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A B S T R A C T

The environmental costs and energy constraints have become emerging issues for the future
development of Machine Learning (ML) and Artificial Intelligence (AI). So far, the discussion on
environmental impacts of ML/AI lacks a perspective reaching beyond quantitative measurements
of the energy-related research costs. Building on the foundations laid down by Schwartz et al.
(2019) in the GreenAI initiative, our argument considers two interlinked phenomena, the gra-
tuitous generalisation capability and the future where ML/AI performs the majority of quanti-
fiable inductive inferences. The gratuitous generalisation capability refers to a discrepancy be-
tween the cognitive demands of a task to be accomplished and the performance (accuracy) of a
used ML/AI model. If the latter exceeds the former because the model was optimised to achieve
the best possible accuracy, it becomes inefficient and its operation harmful to the environment.
The future dominated by the non-anthropic induction describes a use of ML/AI so all-pervasive
that most of the inductive inferences become furnished by ML/AI generalisations. The paper
argues that the present debate deserves an expansion connecting the environmental costs of
research and ineffective ML/AI uses (the issue of gratuitous generalisation capability) with the
(near) future marked by the all-pervasive Human-Artificial Intelligence Nexus.

1. Introduction

Conceived as a scholarly discipline, ML seeks to develop ‘tools-for-optimal-action’. Given a task and evidence that can facilitate its
mastering, the ‘tool-for-optimal-action’ earns its rank by being able to generalise. Such a tool then supports inferences which can
generalise beyond the evidence (training data), i.e. can run inferences on new samples, provided that these come from the same, or a
sufficiently similar, probability distribution as the evidence (training data). The discipline has a twofold epistemic aim. First, its
theoretical purview, established by statistical learning theory, involves formal assumptions about the learning that leads to gen-
eralisations (Kawaguchi, Kaelbling, & Bengio, 2019; Vapnik, 1995). Second, from the empirical viewpoint, the discipline seeks to
improve the accuracy of inferences that furnish the acquired generalisations. At the moment, the cross-fertilisation between the two
sub goals seems to be rather recalcitrant creating the following asymmetry. Although investing heavily in the theoretical research
(e.g. cf. Arjovsky, Bottou, Gulrajani, & Lopez-Paz, 2019; Bartlett, Foster, & Telgarsky, 2017; Kawaguchi et al., 2019; Neyshabur,
Bhojanapalli, McAllester, & Srebro, 2017; Zhang, Bengio, Hardt, Recht, & Vinyals, 2017), the field remains dominated by the second
sub goal. As strong empirical results outpaced mature theoretical understanding, task-specific, accuracy-tracking leaderboards be-
came the go-to measure for assessing the field’s epistemic progress.

The emphasis put on a single objective – accuracy – inspires a naïve idea that leaderboards are like ladders. The higher the rung,
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the closer we are to alleviating our cognitive burden by employing almost perfect ‘tools-for-optimal-action’ to carry out all sorts of
tasks. If we construe the epistemic aim of ML as understanding generalisations, incentivising leaderboards produces troubles for the
discipline itself and, quite strikingly, for the environment as well. The issue concerns the cost of computational resources that enable
climbing to ever higher positions on the leaderboards. In scenarios where theoretical understanding lags behind empirical results, a
new state-of-the-art (SOTA) usually emerges from trial and error experimentations often producing quite arbitrary heuristics. Faced
with the theoretical lacuna, practitioners confront the temptation of post-hoc speculations that might assume the role usually played
by theoretical explanations (cf. Lipton & Steinhardt, 2019). When occurring alongside (accidental) misattributions of the sources of
empirical gains, f.e. reporting improvements from neural architecture changes when, in reality, they stem from hyperparameter
tuning (ibid.), the following might ensue. Instead of achieving the epistemic aim of understanding generalisations, leaderboards
might merely encourage post-hoc hypotheses fitted to the results of quite arbitrary heuristics. The incredibly fast pace of the lea-
derboards climbs, natural language processing (NLP) is among the best of present examples (cf. Strubell, Ganesh, & McCallum, 2019
for an estimation of the SOTA NLP’s environmental costs), makes such bad practices a siren song, which could considerably hamper
the discipline’s twofold epistemic goal.

2. The future shape of human-artificial intelligence nexus and its environmental costs

ML of generalisations pursues minimisation of empirical risk that should guarantee accurate inferences regarding the task at hand.
Generalisation learning thus seeks to minimise the inductive risk associated with the task. From the body of theoretical approaches to
induction, Norton’s material theory (2003), positing that inductive inferences are grounded in local facts holding in particular
domains Norton (2003), shows a potential to illuminate the future shape of Human-Artificial Intelligence Nexus. It is plausible to
argue that a successful ML of a generalisation produces an inductive schema and minimises its risk by tethering it to the local facts
found in the training data. As per Norton, successful ML might be thus epistemologically explained and justified by favouring a
myriad of local inductive schemas over a few elusive global (universal) ones.

Regardless of whether concerning human or machine learning of generalisations, any minimisation of empirical risk by way of
localising the inductive schema involves environmental costs. It can be argued that ML experiments achieving generalisations create
local inductive schemas underwritten by local facts (from the evidence, i.e. training data), which enable the minimisation of em-
pirical risk. Similarly, for humans, as argued by Norton (2003), there are no universal inductive schemas and inductive inferences
hold only in particular domains, being underwritten by local facts. A wider and deeper apprehension of local facts extends the
cognitive reach of humans as well as of machines. The crucial distinction is that humans, due to the evolutionary pressures, remain
frugal learners compared to the sample inefficient ML (e.g. cf. the recent OpenAI Five [OpenAI, 2019] experiment that required
45,000 human years of training to defeat the best human players of the Dota 2 computer game).

Arguably, it’s not an exaggeration to posit that humanity’s epistemic endeavour is going through a period of unprecedented
transformations. In a while, it might so happen that out of the quantifiable total of inductive inferences most will be carried out by
‘tools-for-optimal-action’. More importantly, the total number of inferences will most likely skyrocket, as humanity will eagerly boost
the languishing bits of its scientific and common epistemic endeavours alike, and on top of them quite probably invent new ones. As a
result, the environmental costs of the anthropic and artificial localisations of inductive risk, which correspond to the total of inductive
generalisations, will soar as well. Compared to the human inductive inferences, inductive schemas furnished by ML generalisations
will, however, come at a considerably higher price if the practice remains harmful to the environment.

3. The environmental costs of machine learning research

From a bird’s-eye view, utilising accuracy to measure SOTA, while incentivising leaderboard climbs by any means available,
constitutes ML of generalisations as an environmentally hurtful endeavour. An improved accuracy can be purchased by additional
computational resources, which enable a threefold growth that typically leads to a new SOTA accuracy (Schwartz, Dodge, Smith, &
Etzioni, 2019). Computational resources, however, come at an environmental cost, which becomes significant as the relationship
between the experiments’ scale and the gained accuracy turns less favourable (an exponential growth of the experiment for an
approximately linear gain in accuracy, cf. ibid.). Schwartz et al. (2019) formalised the cost of climbing the accuracy leaderboards as
the experiments’ threefold growth:

Cost(Result) ∝ E·D·H (1)

The total cost of a ML experiment (result) grows linearly with increasing (E), the cost of processing a single example, (D), the
volume of training data, and (H), the number of the experiment’s variants executed to find a new SOTA accuracy (ibid.). The
unfavourable relation between cost and accuracy captured by Eq. (1) is empirically discernible as the macro-trend of growing
computational resources consumption in ML (Amodei & Hernandez, 2018; Sastry, Clark, Brockman, & Sutskever, 2019) as well as the
growing complexity of ML experiments. The complexity increases with the number of times an initial ML model is retrained to find a
good fit of the model’s architecture and hyperparameters to data, i.e. to the task at hand, thus reaching a new SOTA accuracy. In
setups where such a search over architecture/hyperparameter spaces is guided by human researchers, we are observing thousands of
training cycles per experiment (the third term of Eq. (1); cf. Strubell et al., 2019). In setups where the human guidance is replaced
with artificial evolutionary search over architecture/hyperparameter spaces (i.e. Neural Architecture Search [NAS]), the number of
trained models per experiment reaches tens of thousands (cf. Real, Aggarwal, Huang, & Le, 2019; So, Liang, & Le, 2019). The rest of
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this section, utilising Strubell et al.’s trailblazing analysis (2019), seeks to dispel a well-intentioned yet ultimately incorrect notion
which assumes that a single training run of an already developed ML model on a benchmark dataset can be in some way re-
presentative of the environmental costs associated with ML research.

To better illustrate the point, we might look at one of the most prominent leaderboards, ImageNet – an image classification
challenge, and a landmark ML model. Even though it is now possible to train ResNet-50 (He, Zhang, Ren, & Sun, 2016) to the
accuracy once ranking high on the ImageNet leaderboard in 2:43 min optimising for speed or for $12.60 optimising for cost
(DAWNBench, 2019), this does not mean that better hardware and/or training techniques attenuated the costs of leaderboard climbs.
Rather, reaching the higher rungs, and thus accuracy, requires larger models and more data. In case of fixed benchmark datasets such
as ImageNet, which are required for leaderboards, this means acquiring data for ‘pretraining’, allowing to gain, combined with other
improvements, higher accuracy. Touvron, Vedaldi, Douze, & Jégou, 2019 used 940 million public images for a weakly-supervised
pretraining experiment on ResNeXt-101 32 × 48d architecture, comprising 829 million parameters (versus ResNet-50’s 25.6 million
parameters), and fine-tuned the result to ImageNet. The experiment now (January 2020) ranks fourth on the ImageNet leaderboard
(Papers With Code, 2019a). The resources required for performing such an experiment are incomparable to a single training run of an
already developed, standard ML model (e.g. ResNet-50) on a benchmark dataset. The pursuit of the top places on leaderboards clearly
translates into larger experiments (ML models and data alike), growing computational demands, and thus increasing of environ-
mental impacts. Therefore, even if we observe progress in the base-level efficiency, it is not an indicator that ML’s environmental
impacts are negligible.

Expressed in terms of the macro-trend, Amodei and Hernandez (2018) showed that since the beginning of the Deep Learning (DL)
epoch in ML, the amount of computational resources spent on the largest experiments, which correspond to the top places in
leaderboards, doubles every 3.4 month. Since 2012, when AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) first dominated non-DL
methods on the ImageNet leaderboard, the amount of compute has grown by more than 300,000x, and is presently reported as days
at which the experiment ran at a petaflop/s (floating point operations per second, Amodei & Hernandez, 2018) on multiple GPUs or
TPUs (Graphics Processing Unit, Tensor Processing Unit, the spent petaflop/s-days grow more rapidly with an increasing paralleli-
sation of the experiments). The scale ranges from petaflop/s-days of running time to lower or even upper hundreds (this translates
into tens of thousands of years in the human temporal frame of reference, OpenAI, 2019), in case of the most demanding experiments
reaching over a thousand of petaflop/s-days (Amodei & Hernandez, 2018, this is, however, the present-day upper-bound, which is not
representative of a typical experiment). Amodei and Hernandez (2018) suggested that at least in short-term the macro-trend is likely
to continue since we have not exhausted the room for improvement in the flop/s per Watt ratio as well as the opportunities for a
better utilisation of parallelism in ML experiments. Therefore, considering only economic constraints, achieving a greater base-level
efficiency, i.e. a quicker/cheaper single training run of an already developed ML model on a benchmark dataset, is likely to lead to
growing experiments, pursuing higher accuracy and escalating the leaderboard climbs. As we find ourselves still close to the be-
ginning of the trend, it is timely to estimate CO2 emissions stemming from ML experiments. The emissions derive from the energy
consumed to satisfy computational demands of the experiments and can thus approximate ML’s contributions to the anthropogenic
change of the Earth system.

Strubell et al. (2019) estimates the power consumption of a ML experiment as a sum of power used by the hardware multiplied by
additional power requirements for sustaining the infrastructure (i.e. cooling etc.). The amount of CO2 released by the experiment is
calculated by multiplying the sum of power usage by the average CO2 emission per kilowatt-hour provided by the U.S. Environmental
Protection Agency (Strubell et al. (2019) EPA). Strubell et al. (2019) then compares selected types of ML experiments to the average
CO2 released during a round-trip flight from New York to San Francisco (1 passenger, 1984 lbs [900 kg]), 1 year of average human
life/1 year of average American life (11,023 lbs [5 tons]/36,156 lbs [16.4 tons]), or an average car’s lifetime including the consumed
fuel (126,000 lbs [57.2 tons]). Taking ML in Natural Language Processing (NLP) as a case study (ibid.), the magnitude of the CO2

emission derives from whether the search over the architecture and hyperparameter spaces were guided by human researchers or by
an artificial evolutionary search. Considering an example of the former kind of experiment, provided by Strubell et al.’s (2019) own
account based on developing a novel NLP model, the amount of CO2 emissions is estimated at 78,468 lbs (35.6 tons, calculated using
the U.S. average of CO2 emissions per kWh published by EPA). The emissions accumulated from 4789 ML models trained during the
experiment (the third term of Eq. (1)), which led to the best attuned model constituting the SOTA on some of the Semantic Role
Labelling leaderboards (Papers With Code, 2019b). For an NLP example of the latter kind of experiment, based on neural architecture
search, i.e. evolutionary search for the best model, Strubell et al. (2019) estimates the amount of CO2 emissions at 626,155 lbs (284
tons, using the same estimation method as above). Perhaps as a genuine cautionary tale can serve a recent experiment (Meng et al.,
2019) claiming to utilise 512 GPUs for three straight months to pretrain a machine translation model on roughly 40 billion sentence
pairs. The pretraining brought only a modest SOTA improvement on the benchmark dataset, the experiment lacking a foundational
contribution overall, and the large set used for pretraining was not released yet. As the experiment cannot be repeated to verify the
results, and it is an open question whether it should be repeated at all, the only surviving, tangible result is a likely substantial CO2

release. Finally, it needs to be emphasised that the results of ML experiments sometimes lack transferability. This means that re-
training/fine-tuning is required to deploy the ML models in new domains or to accomplish new tasks. Therefore, further CO2

emissions are to be expected (cf. Strubell et al., 2019).
Compared to CO2 emissions associated with common areas of human life, the amount of CO2 released by ML experiments is non-

trivial. More so, considering the recent explosive development of ML as a discipline/field, which can be illustrated by the growing
number of research papers. At the end of 2018, the number of submissions to ML-related sections of arXiv.org (a popular repository of
e-preprints [not peer reviewed] operated by Cornell University) reached 3000 papers per months (Dean, 2019). A similarly explosive
trend in the number of submissions accompanies academic ML conferences. The leading academic ML conference NeurIPS
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quadrupled over the last five years, in 2019 reaching 6743 submissions (Beygelzimer, Fox, d’Alché-Buc, & Larochelle, 2019), albeit
not all the experiments are as demanding as the above examples.

Facing the reality of behemoth experiments, which have become a standard practice for improving the accuracy, the discipline
realised that its epistemic aim, the quest for theoretical and empirical understanding of generalisation, comes at environmental costs.
The ML community offered two possible remedies. First, the computational resources required for climbing the accuracy leaderboards
should be powered only by energy from renewable sources, thus securing 100 % sustainability (cf. Hölzle, 2019). However, the claims
of consuming 100 % renewable energy usually refer to the consumption per annum, but the real consumption at certain times, e.g. at
night-time for solar, is still satisfied by burning of fossil fuels (de Chalendar & Benson, 2019). The true 100 % renewable consumption
would require storing the energy surplus generated during the peaks of renewable energy supply. Second, publication venues should
explicitly reward the research that reduces any of the Eq. (1) quantities while securing a competitive, albeit non-SOTA, accuracy (cf.
Schwartz et al., 2019, a related work also suggests reporting the validation results obtained during training to allow the estimation of
a computational budget required for a given validation accuracy, cf. Dodge, Gururangan, Card, Schwartz, & Smith, 2019).

4. The environmental costs of gratuitous generalisation capabilities

A foresight of potentially sobering environmental effects arising from the discipline’s epistemic aim, and the willingness to
confront them, is indeed laudable. Yet the picture of the environmental impacts linked to ML remains incomplete. It’s merely the tip
of the iceberg, the rest corresponds to the paradigm of generalisation learning which optimises the ‘tools-for-optimal-action’ ex-
clusively for accuracy. To obtain a faithful picture of the environmental impact, apart from the cost of research indicated by Eq. (1), it
would be necessary to factor in also the cost that accumulates while using the tool’s generalisation capability to accomplish the
designated task. First, to estimate the energy consumed by a single application of the tool’s generalisation capability, we would need
to establish the number of computational operations per inference. Second, this quantity should be multiplied by the number of
inferences which are expected to be performed by all future instances of that particular ‘tool-for-optimal-action’ and appended as the
fourth member to Eq. (1).

Cost(Result) ∝ E·D·H·cI (1)

In the amended Eq. (1), c stands for the number of computational operations per inference and I represents the total number of
future inferences (as per above). Only after such an amendment would Eq. (1) begin to converge on the tool’s true environmental
impact. In this context, it needs to be emphasised that with increasing accuracy grows also the time required for performing an
inference (cf. Bianco, Cadene, Celona, & Napoletano, 2018), thus increasing the amount of computational resources, and energy,
required for deployment. Although some encouraging results emerged recently, showing a progress in the accuracy to inference
latency ratio (cf. Gupta & Tan, 2019), the second and third term of Eq. (1), which are essential for the progress, remain expensive.

It’s safe to assume that our eagerness to let ML take care of even the most negligible everyday tasks will eventually lead to the all-
pervasive use of generalisations provided by the ‘tools-for-optimal-action’. Such prospect, however, hampers even a ballpark estimate
of the fourth quantity, which unfortunately renders the amended version of Eq. (1) impractical. Reaching an impasse, the issue clearly
requires a different kind of approach that might emerge from the following shift of perspective.

Apart from minimising the value of Eq. (1), a principled approach would entail a redefinition of the ‘tool-for-optimal-action’
concept itself. Rather than optimising a single objective, i.e. accuracy, the ‘tool-for-optimal-action’ would be required to observe a
task-specific limit stipulating the maximum number of computations per inference. Such constraint would throttle the tool’s energy
consumption and attenuate its environmental footprint. It would also diminish the accuracy of its generalisation capability. In this
regard, the second objective aims to reflect the fact that even a diminished level of generalisation capability might furnish an optimal
tool. For example, the task at hand might include a human in the loop providing corrections (typical for cognitive extending), or a
mistake remains so cheap that a more powerful tool could not be justified.

Expressed formally, holding all cognitive tasks equally demanding of generalisation, while optimising the ‘tools-for-optimal-
action’ solely for the SOTA accuracy, creates an aggregate surplus of the generalisation capability. The underlying single-objective
generalisation learning arises from an uneven epistemic aim, which rewards climbing the accuracy leaderboards. This twofold in-
terplay then produces gratuitous generalisation capabilities, which threaten to become dissipative and thus pernicious to the en-
vironment. It could be argued that the multi-objective generalisation learning could at least partially alleviate such adverse effects. By
way of assessing the cognitive complexity of any task at hand, it should be possible to base the ‘tools-for-optimal-action’ on a
favourable trade-off between the energy consumption and generalisation capability, while also encouraging reductions of the re-
search cost indicated by Eq. (1). Put differently, by agreeing on a reasonable accuracy, which approximates the cognitive demands of
a particular task, it becomes feasible to limit the computational budget of the generalisation learning (Eq. (1)) and of the deployment-
time inferences accordingly.

Anticipating the likely near-term all-pervasive use of ML generalisations, the multi-objective definition guarantees that the ‘tools-
for-optimal-action’ achieve the stipulated accuracy without possessing gratuitous generalisation capabilities at the environment’s
expense. Two shifts in the discipline’s epistemic aim could contribute to such outcome. First, the race to the top of the leaderboards is
perhaps better abandoned, unless it ceases to depend on infinitesimal improvements purchased by inflating the quantities of Eq. (1).
Second, the discipline might be near the verge of discovering theoretical foundations which would turn the future generalisation
learning into a principled effort (Frankle & Carbin, 2019; Jiang, Neyshabur, Mobahi, Krishnan, & Bengio, 2019; Nagarajan & Kolter,
2019). In that case, it would be most likely possible to satisfy the cognitive as well as environmental objective while also significantly
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reducing the research cost indicated by Eq. (1).

5. Conclusion

A full realisation of such scenario would see the techno-sphere (Haff, 2014), a part of the Earth System that sustains modern
civilisation and its inhabitants, grow an epistemic dimension. Anticipated by the present crave for ML/AI cognitive extending, the
future of humanity’s scientific and everyday endeavours would then likely become predicated upon an enormous amount of non-
anthropic inductive inferences. If this future Human-Artificial Intelligence Nexus remains dependent on environmentally harmful
(ineffective) ML/AI, the techno-sphere’s epistemic dimension will likely exacerbate the perils of Anthropocene, which deteriorate the
Earth System. By fleshing out this possible shape of Human-Artificial Intelligence Nexus to come, we hope to show that perhaps the
greatest rejuvenation of our epistemic endeavour since the scientific method might come at environmental costs, if the initiatives like
GreenAI fall on deaf ears.

The paper proposed a techno-philosophical way of thinking about future environmental costs of ML/AI, which seeks to offer an
alternative to often provocative normative opinions. It is argued that if ML/AI research and applications remain ineffective, we
should be prepared for unforeseen environmental costs. The ineffectiveness lies in the single-objective learning, pursuing the best
possible accuracy at all costs. A possible solution could be based on a multi-objective learning, where the first objective, a reasonably
defined task at hand, provides the upper-bound for the second objective, accuracy.
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