally preserved by the family of algo-
rithms based on the above consistency condition [101]).

In the literature, four integration schemes of this family 
have been investigated by Artioli et  al. [102] for the von 
Mises plasticity model with linear isotropic and kinematic 
hardening. Specifically, the first two schemes are based 
on a traditional generalized midpoint integration rule (see 
Eqs. (139) and (145)) [52, 100], while the last two schemes 
are based on a two-stage algorithm, dividing each time 

(144)
�n+� = (1 − �) �n + � �n+1

�n+� = (1 − �) �n + � �n+1

(145)fn+� = f (�n+� ,�n+�)

Author's personal copy



 G. Scalet , F. Auricchio 

1 3

step into two subintervals, in which equations are solved 
sequentially (refer to [6] for details). Particularly, the fourth 
scheme, labelled with DMPT2 and constituting a gener-
alization of the scheme proposed by Simo [6] for the case 
of von Mises perfect plasticity, seems the best performing 
generalized midpoint method: it is is the only scheme both 
B-stable and yield consistent, it performs better than the 
other investigated schemes in all the considered tests, and 
it is based on the combination of radial return maps, which 
is an advantage for the extension to more complex models.

Remark 5 (Solution) Both generalized trapezoidal and 
midpoint algorithms require the solution of a (generally 
nonlinear) system of equations for any � [9]. An efficient 
scheme is generally obtained by adopting the Newton–
Raphson method, as discussed in Sect. 5.1.1. For the fully 
explicit case, the equations can be simplified: all the varia-
bles become functions of Δ� and the equations are reduced 
to a single scalar (generally nonlinear) equation. For spe-
cific models, simplifications are also possible for � ≠ 0 
(see, e.g., [9]).

4.1.3  Backward Difference Formulas

Backward difference formulas (BDF) are a family of linear 
multistep methods widely used in the numerical integration 
of stiff ordinary differential equation systems [103].

The scheme is obtained from system (130) by setting:

In an expanded form, system (130) is approximated as 
follows:

Coefficients aj and b−1 define the order s = p + 1 of the 
BDF (hence, the label BDFs). The lowest hierarchy of BDF 
methods (i.e., s = 1 and p = 0) coincides with the fully 
implicit (backward-Euler) method.

Accuracy and stability analyses (requirements (i) and (ii) 
discussed in Sect.  4) for BDF methods in plasticity have 
been performed in [6, 44]; for a general discussion, see 
[95]. The accuracy analysis of the BDF2 method, reported 
in [44, 104], leads to the following coefficients:

(146)

⎧⎪⎨⎪⎩

aj ≠ 0 for j = 0, .., p

bj = 0 for j = 0, .., p

b−1 ≠ 0

(147)

⎧⎪⎨⎪⎩

���
p

n+1
=
∑p

j=0
aj ���

p

n−j
+ Δ� b−1 �n+1

�n+1 =
∑p

j=0
aj �n−j + Δ� b−1 �n+1

fn+1 = 0

where Δtn−1 = tn − tn−1 and Δtn = tn+1 − tn. In case of con-
stant step sizes, this leads to a0 = 4∕3, a1 = −1∕3, and 
b−1 = 2∕3 [95].

As regards requirement (iii) discussed in Sect. 4, incre-
mental plastic consistency follows from the enforcement 
of Eq. (147)3. As it can be noted, the incremental plas-
tic parameter Δ� is determined with the aid of Eq. (147)3
. Differently from the generalized midpoint rule, the yield 
condition is consistently enforced at the end of each time 
interval.

Recall, also, that multi-step integration methods require 
a starting procedure. Moreover, such approaches usually 
lead to complex implicit nonlinear systems of algebraic 
equations, exhibiting difficulties in the iterative solution.

The BDF2 method has been tested on von Mises plas-
ticity with linear [44] and nonlinear [104] isotropic hard-
ening. In [44], the BDF2 method is automatically identical 
to the BDF1 method, which is first-order accurate, during 
the first plastic step. In [104] a unified approach is applied, 
where all unknowns (i.e., displacements and internal vari-
ables) are treated as global quantities. Then, the obtained 
DAE system is integrated by using a BDF2 method with 
automatic time step size control.

4.2  Runge–Kutta Methods

Now, for notational convenience, we set �: = (���p, �) and 
�: = (�̇��, �̇��) and we write system (119) in the following 
form:

subject to initial conditions:

at the time t = t0 = 0 of initiation of plastic deformation.
The standard definition of an s-stage Runge–Kutta 

method with s ≥ 1 applied to a semi-explicit DAE sys-
tem of index 2 is described as follows [105]. We consider 
one step with step size Δtn starting from �n at time tn. The 
numerical solution �n+1, which approximates the exact 
solution �(tn+1) at time tn+1, is given by [105]:

(148)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

a0 =

�
Δtn−1 + Δtn

�2
Δtn−1

�
Δtn−1 + 2Δtn

�

a1 =
Δt2

n

Δtn−1
�
Δtn−1 + 2Δtn

�

b−1 =

�
Δtn−1 + Δtn

�
Δtn−1 + 2Δtn

(149)
{

�̇ = �(�, �̇�)
f (�) = 0

(150)�(0) = �0
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where �̇ni (i = 1, ..., s) is the vector of algebraic variables �̇�
. The s internal stages �ni and �̇ni (i = 1, ..., s) are the solu-
tions of the system of nonlinear equations:

Coefficients aij, bi, and ci define the specific method 
[105]; if aij = 0 for j ≥ i, the method is explicit, otherwise 
implicit.

Runge–Kutta methods for DAEs of index 2 are very 
competitive and well-understood schemes and therefore 
have been applied to elastoplasticity  [106]. They have the 
structure of one-step methods, but offer a higher order and 
superior stability properties (requirements (i) and (ii) dis-
cussed in Sect.  4) [106]. Compared to multistep methods 
(see Sect. 4.1.3), one-step methods have no Dahlquist bar-
riers on the stability, which limit to two the order of accu-
racy of linear multistep methods, and they do not need his-
tory data [6, 106]. The increased accuracy in Runge–Kutta 
methods is however at the price of an increase of functional 
evaluations at each level, which is expensive from a compu-
tational point of view [53, 104]. A consequence is that they 
are more suitable than multi-step methods at adapting the 
step size, while estimating the local error for Runge–Kutta 
methods is more difficult [53]. Also, the complex implicit 
nonlinear systems of algebraic equations often exhibit dif-
ficulties in the iterative solution.

The plastic consistency condition (requirement (iii) 
discussed in Sect. 4) may be not satisfied in Runge–Kutta 
methods. The error depends on the step size and it is cumu-
lative during the whole integration procedure. Therefore, 
substepping methods, which divide the increment into 
subincrements when the error in the increment exceeds a 
limit, have been introduced to limit the error in the com-
puted stress and stress-like variables and have been gener-
ally employed in conjunction with a correction to restore 
the stress and stress-like variables to the yield surface 
during the integration process [60–62, 64, 107–110]. The 
procedure increases the CPU time for the increment, but it 
is preferable than taking small increments over the entire 
history. Another solution involves a correction of the stress 
and stress-like variable back to the yield surface at the end 
of each time increment and ensures that the error at the end 
of each step is smaller than a limit [111, 112]. However, the 
correction requests an iteration procedure at the end of each 
step, so it also increases the CPU time.

Runge–Kutta methods for plasticity have been proposed 
in [6, 106, 113–115]. Sloan and Booker [63], Solowski 
and Gallipoli [65] applied explicit Runge–Kutta meth-
ods to integrate the elastoplastic constitutive equations. 

(151)
�n+1 = �n + Δtn

s∑
i=1

bi�(�ni, �̇ni)

(152)
�

�ni = �n + Δtn
∑s

j=1
aij�(�nj, �̇nj) i = 1, ..., s

f
�
�ni

�
= 0 i = 1, ..., s

Sloan et  al. [64] discussed explicit substepping methods 
with a modified Euler scheme or a Runge–Kutta–Dor-
mand–Prince scheme for the Tresca, Mohr–Coulomb, mod-
ified Cam-clay, and generalized Cam-clay models. For a 
given load path, Sloan et al. showed that the modified Euler 
scheme is able to control the integration error to lie near 
a prescribed tolerance. In case of explicit Runge–Kutta 
methods, the final stress has to be corrected by placing it on 
the yield surface, because the consistency condition is not 
automatically held during the stress updating process. In 
[106] implicit Runge–Kutta methods are used to solve the 
evolution equations for the von Mises model with nonlinear 
hardening. The convergence order depends on the switch-
ing point detection, i.e., the order holds only if the integra-
tion starts with consistent initial values at the switching 
point. Furthermore, it is shown that algebraically stable 
Runge–Kutta methods preserve the contractivity of the 
elastoplastic flow. Step size control is possible by means 
of embedded lower order methods. Yamaguchi [68] com-
pared explicit Runge–Kutta and forward-Euler techniques 
with the implicit algorithm of Ortiz and Simo [54] and 
found that the Runge–Kutta scheme is superior for prob-
lems with complicated constitutive laws or high accuracy 
demands. In [115] a modular implementation of explicit 
Runge–Kutta methods with error control is presented, that 
is suitable for any rate-type constitutive model. The diffi-
culties caused by the algebraic constraint of conventional 
plasticity are resolved through a simple subloading modi-
fication, i.e., the constraint f = 0 is replaced by ḟ = 0. 
This reduces the differentiation index of the DAE system 
from two to one, while preserving its rate-independence, by 
introducing into the material description a gradual transi-
tion from elastic to plastic behaviour. Conventional behav-
iour is recovered in the limit of normal yielding. Moreover, 
the conventional response may be closely approximated 
throughout by a suitable choice of the subloading func-
tion. With this approach, no special treatment is required 
to locate the position of the yield surface or to correct for 
drift away from it [64, 116]. Pedroso et al. [117] extended 
the explicit schemes presented by Sloan [62], Sloan et  al. 
[64], and Sheng et  al. [118] to the case where a noncon-
vex yield surface is adopted. The scheme is based on the 
Runge–Kutta-embedded method of second order and has 
the convenient feature of automatic substep and error con-
trol. The scheme is presented in a general form that can be 
applied to the solution of equations for both saturated and 
unsaturated soils.

4.3  Group‑Preserving Integration

The class of methods based on the so-called group-pre-
serving integration exploits the internal symmetries of the 
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elastoplastic models and Lie group properties [71, 72, 119, 
120, 120]. Lie group methods share the geometric structure 
and invariants of ODEs and are accurate, stable and effec-
tive [121].

Integration schemes of this type have been developed 
for elasto-perfect plasticity [72], models with linear/non-
linear kinematic hardening/softening [122–124], degrada-
tion models with isotropic and linear kinematic harden-
ing/softening [125, 126], and elasto-perfect models with 
Drucker–Prager yield surface [120], and an anisotropic 
quadratic yield surface [127]. Recently, Liu et  al. [121] 
extended the group-preserving integration to models with 
non-quadratic yield surface by proposing a return-free inte-
gration scheme that keeps the stress points on the yield sur-
faces without any extra enforcement.

4.4  Exponential‑Map Integration

The class of methods based on the so-called exponential-
map integration has been first introduced by Hong and Liu 
[72, 119] and later investigated by Auricchio et al. [73–77] 
in the context of elastoplasticity.

The method is based on a quasi-linear formulation of the 
model equations, combined with an exponential-based time 
integration method to solve the obtained system of equa-
tions. Specifically, constitutive equations (119)1 and (119)2 
are first converted to the equivalent system of linear, con-
stant coefficients, ordinary, differential equations in the 
augmented stress space, as:

where � denotes the augmented stress vector and � the 
control matrix. In a general case, the matrix � depends on 
� and in this sense the problem is said to be quasi-linear.

The solution of system (152) with initial condition �(0) 
can be expressed through the following relation:

which has a closed-form exponential solution when � is 
constant. In reality, � is not constant in the plastic phase, 
but one may assume that � is constant during each time 
step Δt. The known value of � at the beginning of each 
time step, �n, is the value considered throughout the time 
interval. Thus, this can be expressed as:

The method is inspired by the works of internal symmetries 
which are explored individually in the augmented stress 
spaces. The internal symmetry group of the constitutive 
equations ensures that the plastic consistency condition is 
completely satisfied at each time step, if the numerical pro-
cedure can consider it [72].

(153)�̇(t) = �(�)�(t)

(154)�̇(t) = exp(�t)�(0)

(155)�̇n+1 = exp
(
�nΔt

)
�n

This class has been applied to von Mises and 
Drucker–Prager models [72–83] and, recently, to the 
Bigoni–Piccolroaz model [74]. Auricchio and Beirao da 
Veiga [77] presented an exponential-based integration 
algorithm by employing an exponential map for the von 
Mises linear mixed hardening constitutive equations, but 
their technique is not consistent with the yield condition. 
Later, Artioli et  al. [75] derived two different exponential 
schemes for the von Mises plasticity model with linear 
mixed hardening, to cure the lack of yield consistency. 
Then, the integration method was extended to second-order 
accuracy algorithms [76, 78]. Artioli et al. [128] presented 
a second-order algorithm based on exponential maps 
for the von Mises model with linear isotropic and Arm-
strong–Frederick kinematic hardening. Liu [120] investi-
gated internal symmetries for the Drucker–Prager model 
and developed two consistent schemes based on exponen-
tial-maps in an explicit manner for the elasto-perfectly 
plastic Drucker–Prager criterion. Finally, Rezaiee-Pajand 
and Nasirai [79] presented two stress updating schemes in 
a semi-implicit manner for the Drucker–Prager plasticity 
with no hardening. This approach has a great accuracy and 
a quadratic rate of convergence.

4.5  Exact or Angle‑Based Integration

An alternative approach to the integration methods dis-
cussed above consists in reducing the number of differential 
equations by defining some angles between the variables 
and, then, by applying explicit integration (e.g., explicit 
Runge–Kutta methods) or by deriving closed-form solu-
tions. Therefore, we refer to these methodologies as exact 
or angle-based integration methods. These techniques are 
usually consistent.

Analytical solutions have been found for few plasticity 
models. To derive closed-form solutions, the strain incre-
ments are chosen to be constant in time. Briefly, the angle 
defined between the strain rate tensor and the so-called 
relative stress deviator is introduced as a variable: if the 
solution for this angle is known, then the exact expression 
for the deviatoric stress can be obtained in a linear combi-
nation. The governing equations lead to an integral, which 
defines the variation of the angle [129]. Krieg and Krieg 
[84] proposed an exact solution for the elasto-perfectly 
plastic von Mises model. The approach reduces the num-
ber of variables from six to one and the yield condition is 
always satisfied. The authors used the analytical solution to 
compare the accuracy and efficiency of different approxi-
mation schemes and found that approximations used in FE 
calculations could produce considerable errors even with 
small strain increments. Yoder and Whirley [130] extended 
the solution to the von Mises model with linear isotropic 
and kinematic hardening. Lee [131] derived exact solutions 
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for the modified von Mises model. Loret and Prevost [85] 
obtained an exact solution for the Drucker–Prager criterion 
with non-associative linear isotropic hardening by solv-
ing the obtained scalar differential equation with an accu-
rate Runge–Kutta procedure. Ristinmaa and Tryding [86] 
developed a unified approach which included all the pre-
vious exact integration methods and obtained closed-form 
solutions for the von Mises, Mohr–Coulomb, and Tresca 
models with non-associative isotropic and kinematic hard-
ening. Szabo [89] utilized the incomplete beta functions 
to find an implicit solution for the von Mises plasticity 
model with linear isotropic hardening; therefore, the solu-
tion is semi-analytical. Kossa and Szabo [90] presented two 
semi-analytical solutions for the von Mises elastoplasticity 
model with linear isotropic and kinematic hardening. The 
first solution corresponds to strain-driven problems with 
constant strain rate assumption, whereas the second one is 
proposed for stress-driven problems using constant stress 
rate assumption. Results show that the new scheme requires 
more computational time than the radial return map algo-
rithm discussed in Sect.  5. However, if considering the 
computational time in terms of the required accuracy, then 
the new method can be faster than the radial return map 
algorithm. Szabo and Kossa proposed an exact integra-
tion for the Drucker–Prager model with linear isotropic 
hardening [132] and Rezaiee-Pajand and Sharifian [91] for 
the Drucker–Prager’s model with Armstrong–Frederick 
kinematic and linear isotropic hardening. The third-order 
Bogacki-Shampine Runge–Kutta method and the fifth-
order Dormand-Prince Runge–Kutta scheme were used 
for medium and high accuracy, respectively. Wei et al. [87] 
presented a consistent scheme combining the advantages 
of the exact solution for the Prandtl-Reuss non-hardening 
elastoplastic models and the asymptotic convergence of 
the Newton–Raphson iteration tactics. Wallin and Ristin-
maa [88] employed the assumption of constant strain rate 

to derive a set of ODEs, solved with the Dormand–Prince-
Runge–Kutta method. The tests were performed on mod-
els with isotropic hardening, mixed isotropic and kinematic 
hardening, and damage evolution. The results provided by 
the Runge–Kutta method resulted accurate and almost inde-
pendent of the global increment size. The standard fully 
implicit generalized trapezoidal rule was also applied and 
resulted inaccurate for the models with mixed isotropic and 
kinematic hardening and damage evolution. The angles-
based integration had been also employed to solve the elas-
toplastic damage model [133] and the Drucker–Prager’s 
model with the Chaboche isotropic and kinematic harden-
ing [134].

5  Solution Schemes

We now focus on state-update procedures employed to 
derive the updated state in terms of strain- and stress-like 
internal variables. An example of incremental elastoplas-
tic problem is reported in Table 3, where a fully implicit 
(backward-Euler) integration scheme has been applied to 
the rate formulation of Table  2. As it can be noted, the 
application of conventional procedures for standard IVPs 
is not possible, due to the presence of the discrete KT 
complementary conditions (167)3.

In general, numerical algorithms should be: (i) accu-
rate, (ii) robust, and (iii) efficient. Several solution 
schemes have been proposed in the literature for the treat-
ment of the plasticity equations. Specifically, we can dis-
tinguish between the following approaches:

1. Elastic predictor-plastic corrector algorithms
2. Complementary problem function-based algorithms
3. Mathematical programming algorithms
4. Incremental energy minimization algorithms

The so-called elastic predictor-plastic corrector scheme 
is a classical approach, based on a two-step algorithm, 
which includes strategies as the radial-return, mean-
normal, closest-point projection, and cutting-plane algo-
rithm. These procedures represent the most used solution 
schemes thanks to their simple implementation and good 
numerical performances. The literature is very rich on 
this topic and discussions in terms of efficiency, robust-
ness, and convergence are available, e.g., [9, 10, 135, 
136].

Complementary problem function-based algorithms 
represent a less-conventional approach consisting in the 
equivalent formulation of the KT complementarity condi-
tions as a CP function (see Sect. 2.2.10). The advantage is 
the possibility of dealing with only equalities. Few works 

Table 3  Incremental elastoplastic problem
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have been proposed along this line, and mostly for crystal 
plasticity [137, 138].

Algorithms from mathematical programming repre-
sent a less-conventional approach. These methods exploit 
the potential structure of many elastoplasticity models and 
concepts of convex analysis (see Sect. 2.2.12) to reduce the 
complete IBVP or the local elastoplastic IVP to a mathe-
matical programming problem. The advantage is given by 
the possibility of easily treating (nonsmooth) singularities 
on the yield surface. However, the efficiency of these algo-
rithms has not been assessed so far and detailed analyses 
are actually lacking.

Algorithms based on an incremental energy minimiza-
tion formulation equally exploit the potential structure of 
elastoplasticity models and concepts of convex analysis 
(see Sect. 2.2.12). Advantages of this method are that the 
incremental plastic consistency is satisfied and yield sur-
faces with singularities can be treated in a simpler way. 
Also for this approach, detailed discussions are lacking and 
therefore they may be grouped into the less-classical group.

This section analyzes and discusses all the listed 
approaches.

5.1  Elastic Predictor‑Plastic Corrector Algorithms

The class of elastic-predictor plastic-corrector algorithms is 
based on a two-step scheme: (i) an elastic trial state is first 
computed; (ii) then, if the onset of plasticity is detected, a 
plastic correction is computed using the trial state as initial 
condition to update all the internal variables5. This family 
is the most adopted thanks to the easy implementation, 
good numerical performances and properties (in terms of 
accuracy, robustness, and efficiency), and enforcement of 
the plastic consistency condition [10, 139].

The idea of such a scheme traces back to Wilkins [7] 
who proposed the radial-return method for the von Mises 
perfect plasticity. Extensions to linear isotropic and kin-
ematic hardening [140], plane stress [141], nonlinear 
hardening [142], and smooth/nonsmooth yield conditions 
[143–145] have been also proposed. In the following, we 
describe two important classes of return mapping algo-
rithms, namely, the closest-point projection and cutting-
plane algorithms. The superiority of the radial-return 
method compared to other return schemes is established in 
[52, 84, 85, 130, 146].

An alternative justification for the elastic predictor-plas-
tic corrector scheme was provided by Simo and Hughes 
[147], who interpreted this two-step scheme as a product 
formula algorithm arising from an elastoplastic operator-
split of the constitutive equations. Such an interpretation 

5 Such a step is also known as return mapping algorithm.

is useful in analyzing and developing algorithms; as an 
example, the general notion of return mapping is exploited 
to develop the cutting-plane algorithm discussed in 
Sect. 5.1.3. An alternative plastic predictor-elastic corrector 
algorithm was proposed in [148].

Table  4 reports a well-known solution scheme belong-
ing to this class, known as backward-Euler elastic predic-
tor/return mapping algorithm [101]. It should be noted that 
a fully implicit integration scheme is used; however, other 
integration rules can be adopted, as discussed in Sect.  4. 
As an example, the generalized trapezoidal rule, described 

Table 4  Backward-Euler elastic predictor/return mapping algorithm 
for the numerical solution of the incremental elastoplastic problem 
reported in 3
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in Sect.  4.1.1, generalizes the concept of return mapping, 
introduced by Wilkins [7] and refined in [149], for the von 
Mises yield criterion. For � = 1∕2 and the case of a von 
Mises yield criterion with associated perfect plasticity, such 
a rule coincides in fact with the the midpoint return map 
proposed by Rice and Tracy [150]. For � = 1 and associ-
ated plasticity, the closest-point projection algorithm is 
obtained [151]. The generalized midpoint rule, described in 
Sect. 4.1.2, can be also adopted, as proposed in [52, 100]. 
For the von Mises plasticity this results in the return map 
proposed in [150], which is second-order accurate. A recent 
comparison between four integration schemes for associ-
ated and non-associated plasticity is provided in [152]. The 
integration schemes are a fully implicit (backward-Euler), 
semi-explicit convex cutting plane, fully explicit (forward-
Euler), and fully explicit (forward-Euler) next increment 
corrects error. The backward-Euler scheme in implicit 
solver was shown to be 10 times faster than the same in 
explicit solver and faster than all the explicit schemes in 
explicit solver. The computation time and accuracy for both 
associated and non-associated flow rules were shown to be 
not much different when the same integration scheme was 
used. Moreover, in case of large-scale sheet metal forming 
simulations, the explicit type stress integration algorithm 
was shown to be a more practical choice, since it does not 
deteriorate the computational accuracy and efficiency com-
pared to the fully implicit algorithm.

5.1.1  Solution of the Return Mapping Equations

As anticipated in Sect. 4.1.2, a closed-form solution of the 
plasticity equations can be found for simple cases [153], 
while most of the cases require an iterative algorithm for 
the solution of the nonlinear system of equations (see item 
3 in Table 4).

A Newton–Raphson scheme is generally applied thanks 
to its asymptotic quadratic rate of convergence and lineari-
zation in closed-form, which leads to the consistent mate-
rial tangent employed in the global IBVP (see Sect.  5.5) 
[52, 142]. However, some drawbacks of this scheme have 
to be taken into account [9].

First, the computation of the Jacobian and the inversion 
of a positive-definite fourth-order tensor to construct the 
algorithmic consistent material tangent are needed at each 
local iteration. This may increase the computational time 
and may be prone to errors, especially in case of complex 
constitutive equations. A possible overcome is to employ 
symbolic software such as Mathematica [154].

Second, a strategy to ensure that the converged incre-
mental plastic multiplier is positive, i.e., Δ� ≥ 0, should be 
considered, especially in case of complex material models.

Third, the limited local convergence properties of New-
ton–Raphson schemes do not guarantee global convergence 

and make this approach difficult to apply to complex con-
stitutive models [9] or in case of elastic trial states close 
to the neighborhood of high-curvature points of the yield 
surface [155, 156]. Various techniques have been pro-
posed to avoid this drawback, such as line-search methods 
[155, 157, 158], sub-stepping schemes [45, 62–64, 116, 
159–164], quasi-Newton procedures [9], ad-hoc integration 
algorithms [62, 157–159, 165], alternative trial predictors 
initializing the iterative process [15, 166, 167]. Solutions 
for the Bigoni–Piccolroaz yield function have been pro-
posed in [168, 169].

Fourth, the return schemes generally require huge com-
putational times in (three-dimensional) large-scale com-
putations. Each point of the structure requires, in fact, the 
update of all the internal variables at each loading step. An 
expected result is an increased computational cost which is 
O(n3∕3) for the factorization, where n is the matrix order 
[53].

Recall that return mapping algorithms can be then sim-
plified by exploiting the coaxiality of trial stress, increment 
of plastic strain, and updated stress [170, 171]. As a conse-
quence, the elastoplastic evolution equations can be solved 
with respect to three unknowns, instead of the six, since the 
linear space of second-order symmetric tensors sharing the 
same principal directions is of dimension three. Different 
choices are possible for the coaxial second-order tensor 
basis, see, e.g., [153, 165, 172–178].

5.1.2  Closest-Point Projection

We now recall the closest-point projection algorithm, since 
it is a common strategy in practical applications. It was pro-
posed by Ortiz et al. [151] as a generalization of the radial-
return algorithm.

The algorithm applies a classical implicit backward-
Euler integration of Eqs. (167), obtaining the following 
system:

with:

(159)

⎧⎪⎨⎪⎩
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Accordingly, the algorithm is first-order accurate and 
unconditionally stable provided that the elastic region is 
convex. The algorithm is also referred to as the Newton 
closest-point projection approximation, since the solution 
is generally obtained with a Newton–Raphson scheme [10].

We now focus on the variational structure behind these 
equations by briefly reporting the noteworthy results pre-
sented in [155]. This brief review allows us to discuss 
the algorithms based on such variational formulations, as 
proposed in [155, 158]. As detailed in the following, the 
closest-point projection equations define a discrete unilat-
erally constrained problem of evolution, governed by the 
discrete KT conditions (155)3. In fact, this problem reduces 
to the problem of finding the closest distance (in the energy 
norm) of a point (the trial state) to a convex set (the elastic 
domain). From the computational point of view, its solution 
reduces to the (iterative) solution of a convex mathematical 
programming problem (see Sect. 5.3).

Following [155], the formulation of the variational 
structure requires two assumptions:

1. The Helmholtz free-energy is a strictly convex func-
tion in (���p, �) and is twice-differentiable with posi-
tive-definite Hessian matrix. This implies the positive 
definiteness of ℂ and �. The convexity of the Gibbs 
free-energy derives from the convexity of the Helm-
holtz free-energy.

2. The evolution equations are assumed to be associated 
for a convex yield function that is, the normality rules 
apply for plastic flow vectors in case of a differentiable 
yield function.

Simo and Hughes [10] discussed the algorithm for the 
case of constant elasticity tensor and linear strain harden-
ing. The treatment of the equations reported in this sec-
tion and taken from [155] can be considered in a more 
general setting, not involving the convexity and associa-
tivity assumptions.

(164)�trial
n+1

= �n

We first report primal variational formulations for the 
unilaterally constrained problem, which involve stresses 
and stress-like internal variables, and then, dual variational 
formulations which incorporate explicitly the plastic multi-
plier6. The formulations in [155] involve both Lagrangian 
and augmented Lagrangian approaches (see Table 5). The 
use of augmented Lagrangians allows the regularization of 
the original constrained problem and leads to the proper 
framework for the formulation of new and improved 
numerical algorithms.

We first report the primal variational principle for prob-
lem (155) as in [155], as follows.

Proposition 1 (Primal variational principle [155]) Under 
the two reported assumptions, the discrete equations (155) 
can be obtained as the first-order necessary conditions of 
the unilaterally constrained variational problem:

If the solution of problem (164) exists, it is unique and 
gives the solution of the closest-point projection equations 
[155]; for the proof, refer to [155].

Following classical results of constrained optimization 
theory [179, 180], the Lagrangian associated to problem 
(164) is defined as [155]:

where � ≥ 0 is the Lagrange multiplier.
We now report the dual variational principle for problem 

(155) as in [155], as follows.

Proposition 2 (Dual variational principle [155]) Under 
the above assumptions, the plastic multiplierΔ� in the clos-
est-point projection approximation defined by Eq. (155) 
can be characterized as the argument of the variational 
problem:

where
(
�n+1,�n+1

)
 are given by the arguments of the uncon-

strained minimization problemmin(�,�)
[(�,� , �)] for 

� = Δ� .

6 We here adopt the terminology used in [155]: ”primal” is intended 
in the classical sense of constrained optimization theory [179] and it 
is not the terminology used when considering the global IBVP. In this 
context, the variational problem in terms of displacements and strains 
is referred to as primal form, while the problem in terms of stresses 
and stress-like internal variables to as dual form [155].

(165)
min
(�,�)

f (�,�) ≤ 0

[
G(�,�) − ���

e,trial

n+1
:� + �trial

n+1
∗ �

]

(166) = G(�,�) − ���
e,trial

n+1
:� + �trial

n+1
∗ � + �f (�,�)

(167)max
�≥0

[
min
(�,�)

[(�,� , �)]
]

Table 5  Closest-point projection equations (155) and related vari-
ational structures, as proposed in [155]

Variational formulationm Associated functional

PRIMAL
 Proposition 1 Lagrangian in Eq. (165)
 Proposition 3 Augmented Lagrangian in Eq. (167)

DUAL
 Proposition 2 Lagrangian in Eq. (165)
 Proposition 4 Augmented Lagrangian in Eq. (167)
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For the proof, refer to [155]. Here, the unconstrained mini-
mization problem is well-defined given the convexity of  
in (�,�). Moreover, the minimization problem is not con-
strained, since � is fixed [155].

Following classical results of constrained optimization 
theory [179, 180], the augmented Lagrangian associated to 
problem (164) is given by:

c being a constant positive penalty parameter and � a scalar 
unconstrained variable. After setting the gradient of a to 
zero and denoting the final solution by 

(
�n+1,�n+1,Δ�

)
, we 

obtain:

which corresponds to:

The solution 
(
�n+1,�n+1,Δ�

)
 of system (168) corresponds 

to the solution of the closest-point projection equations 
[155]. In fact, identifying the relation:

leads to:

and

which recover the discrete KT conditions (57).
We now report the augmented Lagrangian primal 

principle for problem (155) as in [155], as follows.

Proposition 3 (Augmented Lagrangian primal princi-
ple [155]) Under the above assumptions, the discrete equa-
tions (1) can be obtained from the variational problem:47

forc > 0.The solution
(
�n+1,�n+1

)
 is obtained as the 

argument of the solution of problem (173), with the 

(168)

a =G(�,�) − ���
e,trial

n+1
:� + �trial

n+1
∗ �

+
c

2

[⟨
�

c
+ f (�,�)

⟩2

−

(
�

c

)2
]

(169)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�a

��

���(�n+1,�n+1,Δ�)
= �

�a

��

���(�n+1,�n+1,Δ�)
= �

�a

��

���(�n+1,�n+1,Δ�)
= 0

(170)

⎧⎪⎨⎪⎩

���e
n+1

− ���
e,trial

n+1
+
�
Δ� + cfn+1

�
�n+1 = �

−�n+1 + �trial
n+1

+
�
Δ� + cfn+1

�
�n+1 = �

1

c

��
Δ� + cfn+1

�
− Δ�

�
= 0

(171)Δ� = ⟨Δ� + cfn+1⟩

(172)Δ� + cfn+1 ≤ 0 ⇒ Δ� = 0 ⇒ Δ� = 0

(173)Δ𝜆 + cfn+1 > 0 ⇒ fn+1 = 0 ⇒ Δ𝛾 = ⟨Δ𝜆⟩ > 0

(174)min
(�,�)

[
max
�

[a

(
�,� , �

)]]

plastic multiplierΔ� obtained asΔ� = ⟨Δ�⟩ for the last 
argumentΔ� of the solution of problem (173).

Similarly, we report the augmented Lagrangian dual 
principle for problem (155) as in [155], as follows.

Proposition 4 (Augmented Lagrangian dual principle 
[155]) Under the above assumptions, the plastic multiplier 
Δ� in the closest-point projection approximation defined by 
Eqs. (155) can be characterized as:

for the unique non-negative rootΔ�of equation:

or

for the function f c
(
�c(�),� c(�)

)
with

(
�c(�),� c(�)

)
corre-

sponding to the argument of the unconstrained minimiza-
tion problem:

forc > 0.The other components of the solution are then sim-
ply obtained as

(
�n+1,�n+1

)
=
(
�c(�),� c(�)

)
.

Armero and Pérez-Foguet [155] and Pérez-Foguet and 
Armero [158] developed globally convergent root-finding 
algorithms based on the reported primal and dual formu-
lations, which are considered in a general setting without 
requiring the above convexity assumption. These algo-
rithms consist in Newton–Raphson schemes in conjuction 
with line-search strategies and lead to two-level schemes: 
(i) the upper level consisting of the enforcement of the 
plastic consistency condition through an iteration in the 
plastic multiplier and (ii) the lower level consisting of the 
solution of the closest-point projection equations for a fixed 
plastic multiplier. The line-search scheme was shown to 
account for the positiveness of the plastic multiplier and to 
lead to the global convergent primal algorithm. The dual 
method was shown to not be computationally competitive 
in situations where the primal algorithm show no difficul-
ties. Major advantages are clear in cases where the primal 

(175)Δ� = ⟨Δ� + cf c(Δ�)⟩

(176)f c(Δ𝜆) = 0 if f trial
n+1

> 0

(177)Δ� = 0 if f trial
n+1

≤ 0

(178)

min
(�,�)

[
G(�,�) − ���

e,trial

n+1
:� + �trial

n+1
∗ �

+
c

2

[⟨
�

c
+ f (�,�)

⟩2

−

(
�

c

)2
]]
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algorithm requires a large number of iterations to con-
verge. The augmented Lagrangian-based algorithms show 
improved properties with respect to the non-augmented 
ones, since they do not need to enforce explicitly the con-
straint of nonnegative plastic multipliers, leading to uncon-
strained problems which are easily to treat analytically and 
avoid line-search strategies. Moreover, they were shown to 
reduce the computational cost when the penalty parameter 
is chosen in a given range.

Augmented Lagrangian approaches to plasticity have 
been also introduced in [181, 182]. In [181] the constitutive 
laws of elastoplasticity with internal variables are described 
through the definition of suitable dual potentials, including 
various hardening models. A family of variational prin-
ciples for inelastic problems is so obtained using convex 
analysis tools and the structural problem is analyzed using 
the complementary energy functional.

Remark 6 (Example) As an example, we examine the 
geometric interpretation for the simple case of perfect plas-
ticity in strain-space. Following [10], the state ���e

n+1
 is the 

solution of the optimization problem:

where ‖⋅‖
ℂ
: =

√
⋅:ℂ⋅ is the energy norm induced by ℂ. 

Such a problem reduces to the standard problem of find-
ing the closest distance (in the energy norm) of a point 
(the trial state) to a convex set (the elastic domain), thus 
the common name of closest-point projection. Such a geo-
metric interpretation follows by noting that the associated 
Lagrangian is expressed as:

(179)
min
���e

f (∇Ψ(���e)) ≤ 0

1

2

‖‖‖���
e,trial − ���e

‖‖‖
2

ℂ

and the corresponding KT optimality conditions are:

Here, ���e and Δ� are the generic elastic strain and Lagrange 
multiplier, respectively; ���e

n+1
 and Δ� denote the elastic 

strain and the Lagrange multiplier at the solution.

We now formulate on the algorithmic scheme for prob-
lem (178) (see Table  6), as reported in [10]. Since E� 
is convex, the algorithm is unconditionally convergent, 
regardless of the initial starting point (���e,trial

n+1
, �trial

n+1
) [10].

A similar interpretation holds in stress-space [10]. For 
an associative flow rule, �n+1 is the closest-point projection 
in the energy norm of the trial elastic stress �trial onto the 
yield surface, i.e., �n+1 is solution of the following problem:

where ‖⋅‖: =
√
⋅:ℂ−1⋅. Such a geometric interpretation fol-

lows by noting that the associated Lagrangian is expressed 
as:

and the corresponding KT optimality conditions are given 
by:

Here, � and Δ� are the generic stress and Lagrange mul-
tiplier, respectively; �n+1 and Δ� denote the stress and the 
Lagrange multiplier at the solution, respectively.

The algorithmic scheme for problem (181) is similar to 
that presented in Table 6.

5.1.3  Cutting-Plane Algorithm

We now recall the cutting-plane algorithm [54, 142], since 
it avoids the computation of the gradients of the flow rules, 
which are required by the closest-point iterative procedure. 

(180) =
1

2

‖‖‖���
e,trial − ���e

‖‖‖
2

ℂ

+ Δ�f (∇Ψ(���e))

(181)

⎧
⎪⎨⎪⎩

−���e,trial + ���e
n+1

+ Δ�
�f

��

����n+1 = �

Δ� ≥ 0, f
�
∇Ψ(���e

n+1
)
� ≤ 0, Δ�f

�
∇Ψ(���e

n+1
)
�
= 0

(182)min
�∈E�

1

2

‖‖‖�
trial − �

‖‖‖
2

ℂ−1

(183) =
1

2

‖‖‖�
trial − �

‖‖‖
2

ℂ−1
+ Δ�f (�)

(184)

⎧⎪⎨⎪⎩

−�trial + �n+1 + Δ�
�f

��n+1

����n+1 = �

Δ� ≥ 0, f
�
�n+1

� ≤ 0, Δ�f
�
�n+1

�
= 0

Table 6  Newton–Raphson algorithm to solve problem (179) in 
strain-space [10]
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The algorithm is based on a steepest descent strategy which 
involves the following steps [10]:

1. Assume plastic loading ⇒ f trial
n+1

> 0 and Δ𝛾 > 0. Then, 
integrate the rate constitutive equations in terms of 
stress and stress-like variables using a forward-Euler 
scheme.

2. Linearize f (�(Δ�), �(Δ�)) = 0 and solve for Δ�.
3. Update Δ� and the other variables and check 

for the satisfaction of the consistency condition 
f (�(Δ�), �(Δ�)) = 0. Return to step 1 if the constraint 
is violated.

As it can be observed, the procedure is explicit, since it 
involves only functional evaluations, and its convergence is 
obtained at a quadratic rate [10]. This makes the algorithm 
very attractive for complex models or explicit simulations. 
Normality is in fact enforced at the initial iterate and the 
incremental stress-strain relation is not suitable to the deri-
vation of the consistent tangent modulus, needed in case of 
implicit analyses [9]. Moreover, such scheme has shown 
poorer accuracy properties when compared to the closest-
point projection approximation [6].

5.2  Complementary Problem Function‑Based 
Algorithms

The replacement of the KT conditions by equivalent com-
plementary functions, as discussed in Sect. 2.2.10, allows 
to rewrite system (167), as follows7

where Φ� is the discrete smoothed complementarity func-
tion (see definition (88)).

In case of the FB smoothed function (87), Eq. (184)3 
takes the form:

In case of the NN smoothed funtion (100), it becomes:

In case of the CHKS smoothing function (101), we have:

7 A fully implicit (backward-Euler) integration scheme is used; how-
ever, other integration rules can be adopted (see Sect. 4).

(185)

⎧⎪⎨⎪⎩

���
p

n+1
= ���

p
n + Δ��(�n+1,�n+1)

�n+1 = �n + Δ��(�n+1,�n+1)

Φ�(fn+1,Δ�) = 0

(186)
√

f 2
n+1

+ Δ�2 + 2� + fn+1 − Δ� = 0

(187)−fn+1 − � ln

⎡⎢⎢⎣
1 + exp

−
Δ� + fn+1

�

⎤⎥⎥⎦
= 0

The procedure is no more based on a two-step algorithm 
and system of equations (167) can be solved by using clas-
sical numerical methods, e.g., a Newton–Raphson scheme. 
The procedure thus allows to avoid an active set search, 
which may become costly when dealing with many coupled 
evolution equations and constraints on internal variables. 
Numerical accuracy depends on the value of the regulariza-
tion parameter �, as discussed in Sect. 4. Possible numerical 
difficulties, especially for complex model problems, may be 
associated to the presence of � and to a proper choice of 
the Newton–Raphson initial guess to guarantee a fast and 
correct convergence. To overcome potential difficulties, it 
is possible to apply a line-search strategy.

The applications of these algorithms to elastoplasticity 
are, however, limited. The effective and efficient proce-
dure based on the FB smoothing function has been intro-
duced in the context of crystal plasticity in in [137, 138] 
and applied to solve several engineering problems, e.g., 
[183, 184]. The NN smoothing function-based procedure 
has been applied to finite strain plasticity with elastic 
isotropy and arbitrary flow rules in [34], while the CHKS 
smoothing function has been used in several fields rang-
ing from reactor networks and chemical processes to tray 
optimization [185–187].

(188)
Δ� − fn+1

2
−

√(
Δ� + fn+1

)2
+ 4�2

2
= 0

Table 7  Mathematical program definition [189, 190]
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5.3  Mathematical Programming

A different approach consists in reducing the global IBVP 
(see Table 1) or the local IVP (see Table 2) to a mathemati-
cal programming (MP) problem that can be solved using 
optimization methods [180, 188].

MP is part of the theory of optimization [180, 188] and 
involves the minimization (or maximization) of a func-
tion of a finite number of real variables that can be sub-
ject to a finite number of constraints [189, 190]. The lit-
erature on MP theory and methods is very vast and the 
reader is referred to [188, 191, 192] for details. Table  7 
reports the general definition of mathematical program that 
can be classified according to the nature and properties of 
the objective and constraint functions or number of vari-
ables. Some examples are reported in Table 8.

From the numerical point of view, the solution of MP 
problems highlighted important challenges between the 
eighties and nineties, since the simplex method was the 
only reliable and available algorithm. This algorithm 
is relatively robust, but it is characterized by a signifi-
cant increase in computational effort as the problem size 
increases [193]. Later, a number of new methods of opti-
mization have been proposed [194, 195] and MP started 
to be used in several fields, e.g., economics and finance. 
Several authors focused on MP in computational plasticity, 
e.g., [189, 196–200]. The use of MP for the state-update 
has several attractive features, especially when dealing with 
nonsmooth energy and dissipation potentials or variational 
inequalities. Compared to return mapping algorithms, the 
MP approach does not identify artificially the set of active 
constraints. Despite these advantages, the application of 
MP has been mostly limited to problems of plastic limit 
analysis [201] and the efficiency of MP algorithms, if com-
pared to elastic predictor/plastic corrector schemes, has not 
been assessed [9]. In the following, we will review and pro-
pose some MP algorithms for the elastoplasticity problem.

5.3.1  Quadratic Programming

The approach based on quadratic programming (QP) 
was initiated by Maier [202–204] and Capurso and Maier 
[205], who employed a piecewise linear approximation of 
the yield surface to reduce the incremental problem to a 
convex QP (see Table 8). Due to the approximation, the 
application was limited to few examples on truss or frame 
structures [206].

Martin and coworkers [207–211] extended the contri-
butions by Maier and coworkers [197, 212] by expressing 
the evolution equations in terms of the dissipation func-
tion and by exploiting the properties of convexity and 
positive homogeneity of this function to introduce a dis-
cretized version of the problem, with the aim of solving a 
succession of incremental problems. Martin et  al. [210] 
discussed two solution strategies: the first based on a 
piecewise linear approximation leading to a QP problem 
[212], while the second employing a Newton–Raphson 
solution strategy [197]. The formulations and algorithms 
presented by Martin and coworkers [207–211] provide 
a viewpoint, dual to that proposed by Simo and Taylor 
[100]. The advantage is that QP can always be solved (or 
shown to be infeasible) in a finite amount of computation, 
however the effort required to find a solution depends on 
the properties of the objective function and on the num-
ber of inequality constraints [188].

The sequential quadratic programming (SQP) 
approach [188] is an effective method for nonlinear pro-
gramming (see Table  8) and it is appropriate for small 
or large problems. We group this method in the present 

Table 8  Some mathematical program types [189]
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section, since the basic idea is to model the mathematical 
problem of elastoplasticity in Table 7 by a QP subprob-
lem at each iterate and to define the search direction to 
be the solution of this subproblem. Wieners [213, 214] 
introduced a SQP method for the case of perfect plasticity 
and plasticity with hardening. The algorithm is derived 
by a linearization of the flow rule which then leads to a 
sequence of linear variational subproblems with linear 
inequality constraints. Each subproblem was shown to be 
equivalent to a quadratic minimization problem and thus 
the method is equivalent to the SQP method. In case of 
hardening, Wieners proved global convergence for the 
semi-smooth Newton method used to solve the derived 
quadratic minimization problem. Wieners [213] reported 
the advantages in using SQP methods: the large flexibil-
ity allows to enhance and stabilize the method to general 
(and even nonconvex) plasticity models (e.g., multi-yield 
plasticity or finite plasticity), where the realization of 
the projection method is not straightforward. Recently, 
Bilotta et  al. [215] proposed a novel method based on 
SQP with equality constraints. The idea was to improve 
the efficiency and the robustness of the solution method 
by maintaining all the variables of the problem at the 
same level and by performing a consistent linearization 
of all the equations, allowing the iterations to evolve 
towards the solution. The algorithm was shown to pos-
sess good accuracy, robustness, and convergence.

5.3.2  Convex Programming

As discussed in Sect. (2.2.11), the principle of maximum 
plastic dissipation provides an interpretation of the plastic-
ity flow theory as optimality conditions of a convex mini-
mization problem and allows to apply algorithms for con-
vex MP.

Among the others, interior-point methods have proved to 
be successful either for linear and nonlinear programming 
[188]. The basic idea is to solve the optimality conditions 
associated to the minimization problem with a suitably 
penalized mathematical program.

Krabbenhoft et  al. [193] treated the problem of infini-
tesimal rate-independent elastoplasticity using convex 
programming algorithms. Following the interior-point 
methodology, Krabbenhoft et  al. rewrote the principle of 
maximum plastic dissipation (112), as follows:

subject to:

where s > 0 is the slack variable and �b log s is the so-
called logarithmic barrier function, �b being an arbitrarily 

(193)max
(�,� ,s)

�:�̇��p + � ∗ �̇ + 𝜇b log s

(194)f (�,�) + s = 0

small positive constant. Recall that if the yield function is 
convex, this is a convex program.

The associated Lagrangian is:

where �̇� is a Lagrange multiplier. The first-order necessary 
and sufficient KKT optimality conditions associated with 
problem (188) follow from the Lagrangian (194), as:

which correspond, respectively, to the associated flow 
rules, yield condition, and plastic consistency condition, �̇� 
being the plastic multiplier. It should be noted that since 
s > 0 and 𝜇b > 0, we have �̇� > 0. These conditions, together 
with the two last optimality conditions, define the loading/
unloading conditions (57). Note, however, that only strict 
inequality is satisfied for the first two equations of the KT 
conditions (57), since 𝜇b > 0, whereas the last condition is 
fulfilled to within some arbitrarily small positive constant 
proportional to �b [193].

After integrating system (195) by using a backward-
Euler scheme, Krabbenhoft et  al. [193] solved the 
(global) primal problem by using a Newton’s method 
with a reduced step length to ensure that all points 
remained in the interior of the feasible solution space. 
As the solution converges, the barrier parameter �b is 
reduced according to a certain law. The main difficulty 
in applying a Newton’s method to sets of optimality con-
ditions is that usually little knowledge about the optimal 
solution is available [193]; thus, choosing an initial point 
within the convergence radius of Newton’s method is 
generally difficult. Therefore, an important point is a rule 
for how the barrier parameter should be decreased dur-
ing the iterations: if it is reduced too much, the iterations 
will diverge; if it is not reduced enough, the iterations 
may be too high. Krabbenhoft et al. [193] observed that 
the number of iterations is about 20-50 in each load step, 
independent of the size of the problem, if the reduction 
rule for �b is well chosen. In elastoplastic computations, 
however, the authors showed that a good estimate of the 
optimal solution is usually available (usually the last con-
verged solution) and the number of iterations is about 10.

The resulting algorithm shares several features with 
that by Simo and Taylor [100]. For example, a quan-
tity which is similar to the consistent tangent modulus 
derived in [100] plays an important role in the algorithm. 
Regarding the efficiency, the method in [193] is competi-
tive with the Simo and Taylor method: the cost of each 
iteration and the iteration counts are comparable. More-
over, a quadratic rate of convergence is attained as the 

(195) = �:�̇��p + � ∗ �̇ + 𝜇b log s − �̇�
[
f (�,�) + s

]

(196)

⎧⎪⎨⎪⎩

𝜕� = �̇��p − �̇�𝜕� f (�,�) = �

𝜕� = �̇ − �̇�𝜕� f (�,�) = �

𝜕�̇� = −f (�,�) − s = 0

𝜕s = 𝜇bs
−1 − �̇� = 0 ⇒ s�̇� = 𝜇b
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solution is approached. The algorithmic robustness also 
appears excellent and can be further enhanced by a line-
search strategy. Finally, the algorithm can be extended 
to multi-surface plasticity without any difficulty or addi-
tional computational effort and can be implemented in 
other FE formulations than those based on standard dis-
placement elements [193]. Recall however that, since Ψp 
is a function of � only, there is a natural limitation to the 
type of hardening laws that can be considered within this 
framework, see [193] for details.

Lotfian and Sivaselvan [216] focused on the dual prob-
lem, associated to the primal problem treated by Krab-
benhoft et  al. [193]. The authors considered material 
behaviors described by convex energy and dissipation 
functions and cast the incremental state update into a 
convex minimization problem in terms of stresses. They 
proposed a projected Newton method to solve the dual 
of this problem which does not require a return-map-
ping scheme. Moreover, the local quadratic model of the 
objective function, used to determine a search direction, 
is based on a reduced Hessian and the step length in each 
iteration is determined by searching along a piecewise 
linear path (rather than along a straight line) obtained by 
projecting the search direction on the feasible region. The 
methodology can be extended to finite deformation or 
non-convex cases, because they can be approached using 
a succession of convex subproblems, as well as to multi-
surface plasticity.

5.3.3  Conic Programming

As discussed in Sect.  2.2.6, plasticity with nonsmooth 
potentials is generally treated with the methodology by 
Koiter (see [10, 217] and references therein). However, sin-
gularities as in the Drucker–Prager cone, where only one 
surface can be identified, need special attention [217]. In 
such cases, the theory is usually formulated in a more rig-
orous way using the concept of subgradient [39].

In the last years, research has been dedicated to conic 
programming (CP), where the problem can be written as 
a linear program with one or more cone constraints (see 
Table 8). In CP, the definition of a cone is quite broad and 
often non-conic constraints can be reformulated. Robust 
algorithms, also applicable to large-scale problems, have 
been developed for a certain number of cones, e.g., [218]; 
the most commons are the second-order and positive sem-
idefinite cones.

In elastoplasticity, the methodology exploited in CP is 
similar to the one introduced by Moreau for plasticity and 
its use is advantageous since the existence of singularities 
does not involve any problem [217]. Despite this, its appli-
cation to elastoplastic problems has been limited to few 
cases. We recall the work by Makrodimopoulos and Martin 

[219], employing second-order cone programming (SOCP) 
for the upper bound limit analysis of cohesive-frictional 
continua. Krabbenhoft et al. [217] presented standard forms 
for CP (second-order and semidefinite programs) of both 
limit and incremental elastoplastic analysis and discussed 
the types of yield criteria that can be treated by CP. The 
results presented for the Mohr–Coulomb criterion appears 
the most satisfactory and various mixed FE are considered. 
The authors concluded stating that the performance of suit-
able CP algorithms still has to be evaluated. Three-dimen-
sional Mohr–Coulomb limit analysis was solved by semi-
definite programming [220]. The realization of the cone 
representation of some plasticity failure criteria have been 
proposed in [221]. Applications also to smooth problems 
have been presented in [222, 223].

Recently, attention has been paid to second-order cone 
complementarity problems (SOCCP), which is a class 
of MP problems that can be regarded as the extension of 
linear complementarity problems by allowing for non-
linear inequality constraints in the form of a convex cone 
[224]. Various methods have been proposed for solving the 
SOCCPs, e.g., interior-point methods [190], non-interior 
smoothing Newton methods [225], smoothing-regulariza-
tion method [226], merit function methods [227], and semi-
smooth Newton methods [228].

The use of SOCCP is advantageous for non-associative 
plasticity, where the principle of maximum plastic dissipa-
tion is not applicable and the problem can be formulated 
in terms of complementary problems or variational ine-
qualities. Zhang et al. employed SOCCPs to solve the von 
Mises model with combined linear kinematic and isotropic 
hardening and the Drucker–Prager perfect model. A semi-
smooth Newton algorithm is used to solve the obtained 
SOCCPs, integrated with a backward-Euler scheme. The 
main idea of the semi-smooth Newton method for SOCCPs 
is to replace the second-order cone complementarity condi-
tion by a complementarity function (see Sect. 2.2.10) and 
to solve the obtained nonlinear equations by semi-smooth 
Newton algorithm [228]. This method has been also used 
to solve the nonlinear complementary formulation of elas-
toplasticity in [229] and the SOCCPs of three-dimensional 
frictional contact problems in [230]. In [231] the von Mises 
yield criterion with linear strain hardening is formulated 
as a SOCCP condition. The minimization problems of the 
potential and complementary energy are formulated as a 
primal-dual pair of SOCP problems and solved by using 
a polynomial-time primal-dual interior-point method. To 
enhance the numerical performance in tracing the equilib-
rium path, the authors proposed a warm-start strategy for 
a primal-dual interior-point method for SOCP. On the one 
hand, an advantage is that the number of iterations required 
for finding an equilibrium solution does not depend on the 
size of the loading step, differently from many existing 
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methods which often spend more iterations if a larger load-
ing step is chosen [100]. On the other hand, since the elas-
tic and plastic strain tensors at each Gauss point are con-
sidered as independent variables, a potential disadvantage 
in terms of computational time and storage may arise for 
large-scale problems. Linear complementarity problems 
have been also used to solve elastoplastic problems [232]; 
however, a drawback is that an explicit linearization proce-
dure is required to make the approach applicable for prob-
lems with nonlinear yield functions [233].

5.3.4  Least-Squares Approach

An alternative approach in the MP field is to consider 
a bound-constrained least-squares problem, defined as 
follows:

where r:ℜN
→ ℜME+MI is a continuously differentiable 

function.
The advantages in the above formulation are twofold: 

(i) problem (196) is unconstrained, except for the bounds 
on �; (ii) the evaluation of the gradient and Hessian of 
1∕2||r(�)||2 is easier [188].

Applying the above definition to the elastoplastic IVP of 
Table 3, we obtain:

with:

To obtain problem (196), the inequalities in the general 
form t(�) ≤ 0 have been replaced by equalities, by using 
the continuously differentiable function 1∕2 < 0, t >2

. A fully implicit (backward-Euler) scheme is adopted in 
problem (197), however other integration schemes may be 
investigated.

Classical algorithms for solving least-square problems 
fit into the line-search and trust-region frameworks [188]. 
These methods are based on Newton and quasi-Newton 
approaches, with modifications that exploit the specific 
structure of the function r. A trust-region Gauss-Newton 
method for small and zero residual bound-constrained non-
linear least-squares problems (see Eq. (196)) has been pro-
posed in [234–236]. The algorithm solves overdeterminated 
and undeterminated problems, generates feasible iterates, 

(197)min
�≤�≤�

{
1

2
||r(�)||2

}

(198)
min

(���p, �,Δ�)
Δ� ≥ 0

{
1

2
||r(���p, �,Δ�)||2

}

(199)r =

⎧
⎪⎪⎨⎪⎪⎩

���
p

n+1
− ���

p
n − Δ��(�n+1,�n+1)

�n+1 − �n − Δ��(�n+1,�n+1)

Δ�f (�n+1,�n+1)
1

2

�
0, f (�n+1,�n+1)

�2

⎫⎪⎪⎬⎪⎪⎭

and relies on matrix factorization. Moreover, it is globally 
and fast locally convergent under standard assumptions. A 
discussion of the accuracy, computational cost, and robust-
ness is also provided in [234]. The algorithm presented in 
[234] offers the additional advantage of an internal refor-
mulation of systems of nonlinear equalities and inequalities 
as problem (196), preserving the smoothness required by 
the trust-region algorithm. The Matlab code, called TRES-
NEI, is available on the web [237] and uses a finite differ-
ence approximation of the Jacobian of r, if not provided.

5.4  Incremental Energy Minimization

We now focus on the class of variational methods known as 
variational constitutive updates, which relies on an incre-
mental energy minimization approach.

Using standard results in convex analysis [39], the incre-
mental boundary-value problem, together with the incre-
mental elastoplastic problem (see Table  2), is formally 
equivalent to the following minimization problem:

where:

� being subject to boundary conditions (123) 1.
Several algorithms have been proposed to solve problem 

(199) at a global or global/local level, e.g., [238–249]. If 
we apply spatial discretization, e.g., in an FE environment, 
problem (199) may be split into two subproblems: (i) the 
first one corresponds to the minimization with respect to � 
and may be solved by employing the FE software (global 
level); (ii) the second one corresponds to problem (199) 
with fixed �, i.e., minimization only with respect to internal 
variables (local level), and represents the constitutive rela-
tions implicitly included in problem (199). This is equiva-
lent to the following problem:

Both problems must be solved consecutively and the result-
ing solution is equivalent to the solution of problem (199) 
for infinitesimally refined time discretization. Therefore, 
the second subproblem leads to a reduced incremental 
energy minimization problem in the form:

We now apply a backward-Euler integration scheme to 
problem (202) and we assume that plastic strain and strain-
like internal variables vary linearly in each time step Δtn, 
such that:

(200)inf
(�,���p,�)

{e(�,���p, �)}

(201)e = ∫Ω

(Ψ + Dp) dV − ∫Ω

� ⋅ � dV − ∫ΓN

� ⋅ � dΓ

(202)inf
�

{
inf
���p,�

{e(�,���p, �)}

}

(203)inf
���p,�

{e(���(�),���p, �)}
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and

This means that the evolution of internal variables in a 
finite time step incrementally minimizes a suitable convex 
functional, given by the sum of the internal energy and dis-
sipation function. The incremental form of the Biot’s equa-
tions (118) represents in fact the Euler-Lagrange first-order 
conditions associated to this incremental minimization 
problem and are expressed as:

An advantage of this method is that it provides a criterion 
of choice if non-unique solutions exist [248].

Problem (202) takes the form of an unconstrained pro-
gram (see Sect. 5.3) and standard optimization algorithms 
can be applied [188]. As an example, derivative-based 
optimization methods (e.g., gradient descent method) can 
be applied, but they can be less efficient in the presence 
of several nonsmooth cases, although generally faster. An 
alternative is the derivative-free optimization algorithm by 
Nelder and Mead [250] which is suitable in case of nons-
mooth functions.

Variational constitutive updates are relatively well 
developed for associative evolution equations [251], while 
the general non-associative case still need investigations 
[252]. The paper by Nodargi et  al. [239] focuses on the 
incremental energy formulation for elastoplastic hardening 
materials characterized by isotropic deviatoric yield func-
tion and associative flow laws. A two-step algorithm is pro-
posed to perform the state update: (i) an elastic prediction 
of the updated material state is first carried out; (ii) if it is 
not plastically admissible, a Newton–Raphson scheme is 
adopted to solve the constitutive variational problem (205). 
The authors adopted the Haigh-Westergaard representation 
and reduced the problem to a nonlinear scalar equation. 
Their numerical approach appears to be complementary 
to the classical return map strategy, because no conver-
gence difficulties arise when the stress is close to points 
of the yield surface with high curvature. The state-update 
algorithm proposed in [240] is used in case of associative 
hardening plasticity (with arbitrary isotropic and linear kin-
ematic hardening) and nonlinear elastic constitutive law. 
The algorithm does not require matrix inversion and exhib-
its global convergence even for yield functions with high-
curvature points or not defined on the whole stress space.

(204)Ψ = Ψ
(
���n+1 − ���p

n
− Δ���p

n
, �n + Δ�n

)

(205)Dp = Dp
(
Δ���p

n
,Δ�n

)

(206)

{
�Δ���pn

Ψ
(
���n+1 − ���p

n
− Δ���p

n
, �n + Δ�n

)
+ �Δ���pn

Dp
(
Δ���p

n
,Δ�n

)
∋ �

�Δ�nΨ
(
���n+1 − ���p

n
− Δ���p

n
, �n + Δ�n

)
+ �Δ�nD

p
(
Δ���p

n
,Δ�n

)
∋ �

Remark 7 (Example) As an example, we specify problem 
(202) for the case of the von Mises elasto-perfectly plastic 
model, as:

with:

After applying a backward-Euler integration scheme to 
problem (206) and assuming that plastic strain and strain-
like internal variables vary linearly in each time step Δtn, 
we obtain the corresponding incremental form of the Biot’s 
equations, as follows:

5.5  Consistent Tangent Matrix

In an implicit FE framework, the equilibrium equations 
are solved at the end of each increment and the so-called 
tangent modulus is needed if a Newton–Raphson scheme 
is applied. The use of the continuum tangent modulus, 
defined in Eq. (66), is however not consistent with the 
Newton–Raphson method, since it is based on instantane-
ous values of the rate constitutive equations before numeri-
cal integration [142]. Therefore, the so-called consistent 
tangent matrix, which depends on the local integration, has 
to be used to obtain a quadratic convergence rate. Specifi-
cally, its computation consists in differentiating the stress 
with respect to the strain, taking into account all the varia-
bles appearing in the update algorithm. Defining such vari-
ables with �, we obtain:

where ��∕���� is derived from:

� being the residual vector of local discrete elastoplastic 
equations. The current availability of symbolic software 
notably simplifies the computation of the tangent matrix, 
especially for complex material models. Other solutions 
may consist in the approximated computation of the con-
sistent tangent matrix using, for instance, finite differences.

The literature is very rich on this topic and a detailed 
discussion is out of the present scope. The reader is referred 
to the works previously discussed for the derivation and 

(207)inf
���p

{
e
(
���n+1(�n+1),���

p
)}

(208)e =
1

2
K�2

n+1
+ �||�n+1 − ���p||2 +

√
2

3
�y,0||���p − ���p

n
||

(209)0 ∈ −2�(�n+1 − ���p
n
− Δ���p

n
) +

√
2

3
�y,0�||Δ���pn||

(210)
d�(�(���),���)

d���
=

��

����
+

��

��

��

����

(211)
d�

d���
=

��

����
+

��

��

��

����
= �
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computation of the consistent tangent matrix. Recall, 
however, that the origin of such a notion can be found in 
[253–255]. Nagtegaal [254] and Runesson and Booker 
[255] linearized the time discretized constitutive equations 
with and without linear isotropic hardening, respectively, to 
derive a proper Jacobian. Simo and Taylor [142] extended 
the study to nonlinear kinematic and isotropic hardening. 
In [256] a complex nonlinear kinematic hardening model 
is studied, while in [257] the Newton’s method is com-
bined with a secant approach to further improve the effi-
ciency. A Newton–Schur alternative to the consistent tan-
gent approach is proposed in [258]. An attempt to propose 
a general method to derive the plastic corrections and the 
consistent tangent modulus for a wide class of nonlinear 
hardening models is available in [259].

6  Numerical Simulations

This section presents a comparison between several solu-
tion schemes to study the accuracy, robustness, and effi-
ciency granted by the numerical algorithms on standard 
tests and practical engineering problems.

To our purpose, from each classical and less-classical 
category reviewed in Sect.  5, we analyze the following 
solution schemes:

–– RM: Return Map algorithm (see Sect. 5.1)
–– FB: Fischer–Burmeister smoothing function-based 

algorithm (see Sect. 5.2)
–– NN: Neural Networks smoothing function-based algo-

rithm (see Sect. 5.2)
–– LS: bound-constrained least-squares problem solved 

with the TRESNEI algorithm (see Sect. 5.3.4)
–– NM: incremental energy minimization problem solved 

with the Nelder-Mead algorithm (see Sect. 5.4)

All the algorithms are tested on strain loading histories for 
a material point, implemented in the Matlab environment, 
for which optimization functions are available, included 
the TRESNEI code [237] and the built-in fminsearch func-
tion. The RM and FB algorithms are then tested on two 

FE boundary-value problems. The FE implementation 
is carried out using the symbolic code generation system 
AceGen/AceFEM [260], for which exact linearization and 
analytic derivation of the consistent tangent matrix are pos-
sible (refer to our discussion in Sect. 5.5).

We adopt the two set of material parameters listed in 
Table 9. Set 1 corresponds to the von Mises elasto-perfectly 
plastic model and it is used to perform the tests based on 
strain loading histories for a material point. Set 2 corre-
sponds to the von Mises model with linear isotropic kin-
ematic hardening and it is adopted for the FE simulations. 
The model is governed by the following system of equa-
tions in a time-continuous framework:

(212)

⎧⎪⎪⎨⎪⎪⎩

�̇��p = �̇�
𝜕f

𝜕�

�̇ = Hkin�̇�
𝜕f

𝜕�
�̇� ≥ 0, f ≤ 0, �̇�f = 0

Table 9  Model parameters adopted in the numerical simulations

Symbol Description Set 1 Set 2 Unit

E Young’s modulus 30000 21000 MPa
� Poisson’s ratio 0.3 0.3 -
�y,0 Initial yield stress 3 24 MPa
Hiso Isotropic hardening constant 0 100 MPa
Hkin Kinematic hardening constant 0 1 MPa

Fig. 6  a Butterfly-shaped loading history. b Loading histories vary-
ing in time in the range ±5�y,mono, where �y,mono =

√
3∕2�y,0∕E
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where the yield function f is defined as:

Here, Hkin, �y,0 and Hiso are, respectively, a material con-
stant accounting for kinematic hardening, the initial yield 
stress, and a material constant accounting for isotropic 
hardening. These equations are integrated in time using a 
fully implicit (backward-Euler) method.

6.1  Strain Loading Histories

We consider two nonproportional strain loading histories, 
obtained by assuming to control the six strain components, 
i.e., 

{
�11, �22, �33, �12, �13, �23

}
. For each loading we vary 

two strain components, respectively (�11, �22) and (�11, �12), 
according to a chosen history, while the remaining are kept 
equal to zero. The loading histories consist, respectively, of 
a hourglass- and square-shaped input (see Figs. 6a and 7a), 
defined on the time interval [0, T], with T equal to 8 and 
10 s, respectively. The strain components vary in the range 

(213)f = ‖� − �‖ − �y,0 − Hisoe
p

±5�y,mono, where �y,mono =
√
3∕2�y,0∕E. Figures  6(b) and 

7(b) show the history input for each component in case of 
the hourglass- and square-shaped loading, respectively. The 
tests are performed using time step increments Δt of 0.1, 
0.05, and 0.025 s.

All the results have been obtained by considering a regu-
larized parameter 2� = 10−9 and � = 0.003 for the FB and 
NN algorithms, respectively.

To assess accuracy and robustness, we introduce the fol-
lowing stress relative error:

and total error:

where �anal
n

 and �num
n

 are, respectively, the ’analytic’ and 
the ’numerical’ stresses at time tn. Lacking the analyti-
cal solution of the loading histories under investigation, 
we compute the ’exact’ solution using the RM algorithm 
with a very fine time discretization, corresponding to 
Δt = 0.0001 s. Then, we compare the ’analytic’ solutions to 
the ’numerical’ ones, computed respectively with Δt of 0.1, 
0.05, and 0.025 s. Figures 8 and 9 show the stress relative 
errors for the butterfly- and square-shaped history, respec-
tively, while Figs. 10 and 11 present the stress total errors 
versus the number of steps per second for the butterfly- and 
square-shaped history, respectively. All the schemes are 

(214)En
R
=

‖‖�num
n

− �anal
n

‖‖2
�y,0

(215)ET =

N∑
i=1

Δt
‖‖‖�

num
n

− �anal
n

‖‖‖1

Fig. 7  a Square-shaped loading history. b Loading histories varying 
in time in the range ±5�y,mono, where �y,mono =

√
3∕2�y,0∕E

Table 10  Butterfly-shaped loading history. Comparison between the 
algorithmic schemes in terms of total computational time

Algorithm Time step Computa-
tional time 
[s]

RM 0.1 0.60
0.05 0.87
0.025 1.48

FB 0.1 0.61
0.05 1.12
0.025 2.19

NN 0.1 0.61
0.05 1.22
0.025 2.50

NM 0.1 2.17
0.05 4.20
0.025 8.51

LS 0.1 0.77
0.05 1.35
0.025 2.48
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first-order accurate. The error plots show similar results for 
all the algorithms, except for the NN scheme, whose accu-
racy is strongly influenced by �. Lower values for � in the 
NN algorithm have been tested; however, they determine 
ill-conditioning of the system.

To assess computational efficiency, Tables  10 and 11 
report the computational time for the butterfly- and square-
shaped histories, respectively. As observed, the RM algo-
rithm presents the lowest computational times, while the 
less performing algorithm is the NM algorithm. The FB 
and NN algorithms present values comparable to those 
of the RM scheme for low time steps (0.1 s), while, for 
increasing time steps, the FB scheme necessitates slightly 
lower computational times than the NN. The LS scheme 
presents an overall good performance, comparable to that 
of the NN algorithm.

6.2  Boundary‑Value Problems

We first consider a three-dimensional square plate with a 
hole. The plate has an edge of 50 mm, a thickness of 10 
mm, and a central circular hole of radius 10 mm. Accord-
ing to the symmetry of the problem, we model only one 
quarter of the plate by applying appropriate boundary con-
ditions. The mesh is composed of 3, 080 8-node brick ele-
ments and 4, 002 nodes (see Fig. 12). Mesh refinement has 
been performed to choose the appropriate mesh.

The plate is subject to a displacement-control extension 
along the z-direction (see Fig. 12), consisting of loading up 
to a maximum displacement of 0.1 mm and unloading back 

Table 11  Square-shaped loading history. Comparison between the 
algorithmic schemes in terms of total computational time

Algorithm Time step Computa-
tional time 
[s]

RM 0.1 0.64
0.05 1.18
0.025 2.20

FB 0.1 0.74
0.05 1.55
0.025 3.29

NN 0.1 0.87
0.05 1.64
0.025 3.54

NM 0.1 2.57
0.05 5.27
0.025 10.86

LS 0.1 0.97
0.05 1.87
0.025 3.55

(a)

(b)

(c)

Fig. 8  Butterfly-shaped loading history. Stress relative error En
R
 for 

Δt of 0.1, 0.05 and 0.025 s for the algorithmic schemes
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to zero. The total analysis time is 2 s. Tests are performed 
using time step increments Δt of 0.1 and 0.01 s, corre-
sponding to 20 and 200 steps.

To compare the methods, we evaluate the following 
error on stresses and strains:

The quantity �num
n

 is the ’numerical’ stress and strain tensor 
calculated adopting a prescribed time step Δt, while �anal

n
 

is the corresponding ’analytic’ solution evaluated with the 
RM scheme using a time step Δt = 0.0001 s. In the follow-
ing tests we use two different time steps, respectively of 
0.1 and 0.01 s, and we evaluate the error at four different 

(216)E� =

√∫
Ω
||�num

n
− �anal

n
||2

∫
Ω
||�anal

n
||2

(a)

(b)

(c)

Fig. 9  Square-shaped loading history. Stress relative error En
R
 for Δt 

of 0.1, 0.05 and 0.025 s for the algorithmic schemes

Fig. 10  Butterfly-shaped loading history. Stress total error ET versus 
number of steps per second for the algorithmic schemes

Fig. 11  Square-shaped loading history. Stress total error ET versus 
number of steps per second for the algorithmic schemes
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instants of the loading history, i.e., at 0.5, 1.0, 1.5, and 2.0 
s. The results are summarized in Table 13.

To assess the computational efficiency of the RM and 
FB algorithms, Table  12 reports the average number of 
global Newton iterations and the average computational 
time per time step increment (Table 13).

We now consider a helical spring. The spring has 3.5 
free coils, initial length of 24.59 mm, a wire diameter of 
1.5 mm, a spring external and internal diameters of 13.3 
and 10.3 mm, and a pitch size of 6.4 mm. Figure 13 shows 
the adopted mesh, consisting of 6,  912 8-node brick ele-
ments and 7, 497 nodes. Again, mesh refinement has been 
performed to choose the appropriate mesh.

The spring is fixed at one end and subject to an axial 
tensile force at the other end (see Fig.  13). The force is 
increased up to a value of 3 N and then unloaded back to 
zero. The total analysis time is 2 s. Tests are performed 
using time step increments Δt of 0.1 and 0.01 s, corre-
sponding to 10 and 100 steps per second.

The results for the errors defined in Eq. (215) are sum-
marized in Table 14.

Table 15 reports the average number of global Newton 
iterations and the average evaluation time per time step 
increment for the RM and FB algorithmic schemes.

All the report results are obtained by considering a reg-
ularized parameter 2� = 10−9 for the FB algorithm. As it 
can be observed, the RM and FB algorithms produce quite 
identical results in terms of stress and strain errors. Both the 
number of global Newton iterations and the computational 
time are comparable for the two algorithms and decrease as 
the number of steps per second increases. As expected, 
both are first-order accurate. The FB algorithm therefore 
offer an alternative solution to the RM scheme. We remark 
again that possible difficulties in the FB scheme could be 
linked to the numerical sensitiveness of such scheme, due 
to the presence of the regularization parameter, and to the 
proper choice of the Newton–Raphson initial guess to guar-
antee a fast and correct convergence. In fact, a potential dis-
advantage of this method is that when the initial point is 
far from a solution, the method might not converge or may 
converge very slowly. To resolve these shortcomings, we 
could apply a line-search strategy. In the present case, how-
ever, the presence of the regularization parameter in the FB 
algorithm does not affect the convergence. Therefore, the 
obtained results encourage a further investigation of the FB 
scheme and of its application to more complex constitutive 
models, e.g., involving nonlinear kinematic hardening or 
describing the behavior of smart materials.

7  Conclusions and Perspectives

This paper has proposed a theoretical and numerical review 
of the three-dimensional rate-independent plasticity equa-
tions in an infinitesimal framework. From the theoretical 
standpoint, we have recalled main concepts of time-contin-
uous equations in a rate and variational formulation. From 
the numerical viewpoint, we have investigated the accuracy, 
stability, yield consistency, and the algorithm behaviour of 
several state-update procedures. Particularly, we have ana-
lyzed conventional and less-conventional solution schemes 
in a uniform context. The review has been completed by a 
comparison between several numerical schemes through 
the simulation of simple and complex problems. The ana-
lyzed algorithms can be extended to more complex models.

The literature has been shown to be very rich on the 
treated topic and the choice of the algorithm to use strongly 
depends on the problem under investigation. Despite this, 
less-conventional approaches need further investigations 
and several alternative are still possible, e.g., in the frame-
work of mathematical programming. As an example, the 
possibility of recasting the plasticity problem as a convex 
QP may allow the application of algorithms as the alternat-
ing direction method of multipliers [261]. The method has 

Fig. 12  Three-dimensional plate with hole. Adopted mesh and 
boundary conditions

Table 12  Three-dimensional plate with hole. Comparison between 
the RM and the FB algorithmic schemes in terms of average number 
of global Newton iterations and average computational time per time 
step

Algorithm Number of 
steps

Average itera-
tions/step

Average 
comp. time/
step [s]

RM 20 5.55 1.83
200 4.77 1.36

FB 20 5.55 2.13
200 4.74 1.64
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an iterative solution scheme based on an operator splitting 
algorithm, which is suitable to efficiently solve large-scale 
variational problems. An application to the field of limit 
analysis has been recently proposed in [262].

The reported analysis can be used for finding effec-
tive algorithms for a wide range of applications (e.g., 
involving contact or damage), plastic materials (e.g., 

rate-independent, anisotropic, or crystal plasticity), and 
framework (e.g., finite strain) and can be a reference 
or offer novel ideas for the developments of numerical 
schemes for more complex constitutive models describing, 
e.g., the behaviour of smart materials.
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Table 13  Three-dimensional plate with hole. Error on stress and 
strain tensors, evaluated with the RM and the FB algorithmic 
schemes at 0.5, 1.0, 1.5, and 2.0 s

Error Time step [s] RM FB

t = 0.5 s
 E� 0.1 2.31⋅10−3 2.31⋅10−3

0.01 0.30⋅10−3 0.30⋅10−3

t = 1.0 s
 E� 0.1 4.69⋅10−3 4.69⋅10−3

0.01 0.49⋅10−3 0.49⋅10−3

t = 1.5 s
 E� 0.1 18.51⋅10−3 18.51⋅10−3

0.01 1.95⋅10−3 1.96⋅10−3

t = 2.0 s
 E� 0.1 5.39⋅10−3 5.39⋅10−3

0.01 0.60⋅10−3 0.60⋅10−3

t = 0.5 s
 E� 0.1 4.75⋅10−3 4.75⋅10−3

0.01 0.69⋅10−3 0.68⋅10−3

t = 1.0 s
 E� 0.1 5.01⋅10−3 5.01⋅10−3

0.01 0.53⋅10−3 0.53⋅10−3

t = 1.5 s
 E� 0.1 6.46⋅10−3 6.45⋅10−3

0.01 0.68⋅10−3 0.68⋅10−3

t = 2.0 s
 E� 0.1 10.80⋅10−3 10.79⋅10−3

0.01 1.14⋅10−3 1.14⋅10−3

Fig. 13  Three-dimensional helical spring. Adopted mesh and applied 
boundary conditions

Table 14  Three-dimensional helical spring. Error on stress and strain 
evaluated with the RM and the FB algorithmic schemes at 0.5, 1.0, 
1.5 and 2.0 s

Error Time step [s] RM FB

t = 0.5 s
 E� 0.1 0.39⋅10−3 0.39⋅10−3

0.01 0.05⋅10−3 0.05⋅10−3

t = 1.0 s
 E� 0.1 42.95⋅10−3 42.95⋅10−3

0.01 4.88⋅10−3 4.88⋅10−3

t = 1.5 s
 E� 0.1 44.92⋅10−3 44.92⋅10−3

0.01 5.10⋅10−3 5.10⋅10−3

t = 2.0 s
 E� 0.1 45.22⋅10−3 45.22⋅10−3

0.01 5.11⋅10−3 5.11⋅10−3

t = 0.5 s
 E� 0.1 0.27⋅10−3 0.27⋅10−3

0.01 0.04⋅10−3 0.04⋅10−3

t = 1.0 s
 E� 0.1 45.46⋅10−3 45.46⋅10−3

0.01 4.99⋅10−3 4.99⋅10−3

t = 1.5 s
 E� 0.1 46.16⋅10−3 46.16⋅10−3

0.01 5.06⋅10−3 5.06⋅10−3

t = 2.0 s
 E� 0.1 46.65⋅10−3 46.65⋅10−3

0.01 5.11⋅10−3 5.11⋅10−3

Table 15  Three-dimensional helical spring. Comparison of compu-
tational efficiency between the RM and the FB algorithmic schemes 
in terms of average number of global Newton iterations and average 
computational time per time step

Algorithm Number of 
steps

Average itera-
tions/step

Average 
comp. time/
step [s]

RM 10 5.65 11.67
100 5.04 7.94

FB 10 5.70 8.45
100 4.70 7.82
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