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Abstract

Supply chain management (SCM) is now recognised as one of the best means by which enterprises can make instant
improvements to their business strategies and operations. SCM, however, is generally based on the simple theory of
constraints (TOC) concept, and is not always concerned with Pareto optimal solutions in product distribution. Since
market price systems constitute a well-understood class of mechanisms that under certain conditions provide effective
decentralisation of decision making with minimal communication overhead, we propose SCM based on market-oriented
programming in this paper. In market-oriented programming, we take a metaphor of economy computing multi-agent
behaviour literally, and directly implement the distributed computation as a market price system. We define the agent
activities to negotiate the tradeoffs of acquiring different resources, so as to realise the multi-echelon optimisation.
Several simulation experiments on the supply chain model with multi-echelon structure clarify the market dynamics that
emerge through the agent negotiations. It is confirmed that careful constructions of the decision process according to
economic principles can lead to Pareto optimal resource allocations in SCM, and the behaviour of the system can be
analysed in economic terms. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction be attained by sincere commitment from each of the
partner to use what is proposed. Sharing of in-
formation is central to the optimisation of resource

allocation (i.e., product distribution) in the supply

During the last few years the focus has shifted
from factory level to enterprise level due to the

increasing global presence of the companies. Sup-
ply chain management (SCM) is now recognised as
one of the best means by which enterprises can
make instant improvements to their business strat-
egies [1]. Manufacturers and suppliers have to de-
cide if they would like to form close relationships
not to have partial solutions. Real benefits can only
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chain. SCM is generally based on the simple theory
of constraints (TOC) with throughput-based cost-
ing method, and conducts effective strategies in the
enterprise level by DBR (Drum, Buffer and Lope)
concept [2].

The management of physical flow of products
amongst the nodes of the supply chain comes under
the intensive study of effective operation in SCM.
Since supply chains consist of several layers of
business units, resource allocation is a quite impor-
tant operational criterion at workshop level in
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SCM. As the number of potential business units in
the supply chain increases, an effective manage-
ment on product distribution (i.e., multi-echelon
optimisation) plays a more important role in dy-
namic environment. Current SCM concept does
not deal with the problem, because TOC does not
handle combinatorial optimisation problem in the
resource allocation.

Recently the use of multi-agent system in large-
sized complex system is increasing [3]. The multi-
agent paradigm has several characteristics, such
as autonomy, pro-activeness, social ability, and
emergence. In this paradigm, a global goal of the
whole system is achieved as the aggregation of their
local objectives with their negotiation. In supply
chain networks, ecach business unit behaves inde-
pendently and autonomously with simple goals of
achieving local optimum. The situation is quite
similar to the distributed decision making mecha-
nism in multi-agent paradigm, and it is natural to
model supply chain networks through multi-agent
programming. In such an environment, each agent
represents the independent business unit with con-
flicting and competing individual requirements,
and may possess localised information relevant to
their utilities. To recognise this independence,
we treat the business units as agents, allowing each
of them to decide autonomously how to deploy
resources under their control in service of their
interests.

Within this model, a distributed SCM can be
analysed according to the following properties:

- Self-interest agents can make effective decisions
with local information, without knowing the pri-
vate information and strategies of other agents.
- The method requires minimal communication
overhead.

- Solutions do not waste resources. If there is
some way to make some agent better off without
harming others, it should be done. A solution
that cannot be improved in this way is called
Pareto optimal.

Assuming that a resource allocation problem in
SCM must be decentralised in considering a practi-
cal application, market concept can provide several
advantages:

(i) Markets are naturally distributed and agents
make their own decisions about how to bid
based on the prices and their own utilities of
the goods.

(i) Communication is limited to the exchange of
bids and process between agents and the mar-
ket mechanism. In particular settings, it can be
shown that price systems minimise the dimen-
sionality of messages required to determine
Pareto optimal allocation.

(iii) Since agent must back their representations
with exchange offers, some mechanism can eli-
cit the information necessary to achieve Pareto
and system optima in some well-categorised
situations.

Market-oriented programming is a multi-agent-
based concept to facilitate distributed problem
solving. In the market-oriented programming, we
take the metaphor of an economy computing
multi-agent behaviour literally, and directly imple-
ment the distributed computation as a market price
system. In the market-oriented programming ap-
proach to distributed problem solving, the resource
allocation for a set of computational agents is de-
rived by computing competitive market of an artifi-
cial economy [4-6].

In this paper, we formulate supply chain model
as a discrete resource allocation problem with sup-
ply/demand agents, and demonstrate the applica-
bility of economic analysis to this framework by
simulation experiments. Finally, we prove that the
market mechanism can provide several advantages
on resource allocation in SCM. Needless to say, the
term ‘resource allocation’ in this paper corresponds
to ‘product distribution’ at workshop level in prac-
tical SCM.

2. Market-oriented programming
2.1. Market-based approach

In economics, the concept of a set of interrelated
goods in balance is called general equilibrium. The
general equilibrium theory guarantees a Pareto op-
timal solution at competitive equilibrium in perfect
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competitive market [7]. The connection between
computation and general equilibrium is not all
foreign to economists, who often appeal to the
metaphor of market systems computing the activ-
ities of the agents involved [8].

The theory of general equilibrium provides the
foundation for a general approach to the construc-
tion of distributed planning system based on price
mechanism. In this approach, the constituent
planning agents are regarded as suppliers and de-
manders in an artificial economy. Their individual
activities are defined in terms of production and
consumption of resources. Interactions amongst
agents are cast as exchanges, the terms of which are
mediated by the underlying economic mechanism,
or protocol.

2.2. Bidding mechanism in market-oriented
programming

Market-oriented programming is the general ap-
proach of deriving solutions to distributed resource
allocation problems by computing the competitive
equilibrium of an artificial economy [4,5]. It in-
volves an iterative adjustment of prices based on
the reactions of the agent in the market. Bidding
mechanism in market-oriented programming is
shown in Fig. 1.

Let P,(s) be the price of resource s at time ¢. f,ms
and g,ns represent the supply function [7] (defined
in 3.5) of supplier m on resource s at time ¢ and the
demand function [7] (defined in 3.5) of demander
n on resource s at time ¢, respectively.
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Fig. 1. Bidding mechanism.

The bidding mechanism computes an equilib-
rium price in each separate market. It involves an
iterative adjustment of prices based on reactions of
agents in the market. Agent s submits supply and
demand functions (f;ms and g,ns) and the auction
adjusts individual prices to clear, rather than ad-
justing the entire price vector by some increment.
The mechanism associates an auction with each
distinct resource. Agents act in the market by sub-
mitting bids to auctions. In this paper bids specify
a correspondence between prices and quantities of
the resource that the agent offers to demand or
supply as a basic study. Given bids from all inter-
ested agents, the auction derives a market-clearing
price.

Each agent maintains an agenda of bid tasks,
specifying in which it must update its bid or compute
a new one. The bidding process is highly distributed,
in that each agent need communicate directly only
with the auctions for the resources of interest. Each
of these interaction concerns only a single resource;
the auctions never coordinate with each other.
Agents need not negotiate directly with other agents,
nor even know of each other’s existence.

As new bids are received at the auctions, the
previously computed clearing price becomes obsol-
ete. Periodically, each auction computes a new clear-
ing price if any new or updated bids have been
received, and posts it on the tote board. When
a price is updated, this may invalidate some of an
agent’s outstanding bids, since these were computed
under the assumption that price for remaining
resources were fixed at previous value. On finding
out about a price change, an agent arguments its
task agenda to include the potentially affected bids.

At all times, the market-oriented mechanism
maintains a vector of going prices and quantities
that would be exchanged at those prices. While the
agents have nonempty bid agendas or the auctions
new bids, some or all resources may be in disequi-
librium. When all auctions clear and all agendas
are exhausted, however, the economy is in competi-
tive equilibrium.

2.3. Market-oriented programming and SCM

Agent activities in terms of products required
and supplied are defined so as to reduce an agent’s
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decision problem to evaluate the tradeoffs of ac-
quiring different products in market-oriented pro-
gramming. These tradeoffs are represented in
market prices, which define common scale of value
across the various products. The problem for de-
signers of computational markets is to specify
the strategy by which agent interactions determine
prices [4].

Obviously supply chain model is well structured
for market-oriented programming, and that means
the proposed concept takes advantage of the the-
ory. A Pareto optimal solution, which is conducted
by microeconomics, is attainable in resource allo-
cation problem in SCM.

In the next section, we define several functions
that formulate agent’s strategy for the resource
allocation problem in SCM. Budget constraint of
each agent is also considered in our definitions for
practical use.

3. Agent definition
3.1. Preliminaries

Several variables to formulate agent utilities in
this paper are defined as follows:

Xy Input of resource i in agent k&

Vij Yield of resource j in agent k

D1 Purchase price of resource i per unit

P; Sales price of resource i per unit

E; Profit function of agent k£

Cy Cost of agent k£

Sk Sales of agent &

maxCr  Budget of agent k&

Ii,j) (=1): Index of production function from
resource i to resource j

F,,  Ith production function in agent k

X, Input resource amount into production
function fy,

Y.,  Output resource amount from production

function f,
E,  Profit by production function fj;
Cii Cost by production function f;

Skl Sales by production function fy,

3.2. Production function

Suppose supply agent £ has a production func-
tion f, described in Eq. (1).

Yi = filXe), (1)

where X; and Y, denote a set of input resources
and yield resources in agent k described in Egs. (2)
and (3), respectively:

Xy ={Xk1a~~aka}, (2

Y, = {ykl:"'aykn}' (3)

In this paper, we adopt Cobb-Douglas function
[7] as a production function described in Eq. (4).
Since Cobb-Douglas function handles economical
scale in the market by index constant b, and in
0 < b <1 the production function is defined as
a concave down function, in other words, a dimin-
ishing returns function. If production function is
defined as concave down, market prices are estab-
lished at a predictable level in the general equilib-
rium theory.

y=ax" (where0 <a,0<b<1). (4)

Then the production function f;; of agent k for
input-output resource set I(i,j) = [ is given by

Vi = fa(Xi) = au Xy, (5)
where x;; and y,; denote the amount of input re-

source i for f;; and the amount of yield resource j for
fu» respectively. Then x;; and y,; are defined as

Xki = Z Xki(i,j)» (6)
J

Yij = z Vi, jy- (7)

3.3. Profit function

Suppose a set of single unit purchase prices for
a resource set {Xyi,...,Xgm} 1S {P1,---»Pm} and
a set of single unit sales prices for a resource set
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{Vkts s Yin} 18 {Py, ..., P,}, then the total produc-
tion cost C; of agent k is defined as

Crigi,j) = PiXki» (8)
Cy = Z Cki» )
1

and the total sales S of agent & is defined as

Skii.j) = Pjykl’ (10)
Sk = Z Ski- (11)
1

Then the profit function E; of agent k is finally
acquired as

Ewy = sy — cu, (12)

Ek =zEkl' (13)

3.4. Profit maximise theorem under budget
constraint

In this paper, budget constraint of each agent is
considered so as to realise our market model. Sup-
pose the maximum budget of agent & is ,,, Cy, then
we have

Cy = Z Crt < max G (14)
1

and agent k should behave to maximise its profit
E, autonomously.

The basic principle of agents is to maximise their
profits under the budget constraints. Their activ-
ities should follow the newly proposed theorem,
named Profit Maximise Theorem, shown below.

Theorem. Profit function E, of agent k is maximised
by minimised ry, which satisfies the following condi-
tions:

°F
Ve 25 (e = 0) A Cr < man i (15)

OCy

subject to

1, is differentiable in any x € X,
| O

O0Xp X =x OXpy

(16)
Vi:

xk,:x+A.
We have the following Eq. (17) by Egs. (8), (10),
(12), (13):

0E, 0Ey @

5Ckl @Ckl

(S — ¢ia)
i, jy

zg{wmwm—ml
Ckl

B pteusp — 1. (17)
p.

i

The proof of the theorem is given in Appendix A.

3.5. Demand/supply function definitions

Since Cobb-Douglas function shown in (4) is
differentiable and

U

= aklbklxb“71 > ak,bkl(x + A)bk171 > 0, (18)
0Xpy

then the proposed product function (5) perfectly
satisfies the conditions (16). Demand function x;,
which maximises the agent’s profit, is obtained by
the Profit Maximise Theorem as follows:

N 0cy N 0ck

ER [Pja(ca/p)™ — ¢l
Crii.j)

= aklbkleczlililpiib“ -1

= aubuP;p; Tt —1=r. (19)
Then, we have
X,y = [pi(re + 1)/akzbksz:|b“/b”_l- (20

Supply function y,;, which maximises the profit,
is also obtained by Egs. (5), (20) as follows:

Viagj) = Galpi(re + 1)/akzbkzpj]b”/bk'_l- (21)

We denote a concrete meaning of the Profit
Maximise Theorem. It is obvious to maximise the
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production function f; at r, =0 by (19), because
the function is defined as concave down type. Then
agent £ has the maximum profit at r, =0, if it
satisfies the budget constraint (C < 1,.,Cy). How-
ever, if agent k& breaks the budget constraint
(Ck > maxCx), then it has to reduce some amount of
input resource X;; to satisfy the constraint. The
theorem conducts it should adjust the amount of
input resources to have the equivalent value of
0Ey;/0cyy in all the production function fy;. If the
value r, increases, the amount of the demanded
resources decreases, and that leads to reduce the
cost C,. Then the minimised r, in Cy < .. C) leads
to maximise the profit function E,.

3.6. Agent utility: Price elasticity

Generally the influence of demand factors into
the demand is called ‘elasticity’ in economics. Price
elasticity, described in Eq. (22), is one of the major
factors that control economic dynamics.

|(dx/dp) x (p/x). (22)

In our market model, price elasticity, which char-
acterises the demand function, represents agent
utility for purchasing resources:

(Price Elasticity)y,
= |(dxy/dp;) X (pi/x1) = 1/(by — 1)].

Agent demand utility depends on by;, and that
means agent demand activity affects more, as the
price elasticity has a greater value in 0 <b < 1
(refer (4)).

Suppose R, = r, + 1, then we have R, elasticity
as follows:

[(dxi /dRy) X (Rye/x)l = [1/(b — 1) (24)

From the comparison between (23) and (24), the
reduction rate of input resource x;; in the budget
constraint depends on by;. Additionally, budget
change affects more to the amount of demand, as
the value by, increases.

3.7. Market-oriented programming in SCM model

In market-oriented programming, we take the
metaphor of an economy computing multi-agent

behaviour literally, and directly implement the dis-
tributed computation as a market price system. The
algorithm of the proposed market-oriented pro-
gramming in SCM is shown as follows:

Step 1: Set initial price p; for all the resources.

Step 2: Agent k calculates x;; by (20) assumed
re =0, then computes C, by (8), (9). If
Ci > maxCr then go to Step 3, otherwise go
to Step 4.

Step 3: Modify r; followed by the Profit Maximise
Theorem (Reduce ry to satisfy C, = ., Cy)-

Step 4: Define current demand/supply functions
with 7, by (20), (21).

Step 5: Agent k sends the acquired demand/supply
function as bids into the market to indicate
its willingness to buy/sell resources.

Step 6: Market mechanism calculates the balanced
prices of all resources in the competitive
market.

Step 7. If all the balanced prices are sufficiently
converged, then go to Step 8, otherwise go
to Step 2.

Step 8: Allocate all the resources under the acquired
equilibrium prices.

4. Experimental results
4.1. Experimental model

A basic SCM model shown in Fig. 2 is prepared
to investigate the validity of the proposed approach
by computer simulation. The model has a series of
three-layered market structure with two-layered
agent groups. This model comprises the three types
of agent in each layer and three types of good. The
interconnectedness of agents and goods defines the
market configuration. Comparative analysis of the
three market structures reveals the qualitatively
distinct economic and computational behaviours
realised by the proposed configurations.

Each agent has production functions to trans-
form the resource from market (M[{][ j]) to market
(MTi + 1][j]), and the parameters are defined as
alj1, b[j] in (4). The parameters in each agent
group are described in Table 1. The parameter b is
set in common to each type of the goods, because
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Fig. 2. SCM model.

this parameter is deeply concerned with the price
elasticity of the goods shown in (23). In this figure,
the outside demand function and the outside
supply function, which correspond to sink and
source in the experimental model, are defined
respectively as

x; =opl (4 > 0,8, < — 1), (25)
yi = o P (oj >0,8; > 0), (26)
Table 1

Production function parameters of agents

Table 2
Outside production function parameters of agents

«[0] pLO]  of1] BL1]  of2] B[2]

Supply function 100 1.5 100 1.5 100 1.5
Demand function 100 —2 100 -2 100 -2

and each parameter in (25), (26) is described in
Table 2.

4.2. Market dynamism and price elasticity

Dynamical changes of (i) the amount of dealing
goods in supply and demand, (ii) the prices of the
goods, at each layer in the market structure are
shown in Figs. 3 and 4, respectively.

First of all, it is obvious that both the
amount of dealings and the prices are converged
into equilibrium in these figures. Since our
methodology is perfectly endorsed by ‘general
equilibrium theory’ in the competitive market,
we can get a Pareto optimal solution in the
equilibrium. That means the goods distribution
policy followed by the acquired solutions, i.e.,
the amounts and the prices, are Pareto optimal
in the entire market. Efficient SCM with
market mechanism are attainable by the proposed
approach.

Secondly, it is observed that the number of iter-
ations required to reach equilibrium seems to rise
with the price elasticity. For example, Market
[0][0] with 0.7 in price elasticity takes longer time
to converge than Market [0][2] with 0.3 in price
elasticity in Fig. 3(a). We attribute this to the

a[0] B[O] a[1] 1] a[2] B[2] Budget
Agent[0][0] 5 0.7 5 0.5 5 0.3 10
Agent[0][1] 3 0.7 8 0.5 3 0.3 10
Agent[0][2] 7 0.7 7 0.5 7 0.3 4
Agent[1][0] 10 0.3 10 0.6 10 0.4 50
Agent[1][1] 4 0.3 4 0.6 4 04 100
Agent[1][2] 8 0.3 4 0.6 4 0.4 6
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Fig. 3. Supply and demand oscillation.
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natural  characteristic  of price elasticity
formulated in (24), and the experimental values
completely agree with our prior estimations de-
scribed in 3.6.

Finally, it takes longer time to converge into the
equilibrium at the market in the middle layer,
Market [1][..], compared with the other markets,
Market [0][..] and Market [2][..]. This observa-
tion is explained by the following reason. We ap-
plied the functions described in (25) and (26) as
outside functions in Market [2][..] and Market
[O][..], and they are defined as static functions in
the experimental model. On the other hand, Mar-
ket [1][..] is operated by supply and demand
agents with dynamic utility functions. As a result,
Market [1][..] behaves dynamically and is more
sensitive to trading situation in the competitive
market.

4.3. Market equilibrium

The market equilibrium dynamism should be
explained by our market definition. The compari-
son between Figs. 3(a) and 4(a) shows us that the
good with larger trading amount has higher price
in the equilibrium in Market [O][..]. That is
because we defined the function shown in (26)
as outside supply function, which characterises
positive correlation between the dealing amount
and the price. On the other hand, the good with
larger trading amount has lower price in the equi-
librium in Market [2][..] shown in Figs. 3(c) and
4(c). The outside demand function defined in (25),
which has negative correlation between the dealing
amount and the price, influences the equilibrium.
These experimental values are perfectly explicable
by our market formulation. The middle layered
market, Market [1][..] has more complex dyna-
mism in Figs. 3(b) and 4(b). The dynamism is
emerged and explained by the agent utility para-
meters shown in Table 1. In this case, Market
[1][1] is high both on the dealing amount and on
the price in the equilibrium. A set of Agent [0][..]
has to offer higher sales price to increase their
profit, because b[1] in Agent [1][..] ( = 0.6) is the
highest amongst b[..] in the second layer, but b[ 1]
in Agent [0][..] (= 0.5) is lower than b[0] in the
first layer.

It has been clarified that all the experimental
values in the complex SCM model are perfectly
explicable by our market formulation.

4.4. Experimental summary

We have acquired several points to validate the
proposed methodology:

- A Pareto optimal solution is attainable by the
equilibration process.

— The equilibration process scales with price elas-
ticity of trading goods.

— Outside supply and demand function reduce
oscillation in the equilibration process.

- The dynamism in the equilibrium highly de-
pends on the utility functions of agents.

The experimental results agree with the theoret-
ical trends of perfect competitive market in micro-
economics. It is obvious that each market is
perfectly competitive and holds market mechanism
in general equilibrium.

5. Conclusions

In this paper we proposed a SCM with market
economics. We formulated SCM as a distributed
resource allocation system, based on general equi-
librium theory and competitive mechanism. The
approach works by deriving the competitive equi-
librium corresponding to a particular configuration
of agents and markets. After defining production
functions, we introduced budget constraint for
practical use and a newly proposed Profit Maxi-
mise Theorem as an agent strategy. It has been
confirmed by simulation experiments that the care-
ful constructions of the decision process according
to economic principles can lead to efficient resource
allocations in SCM, and the behaviour of the sys-
tem can be analysed in economic terms.

The contribution of the paper lies in the idea of
SCM based on market-oriented programming, an
algorithm for distributed computation of competi-
tive equilibria of computational economics, and an
initial illustration of the approach on a simple
supply chain model. Effective SCM in global envi-
ronment is expected by this research.
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Appendix A

Theorem. Profit function E, of agent k is maximised
by minimised ry, which satisfies the following condi-
tions:

OF,
5ckl

Vl: =T (rk > 0) N Ck < maka. (Al)

Proof. Note that

S _ B S _ )
0xy  Ociy 0xpy 0cu

then

0 0

ﬂ > ﬂ in any positive value A.
OCki|ey=c  OCki|ey=c+a

(A.3)
Also, note that

Ey = ijkl(xkl) — PiX = Pjﬁcl(ckl/pi) —cus (A4

then E,, is regarded as concave down by (A.3). Ey; is
maximised with the condition (A.5):

J0E
vi: —£ =0. (A.5)

dc

Let C’, denote total expense in (A.4) and if
C'; < max Cx then the maximum profit is given with
(A.5). Otherwise the maximum profit is not given
with (A.5) due to the budget constraint.

If C'y > 4axCk, agent k must consider to increase
Ci by Ac , and reduce C;; by Ac shown in (A.6),
(A.7).

OE P; ,

6—,k =—fallca +Ac)] —1=rqy, (A6)
Ckl|cu=c+Ac  Pi

0E P, .,

a,—k = —hf wlew —A)] =1 =ry, (A7)
Crr cur =c—Ac g

then we obtain that r; < r, < ry from (A.3).

Let AE,;; and AE,; denote the increased profit in
fu and the diminished profit in f;;, respectively,
then

AEkl = OCAC (I”kl <ua< Vk),
AEkl/ = ﬁAC (Vk < ﬁ < rkl/).

It is obtained that AE,; < AE,; from (A.8), and
that means the diminished profit is greater than the
increased profit in any Ac.

Therefore, the profit function E, of agent k is
maximised with the condition
JE,
dc

(A.8)

Vl: =Ty (Vk 2 0) in Ck < maxck. (A9)

Finally, r, is minimised with the condition (A.9),
since the profit function E; is concave down. This
completes the proof.
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