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functioning of mitochondria is in maintaining cell integrity 
and preventing carcinogenesis.
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Relationship of cytoskeletal proteins and 
mitochondria

Mitochondria are dynamic organelles that constantly change 
their arrangement and shape in correlation with the need of 
the cell [1]. The fusion/fission ratio and localization of the 
mitochondrial network changes depending on the stage the 
cell has entered. Positioning of the cytoskeletal proteins 
is vital in cell division as well as for distribution of mito-
chondria. Mitochondria are constantly in contact with other 
organelles, in particular endoplasmic reticulum (EPR) and 
plasma membrane, which helps the cell to maintain balance 
of the mitochondria/cell mass index [2, 3]. Mitochondria 
constantly migrate and their movements can be saltatory, 
back and forth, and strongly depend on the cellular “rails” 
consisting of the protein, actin, and microtubules. Migra-
tions on the cytoskeletal rails cause mitochondrial oscu-
lation and fusion, which is necessary for mitochondrial 
movement [4]. An inactivation of main fission-driving pro-
teins can lead to an increase in mitochondrial connectivity 
and highly depends on being transported by the microtu-
bules. Thus, such movement does not always contribute to 
mitochondrial fusion, even though it can be followed by a 
change in shape and form of the organelle [10, 11]. In yeast, 
mitochondrial transport mostly depends on actin, whereas 
in mammalian cells it depends on microtubular transport via 
kinesins and dyneins [12, 13]. A blockage of fission in yeasts 

Abstract Mitochondria are the cell’s power plant that 
must be in a proper functional state in order to produce 
the energy necessary for basic cellular functions, such as 
proliferation. Mitochondria are ‘dynamic’ in that they are 
constantly  undergoing  fission  and  fusion  to  remain  in  a 
functional state throughout the cell cycle, as well as dur-
ing other vital processes such as energy supply, cellular 
respiration and programmed cell death. The mitochondrial 
fission/fusion  machinery  is  involved  in  generating  young 
mitochondria, while eliminating old, damaged and non-
repairable ones. As a result, the organelles change in shape, 
size and number throughout the cell cycle. Such precise and 
accurate balance is maintained by the cytoskeletal trans-
porting system via microtubules, which deliver the mito-
chondrion from one location to another. During the gap 
phases G1 and G2, mitochondria form an interconnected 
network, whereas in mitosis and S-phase fragmentation of 
the mitochondrial network will take place. However, such 
balance is lost during neoplastic transformation and auto-
immune disorders. Several proteins, such as Drp1, Fis1, 
Kif-family proteins, Opa1, Bax and mitofusins change in 
activity  and  might  link  the  mitochondrial  fission/fusion 
events with processes such as alteration of mitochondrial 
membrane potential, apoptosis, necrosis, cell cycle arrest, 
and malignant growth. All this indicates how vital proper 
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complex that is critical for the anterograde axonal transport. 
However, syntabulin isoforms 3, 4 and 5 are expressed in 
the HeLa cell line, but not the isoform 2, part of a kinesin 
motor-adapter complex critical in presynaptic assembling at 
early development of neurons [33, 34]. KIF5 also binds with 
Miro proteins in a Ca2+-dependent manner [35, 36]. LC3 
(Microtubule-associated proteins 1A/1B light chain 3A) 
interacts with FUNDC1 (FUN14 domain-containing pro-
tein 1), an integral mitochondrial outer-membrane protein, 
and is likely involved in mitochondrial transport. A knock-
down of FUNDC1 significantly prevents hypoxia-induced 
mitophagy [37, 38], a form of autophagy in which damaged 
mitochondria were selectively eliminated to prevent further 
passing of genetic material.

Yeast is probably the most studied model when it comes 
to mitochondrial fission/fusion balance, with most molecu-
lar partners described being yeast proteins. A deletion of 
Uth1 (Youth protein 1), a mitochondrial biogenesis regula-
tor localized on the mitochondrial outer membrane, inhibits 
mitochondrial  fission  and  is  involved  in  mitophagy  [31]. 
However, mitophagy is associated with failure in mitochon-
drial functioning, rather than in its fragmentation. The bal-
ance of fission and fusion of mitochondria during apoptosis 
is critical, as a failure in one affects the other process, and 
mitophagy is frequently part of programmed cell death. 
Muscle cells form highly interconnected mitochondrial 
tubules, which transport energy across the cell, whereas 
the majority of mitochondria  in pancreatic β-cells exist as 
“independent” [32].

Regulation of mitochondrial dynamics in cell cycling

Mitochondrial transportation and motility are important fea-
tures of mitochondrial dynamics that help the mitochondrial 
network to supply the cell with energy. Mitochondria play 
a crucial role in cell cycle regulation and a balance of fis-
sion and fusion regulates down- or upstreaming of the cell 
cycle. Total mitochondrial number is increased during the 
growth phase compared to the stationary phase [33]. Thus, 
the total number of mitochondria throughout the cell cycle 
and the overall volume occupied by the mitochondria is 
mostly constant during the whole cell cycle [34]. Some pro-
teins  regulate  both  fission/fusion machinery  and  transport 
of mitochondria via microtubule activity. As an example, 
overexpression of tau, a microtubule-associated protein, 
causes aberrant distribution of mitochondria via the inhibi-
tion of kinesin-dependent movement of the organelles and 
causes impairment in trafficking and localization of organ-
elles. This helps to regulate both increases and decreases 
in mitochondrial activity at certain stages of the cell cycle 
[45, 46]. Drp1 was shown to interact with amyloid beta 
protein and phosphorylated protein tau, both involved in 
Alzheimer pathology. It  is suggested that Drp1 may result 

is not always lethal, since mitochondria can still divide dur-
ing cytokinesis, meiosis and sporulation in diploid yeasts 
[14], whereas in mammalian cells it is strongly linked with 
cell death [10]. Neurons are one of the most energy requir-
ing cells and, so far, are the only known eukaryotic cells to 
transport mitochondria via actin transition, but not micro-
tubules [11]. Due to interaction with cortical cables bud-
ding yeast cells have a unique localization of mitochondria. 
A junction-protein called Num1 connects mitochondria to 
both plasma membrane and EPR [3]. Num1 is vital for nor-
mal division of mitochondria and supports Dnm1 (a Drp-1 
homologue)  in mitochondrial  fission  in  yeast  [12]. Num1 
is a cortical anchor protein involved in recruiting Dnm1 to 
the mitochondrial  surface  so  that  it  localizes  for  a  further 
formation of a ring consisting of Dnm1 proteins, however 
its analogues yet not known for human cells [13].

As a summary, cytoskeletal proteins serve as a railway 
for building the mitochondrial network (actin in some sim-
pler  single  cell  organisms,  and  β-tubulin  in  mammalian 
cells). The network is in constant interaction with other 
organelles, such as the plasma membrane and the EPR to 
ensure the cell is supported with the energy required for 
proper functioning.

Mitophagy, apoptosis and Kif-proteins

Mitophagy is a form of autophagy that is initiated in order to 
selectively eliminate defective mitochondria, whereas apop-
tosis is a form of selective self-elimination of potentially 
harmful or aged cells. Mitochondria are not just cell’s power 
plant, but they can also trigger death-promoting signaling 
cascades. Thus, mitophagy and apoptosis are two inter-
linked processes, whose connection is perfectly described 
elsewhere [14, 15]. A change in the intracellular environ-
ment, including interaction of mitochondria with EPR, may 
force mitochondria to release pro-death factors which will 
interrupt the ATP supply for the cell and so lead to pro-
grammed cell death [16].

In neurons, the cells most critical to ATP supply, the distri-
bution of mitochondria involves dynein, Kif1B (molecular 
motor kinesine-1) and Kif5B (molecular motor kinesine-5) 
proteins [25, 26]. Kif1B is a motor for anterograde transport 
of mitochondria [19]. It interacts in a calcium-dependent 
manner with CHP1 (Calcineurin B homologous protein 1), 
a multifunctional protein essential for EPR-mitochondria 
interaction [20], and with KPB (KIF1-binding protein), a 
protein required in mitochondrial transport and in axonal 
microtubule interacting with the cytoskeleton. However, 
the role of KPB in mitochondrial transport is still to be 
confirmed  [30]. Kif5B is a microtubule-dependent motor 
required for normal distribution of mitochondria and lyso-
somes [31]. Mitochondria and Kif5B are linked through a 
protein called syntabulin, a part of a kinesin motor-adapter 
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S-phases, plays a significant role in regulating fusion/fission 
through the entire cell cycle. An overexpression of cyclin E 
relieves G1/S cell cycle arrest [51], which correlates with 
formation of a single dynamic giant tubular network that 
constantly  undergoes  mitochondrial  fission  and  fusion. 
Mitraa et al. [52] showed that hyperfusion of mitochondria 
into large networks is linked with increased cyclin E levels 
in the G1/S transition, which is associated with the entrance 
into S-phase. Most likely this shift is caused by the need to 
produce more ATP for the cell to have the pool of energy 
required to re-enter the cell cycle. A shift from fragmented 
mitochondrial network in G1 to tubular one can be seen in 
G1/S. The oxidative capacity of mitochondria is greater at 
late G1 than in early G1, and the average oxygen consump-
tion of the cell increases from early G1 to late G1 stage [53]. 
However, this state reverts in S and G2/M to fragmented 
mitochondria [52]. The G1/S transition is considered to be a 
stage of mitochondrial reorganization that represents a point 
of no return for the cell to re-enter the cell cycle [54]. It is 
hypothesized  that  hyperfused mitochondria  force G0 cells 
to enter/re-enter the cell cycle. Furthermore, cells in such 
states appear after they get relieved from serum starvation 
in G0. Cells expressing Drp1 or held at G1/S also exhibit a 
rapid membrane depolarization [52]. This transition might 
contribute to cell cycle re-entrance and the formation of 
giant mitochondrial networks.

In the G0 stage of the cell cycle, both hyperfused (domi-
nating) and fragmented mitochondria are present [52]. Dur-
ing G1 stage, mitochondria are highly fused, whereas in 
G2, as the cell heads towards mitosis, an opposite effect is 
observed. It can be assumed that a shift from mitochondrial 
fusion towards fission takes place in the G1-G2 period [57, 
61]. It is also shown that starvation reduces the number of 
mitochondria by forcing cell cycle arrest, self-elimination, 
and mitochondrial fusion [56]. Other studies indicate that 
starvation causes cell cycle arrest and affects mitochondrial 
fission  response  to  PKA-dependent Drp1  phosphorylation 
of Drp1 Ser637 [24, 58]. Drp1 is inactivated by phosphor-
ylation at Ser637 within the GTPase effector domain and 
activated by phosphorylation of the Ser618. The activation 
is made by the Cdk1/cyclin B complex and results in mito-
chondrial fragmentation [55]. This leads to elongation of 
mitochondria and an increase in density of cristae, which 
affects  the  efficiency  of ATP  production  [22, 24]. Such a 
reduction in ATP production arrests cells in the G1/S transi-
tion stage in Drosophila flies [51]. However, starvation can 
also protect mitochondria from autophagosomal degradation 
[22, 24]. During the G1/S gap mitochondria form a powerful 
network with and increased ATP output greater than at any 
other stage of the cell cycle [52]. This might be proof that 
Drp1 is linked to cell cycle regulation, and switching from 
cell cycle arrest to progression, and vice versa, is done via 
regulating mitochondrial activity. Mitochondrial fusion that 

in excessive mitochondrial fragmentation and deficiencies, 
it also decreases mitochondrial motility and shortens the 
length of the mitochondrion [47, 48]. Another study sug-
gested that tau is responsible for a mislocalization of Drp1, 
and so an disproportionate separation of the organelle [39].

Mitosis

Mitosis is considered as the most active stage of the cell 
cycle  to  have  an  unorganized  mitochondrial  network.  It 
was initially reported that a fusion of smaller mitochondria 
takes place just before cell division in order for the cell to 
be prepared to separate the total mitochondria pool equally 
between the two daughter cells [40]. In mitosis, position-
ing and redistribution of mitochondria between two newly 
formed cells is vital in order to proceed to cytokinesis [41, 
51]. However, most of the fusion processes of mitochon-
dria occur in the late telophase, and are controlled by mito-
fusins [43, 44]. A chance exists of lacking of up to 40 % of 
the mitochondrial DNA (mtDNA) due to an inappropriate 
segregation of the mtDNA to daughter cells during mito-
chondrial  fission  or  fusion.  However,  the  loss  is  lower  if 
the mitochondria are interconnected [52, 53]. After the cell 
entered interphase, mitochondria are observed as a tubular 
network and get clustered around the nucleus and on the cell 
periphery; however, the mitochondrial network gets disor-
ganized in metaphase. During much of mitosis, mitochon-
dria stay separated (punctuated) [46]. This could result from 
the Num1/Dnm1 complex helping the mother cell to retain 
the mitochondria for itself, or in the case of an absence of 
the complex, one newly formed cell keeps the entire mito-
chondrial mass for itself. However, it also has been shown 
that up to 20 % of this mitochondrial mass is in a highly 
fused state [13]. During this stage, the whole process gets 
stochastic and it is hard to predict the outcome.

Interphase

Most changes of the mitochondrial network occur through-
out the G1-G2 interphase period. It is known that the cell 
cycle can be arrested by different substance interference 
during the OXPHOS, ATP production, and cellular respi-
ration as well as by starvation at certain stages of the cell 
cycle. The energy requirement differs significantly through-
out the interphase because of the changes in the morphology 
of the mitochondrial network. This slows down mitochon-
drial activity, and favors networking of mitochondria and 
saving energy [47–49].

G1/S transition

In the G1/S transition period, mitochondrial shape and func-
tion can be affected [50]. Cyclin E, active throughout G1- and 
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no  clear  pattern  of  an  organized  mitochondrial  network 
was observed [47]. A loss of Drp1 induces mitochondrial 
hyperfusion and causes ATM-dependent G2/M arrest and 
aneuploidy, which are hallmarks of the giant cell formation 
[71]. Depletion of a Drp1 binding protein Fis1 is involved 
in cell cycle arrest at the G2/M checkpoint, meaning that 
Drp1 failed to attach to the mitochondrion and didn’t form a 
septum on the mitochondrion. Furthermore, a reconstitution 
of the Cdk1/cyclin B complex failed to restore mitotic entry 
in hFis1-depleted cells [72]. Another study has shown that 
in the G2/M checkpoint intermission after the mitochon-
drial network becomes hyperfused, cell undergoes caspase-
dependent cell death [73]. The giant cancer cell formation 
and significantly increased mitochondrial activity might be 
a result of drug treatment, or exposure to radiation [55, 78].
In  overall,  the  organized  in  G2-phase mitochondrial 

network becomes more fragmented as it nears the G2/M 
checkpoint and will stay in this state until end of mitosis. 
An  organized  interconnected  mitochondrial  network  is 
observed in both Gap phases and G1/S checkpoint, whereas 
in the S-phase, G2/M checkpoint and mitosis it becomes 
more fragmented. The main processes in mitochondrial 
dynamics are briefly summarized in Fig. 1.

Drp1 and cell cycle regulation

Since the discovery of Drp1, a mitochondrial fission protein, 
our understanding of the role of mitochondria in mitochon-
drial dynamics during cell cycling have changes drastically 
[76]. By forming a complex with Fis1, Drp1 separates the 
mitochondrion into two new mitochondria [77, 78]. The dis-
covery of the Drp1/Fis1 complex was a huge breakthrough 
in  understanding  how  mitochondrial  fission/fusion  works 
and how it is linked with the cell cycle and cytoskeleton. 
Drp1 is essential in Fis1 activation, which forms a complex 
of great importance in cell death activation and mitochon-
drial fission. Vice versa, where levels of mitofusins (Mfn1 
and Mfn2) decrease, both proteins are linked with apoptosis 
via a mitochondrial protein Bax [79]. These examples show 
a connection between apoptosis and mitophagy, and a link 
to microtubular involvement in mitochondrial distribution, 
biogenesis and mitophagy, since the cytoskeleton is tightly 
connected with the mitochondria, as it transports, supports, 
and distributes it in accordance with the needs of the cell 
[80].

Early mitosis was shown to be vital in determining mito-
chondrial morphology and networking. F-actin can block 
the translocation of Drp1 and so mitochondrial fission [81]. 
Throughout this period, Drp1 is linked with mitochondrial 
networking and cell proliferation. Under oxidative stress 
conditions phosphorylation of Ser579 in human Drp1 iso-
form 3 is mediated by protein kinase Cδ [82]. In early mitosis 
Cdk1/cyclin B complex, that is active throughout the period 

is associated with absence of growth factor and cell cycle 
arrest is followed by Drp1 inhibition [58]. During G1/S 
transition, mitochondria form a giant tubular mitochon-
drial network, whereas in S and G2/M the network becomes 
fragmented [63]. It was discovered that mitochondrial defi-
ciency blocks cells in G1/S transition. This intermission of 
the cell cycle strongly depends on cyclin E levels. A drop 
in ATP production forces the cell to arrest and keeps ATP 
levels enough for survival. A loss of cytochrome c oxidase 
increases AMP level, activates AMPK and p53, and triggers 
cyclin E degradation which results in G1/S cell cycle arrest 
[7]. Cyclin E overexpression relieves the block, so the cell 
can enter S-phase [58, 60], which also contributes to initia-
tion of DNA replication in S-phase [51]. Interestingly, that 
cyclin E activity correlates with mitochondrial fusion, as 
well as increase in Drp1 levels and formation of giant tubu-
lar mitochondrial networking [58].

The cell cycle regulator Cdk5 (cyclin-dependent kinase 
5) is required for mitochondrial movement [61]. Since Cdk5 
is involved in T-cell activation, a dysregulation of Cdk5 can 
lead to Alzheimer disease and multiple sclerosis [62]. Cdk5 
is highly active in postmitotic neurons and in many cancers, 
allowing tumors like medulloblastoma to evade immune 
elimination;  interferon-γ–induced PD-L1 up-regulation on 
medulloblastoma requires Cdk5, and disruption of Cdk5 
expression results in potent CD4+ T cell–mediated mouse 
tumor rejection [63]. Cdk5 is also required during autoph-
agy and a Cdk5-mediated phosphorylation of endophilin B1 
takes place in Parkinson’s disease [64]. Since Cdk5 reduces 
caldesmon activity, an actin regulatory protein, it has been 
implicated in invasive cancer appearance [65]. Cdk5 was 
shown  to  keep  an  actin  filament  reorganization  regulator 
WAVE1 (Wiskott-Aldrich syndrome protein family member 
1) phosphorylated, so that it stays inactive [66]. Activation 
of N-methyl-D-aspartic acid (NMDA) receptors is linked 
with downregulation of p35, a subunit of Cdk5. Cdk5 also 
recruits mitochondria to dendritic spines [72]. Expression of 
prohibitin, a protein interacting with Stoml2 and a possible 
chaperone-like protein for respiration chain proteins and 
mitochondrial morphology and function regulator, increases 
threefold upon entry into G1 phase compared to other phases 
of the cell cycle and inhibits DNA synthesis [73].

G2/M transition

Unlike during G1/S transition, mitochondria in G2/M tran-
sition form a highly fragmented network [63]. During cell 
cycle arrest in G2/M phase after vinblastine treatment, a 
G2/M-specific  anticancer  agent,  mitochondria  of  murine 
lymphoma cells have been shown to remain functional, 
even  the  significantly  enlarged  ones.  Rhodamine-123  test 
has shown a correlation between cell cycle arrest, increased 
mitochondrial activity and cellular respiration. However, 
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RIP1). Aurora A kinase phosphorylates Ser 194 of RALA 
and relocates it to the mitochondrion. Under such condi-
tions RALBP1 and Drp1 accumulate on the mitochondrial 
outer membrane, so that the fission mechanism is ready to 
be launched. RALBP1 is associated with the Cdk1/cyclin 
B complex and phosphorylates Drp1 on Ser616. However, 
negative changes in RALA or RALBP1 activity results 
in  loss of mitochondrial fission at  early mitosis,  improper 
mitochondrial segregation during cytokinesis and a drop 
in ATP activity. Mitochondria fission starts when aurora A 
kinase and Cdk1/cyclin B link RALA to RALBP1, which 
might be the turning point in Drp1 activation and, subse-
quently, mitochondrial fragmentation/fission. As a result an 
appropriate mitochondrial functioning and normal distribu-
tion of mitochondria to daughter cells can be fulfilled by the 
mother cell. Fragmentation of the mitochondrial network in 
mitosis was made possible due to Drp1 localization around 
the mitochondrial axis. This mechanism ensures that proper 
segregation of mitochondria takes place between the newly 

of early S-phase to late metaphase of mitosis, phosphory-
lates Ser616 in human Drp1 isoform 1 [83]. This contributes 
to mitochondrial  fission  and  impairment  after Ser579  and 
Ser616 phosphorylation by protein kinase Cδ, and can lead 
to mitochondrial  fission  promotion,  which  forces  the  cell 
to distribute mitochondria to daughter cells in the case of 
Ser616 phosphorylation by Cdk1/cyclin B complex [86, 87]. 
Drp1 strongly depends upon Cdk1/cyclin B complex. Drp1 
gets activated through Cdk1/cyclin B phosphorylation of 
Ser618. Such interaction contributes to mitochondrial frag-
mentation and is linked with programmed cell death [61, 88, 
89]. Another study showed that Drp1 gets phosphorylated 
and activated by cAMP-dependent protein kinase (PKA) 
at Ser637. This event affects the morphology of the mito-
chondria, mostly by affecting the cristae. By releasing Drp1 
from mitochondria, cell viability and mitochondria network 
formation and extension are promoted [85]. This mecha-
nism is mediated by a mitotic kinase Aurora A, small Ras-
like GTPase RALA and its effector protein RALBP1 (aka 

Fig. 1  Cell  cycle  regulation  by fission/fusion machinery. Drp1 was 
shown to be vital in organizing the mitochondrial network during cell 
cycle arresting and reentering the cell cycle. Most mitochondria in 
mitosis are both interconnected and fragmented, whereas during longer 

cell cycle arrest mitochondria form organized giant tubular networks. 
At stationary phase mitochondria are shorter and rounder, whereas a 
tubular form can be observed during their logarithmic growth
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overexpression, there is little chance for mitophagy to take 
place [87, 90]. For the recent data on the role of mentioned 
proteins in neurodegeneration see the review of Bertholet 
et al. [91].

In HeLa cells, as well as other tumor cell lines, mitochon-
dria can be not only of an independent morphological and 
functional  state,  but  also  of  different mitochondrial  ∆Ψm, 
rate of permeability transition pore activation and Ca2+ 
localization. Eventually fusion stops or inhibits formation of 
pores, whereas fission activates the process of pore forma-
tion [92, 93]. Asymmetric mitochondrial division into two 
daughter mitochondria in normal and cancer cells is often a 
result of a failure in an appropriate Drp1-dependent fission 
[94]. After an unbalanced mitochondrial fission, one of the 
newly formed mitochondria has an increased electrochemi-
cal potential, whereas the other one has a low membrane 
potential. Hence, little is known about the viability of the 
weaker mitochondrion [95]. A disruption in Fcj1 function-
ing (core protein in MINOS/MitOS complex) is vital not 
only for proper  inner organization of mitochondria, but  to 
reduce mitochondrial outer membrane potential (MOMP) 
and  import  efficiency  of  proteins  transported  into/across 
the inner mitochondrial membrane via TIM23 complex 
[96]. This component of the inner mitochondrial membrane 
mediates translocation of transit peptide-containing proteins 
across its periphery [97]. All these peculiarities result in 
poor mitochondrial separation and may interrupt the mito-
chondrial network, which might lead to failure in apoptosis 
and initiation of carcinogenesis.

Conclusion

A normal balance in fission/fusion of mitochondria is vital 
in cell cycle progression. To be in a functional state a cell 
needs healthy young mitochondria. Mitochondria dynam-
ics are studies in both rapidly dividing prokaryotes, such 
as yeast, and more complex human cells. The dynamics are 
regulated by two essential processes in mitochondria—fis-
sion and fusion. The cell can regulate the number of mito-
chondria by fusing them, separating via fission into daughter 
mitochondria and even eliminating them, when the organ-
elle is damaged and can’t be repaired. Activity, distribution, 
number, MOMP as well as other parameters of mitochon-
dria largely depend on the cytoskeletal proteins, which dis-
tribute mitochondria throughout the cell cycle progression, 
and the type of tissue (for instance, neurons require higher 
mitochondrial activity comparing to other types of cells). 
Overall the following patterns can be observed: (1) In more 
active phases of the cell cycle (such as mitosis) mitochon-
drial networks are of an interconnected tubular form, pre-
dominantly mitochondria are of an elongated form. (2) At 
G1 and G2 mitochondria are interconnected and increased in 

born daughter cells [86, 87]. It was also found that such 
action requires preliminary phosphorylation of Ser616 on 
Drp1 by Cdk1/cyclin B complex [55].
Summarizing, mitochondrial networking is of a specific 

pattern at different stages of the cell cycle. A hyperfusion 
is likely associated with a higher demand in energy and 
most clearly is observed in G1/S transition state, G1- and 
G2-phase. However, in most part of mitosis, G2/M transi-
tion and S-phase it appears more fragmented. The pattern 
can vary due to different type of cells, neighbouring cells, 
pathology and other factors.

Importance of mitochondrial fission/fusion in 
mitochondrial membrane potential regulation 
throughout the cell cycle

In order to progress from one stage of the cell’s cycle to 
another a cell needs to meet the required energy state. Mito-
chondrion changes constantly due to ion exchange through-
out the cell cycle. A low ATP output and mitochondrial ∆Ψm 
can interrupt cell cycle progression, by driving the cell cycle 
toward arrest. Increased membrane potential is observed at 
the G1 and S stages of the cell cycle due to increased needs 
of ATP as the main form of energy [52]. To enter the fusion 
process  mitochondria  need  a  certain  mitochondrial  ∆Ψm, 
which is considered as an indicator of selectivity for nor-
mal mitochondria to fuse together, whereas damaged ones 
get eliminated by fusing with healthy or digested ones. The 
process of fusion is simultaneous, but not for all of the mito-
chondria. The whole fusion process of mitochondria can be 
considered as a quality control stage of the entire mitochon-
drial network. Fission of a mitochondrion can yield a depo-
larized  daughter  mitochondria  and  a  hyperpolarized  one, 
which inherits the majority of mother cell mitochondria. 
However,  the  depolarized  daughter  mitochondrion  is  less 
likely to undergo fusion due to reduced OPA1 level, a pro-
tein involved in cristae junctions [88]. Such mitochondria 
are highly probable to be autophagocytosed due to several 
impairments, including low mitochondrial ∆Ψm. The regions 
that no longer are capable of fusing will separate and might 
undergo mitophagy [89]. A damaged fragment of the mito-
chondria can be restored and fused again to the network. 
However, the more it is damaged, the smaller the chance 
of a recovery since the fusion process is mitochondrial 
∆Ψm dependent [86]. Depolarization  of  the mitochondrial 
membrane may restore the membrane potential to maintain 
the  fission/fusion  equilibrium.  The  mitochondria  become 
more fragmented and clustered on the periphery of the cell. 
Depolarized or damaged mitochondria  frequently undergo 
autophagy. However, Drp1 is required for such clearance, 
and,  since mitochondrial  fission  is  associated with  cristae 
structure protein OPA1 (regulated by Oma1 protease cleav-
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number. However, the tendency is a decrease of mitofusins 
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happens while the cell is at arrest, since it is an energy con-
suming period of the cell cycle (S-phase and mitosis). In 
cancer cells, this pattern may be changed due to inconsistent 
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