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a b s t r a c t

This paper considers the design problem of parameter dependent H1 filters for linear
parameter varying (LPV) systems whose parameters are measurable. Conditions for exis-
tence of parameter-dependent Lyapunov function are proposed via parametrical linear
matrix inequality (LMI) constraints. Based on the solutions to the LMIs, an algorithm for
the gain matrices of LPV filter is presented. The design method is applied to a missile sys-
tem to demonstrate the effectiveness.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

LPV systems are a class of linear systems whose state-space matrices depend on time-varying parameters. LPV systems
are widely used for describing practical systems such as missiles [1–3], aircrafts and spacecrafts [4–6], energy production
systems [7–9], inverted pendulum [10], and automated vehicles [11]. Filter analysis and design in LPV systems have at-
tracted considerable investigation over the last decade and several methods of designing filters have been proposed [12–
15]. At early stage, parameter-independent Lyapunov function is presented [16]. Later, parameter-dependent Lyapunov
function method is proposed to achieve less conservatism for the LPV systems whose parameters vary in a polytopic domain
using parametrically affine Lyapunov function method [12,14,17]. Extension research for LPV filter in [17,18] studies re-
duced-order filtering. Result in [19] presents an improved filtering method for discrete-time systems.

Parameters in LPV systems can be viewed as parametric uncertainty or parameters which can be measured in real time
during system operation [20]. In [13,14], the parameters are considered as uncertainty and the parameter-dependent LMI
conditions for the existence of parametrically affine and parameter-independent Lyapunov function are presented if the
parameters vary in polytopic region. In [21], the parameters are assumed to be measured and an H1 controller is designed
for the LPV system, but no filter is designed.

Unlike in [13,14] where parameters are required to be in a polytopic region, here we only need parameters to be in a com-
pact set. In this paper, an H1 filter is designed for an LPV system. Conditions of existence of parameter-dependent Lyapunov
function are formulated via LMI constraints and an algorithm for LPV filter gain matrices based on the solutions to the LMI
conditions is presented. Then we demonstrate the effectiveness of our method in designing an LPV filter for a missile pitch-
axis autopilot model which needs state estimation to design controller. For the same missile system, a non-LPV filter is de-
signed with no stability analysis given in [2], and we provide an LPV filter design method.

The rest of this paper is organized as follows. Section 2 presents the preliminaries. Section 3 gives the main results for the
LPV filter design. An application of the proposed design method to the missile pitch-axis autopilot model is given in Section 4.
Section 5 contains conclusion.
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Notation: I and 0 denote the identity matrix and zeros matrix with proper dimensions. ⁄ denotes the symmetric part in a
matrix. Ker(�) is the manipulation of solving the null matrix.

2. Preliminaries

Consider the following LPV system

_x ¼ AðqÞxþ B1ðqÞw;

z ¼ C1ðqÞxþ D11ðqÞw;

y ¼ C2ðqÞxþ D21ðqÞw;

ð1Þ

where x 2 Rn is the state with x = 0 at t ¼ 0; y 2 Rny is the measured output, z 2 Rnz is the signal to be estimated, w 2 Rnw is
the disturbance input and w 2 L2. q = [q1, . . .,qs]T is assumed to lie in a compact set P � Rs with its parameter variation rate
bounded by mk 6 _qk 6 mk; k ¼ 1;2; . . . ; s, i.e., _q 2 Pd.

A full order parameter-dependent filter to be designed is of the form:

_xf ¼ Af ðqÞxf þ Bf ðqÞy;
zf ¼ Cf ðqÞxf þ Df ðqÞy;

ð2Þ

where xf 2 Rn is the filter state with xf = 0 at t = 0 and zf 2 Rnz is the estimated signal of z.
Given (1) and (2), the connected system in Fig. 1 is expressed as:

_r ¼ bAðqÞrþ bBðqÞw;

e ¼ bCðqÞrþ bDðqÞw;
ð3Þ

where r ¼ xT xTf
h iT

; e ¼ z� zf and

bAðqÞ ¼ AðqÞ 0
Bf ðqÞC2ðqÞ Af ðqÞ

� �
; bBðqÞ ¼ B1ðqÞ

Bf ðqÞD21ðqÞ

� �
;

bCðqÞ ¼ C1ðqÞ � Df ðqÞC2ðqÞ �Cf ðqÞ½ �; bDðqÞ ¼ D11ðqÞ � Df ðqÞD21ðqÞ:

The filtering problem to be dealt with is stated as follows:

Problem 1. Find Af(q), Bf(q), Cf(q), Df(q) of the filter (2) such that the estimation error system (3) is quadratically stable
when w = 0, and an upper bound c to the H1 estimation error performance is assured, i.e.,

sup
w2L2 ;w–0

kek2
kwk2

< c; q 2 P; _q 2 Pd: ð4Þ

We now split Problem 1 into the following two subproblems:

Subproblem 1. Propose the conditions for the existence of parameter-dependent Lyapunov function xTP(q)x and H1
performance index c such that system (3) is quadratically stable when w = 0 and (4) is satisfied.

Subproblem 2. According to the solved parameter-dependent matrix P(q) and the index c, find Af (q), Bf(q), Cf(q), Df(q) of
the filter (2).

The following lemmas are required when dealing with the problem above.

Lemma 1 (Bounded Real Lemma [21]). If there exist a positive definite matrix P(q) and a positive number c such that

Fig. 1. Block diagram of LPV filter F(q) for an LPV system G(q).
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bATðqÞPðqÞ þ PðqÞbAðqÞ þ Ps
k¼1

oPðqÞ
oqk

_qk PðqÞbBðqÞ bCTðqÞ

� �cI bDTðqÞ

� � �cI

2666664

3777775 < 0 ð5Þ

holds for all q 2 P; _q 2 Pd, then system (3) is quadratically stable and satisfies (4).

Lemma 2 (Elimination Lemma [22]). Given a symmetric matrix W 2 Rm�m and two matrices G, H of column dimension m, con-
sider the problem of finding some matrix H of compatible dimensions such that

Wþ GTHTH þ HTHG < 0: ð6Þ

Denote by NG, NH any matrices whose columns form bases of the null spaces of G and H, respectively. Then (6) is solvable for H iff

NT
GWNG < 0;

NT
HWNH < 0:

(
ð7Þ

Lemma 3 [23]. Given two positive definite matrices R and S, a positive integer m, there exist matrices R2, S2, and symmetric matri-
ces R3, S3 such that

R R2

RT
2 R3

� �
> 0;

and

R R2

RT
2 R3

� ��1

¼
S S2
ST2 S3

� �
;

iff

R I

I S

� �
P 0; and rank

R I

I S

� �� �
6 nþm:

3. Main results

In this section, the main results are presented. Theorem 1 provides sufficient conditions of existence of a parameter-
dependent Lyapunov function for error dynamic system (3) via LMI formulation. Based on the solutions to the LMI conditions
in Theorem 1, Algorithm 1 provides an algorithm of solving the gain matrices of LPV filter (2). Theorem 2 presents that the
filter achieved from Algorithm 1 makes the system (3) satisfy the Bounded Real Lemma.

Theorem 1. Given an LPV system (1). If there exist symmetric positive definite matrices RðqÞ 2 Rn�n; SðqÞ 2 Rn�n such that for any
q 2 P; _q 2 Pd, the following LMIs are satisfied:

NT
S

ATðqÞSðqÞ þ SðqÞAðqÞ

þ
Ps
k¼1

oSðqÞ
oqk

fmk; �mkg

8>><>>:
9>>=>>; � �

BT
1ðqÞSðqÞ �cI �

C1ðqÞ D11ðqÞ �cI

26666666664

37777777775
NS < 0; ð8Þ

RðqÞATðqÞ þ AðqÞRðqÞ �
Ps
k¼1

oRðqÞ
oqk

mk; �mkf g �

BT
1ðqÞ �cI

2664
3775 < 0; ð9Þ

RðqÞ �
I SðqÞ

� �
P 0; ð10Þ

where NS ¼ Ker C2ðqÞ D21ðqÞ 0½ �ð Þ, then Subproblem 1 for Problem 1 is solved.
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Proof. It is easy to see that LMI (5) is equivalent to

AT
0ðqÞPðqÞ þ PðqÞA0ðqÞ þ

Ps
k¼1

oPðqÞ
oqk

_qk PðqÞB0ðqÞ CT
0ðqÞ

� �cI DT
11ðqÞ

� � �cI

26664
37775

þ
PðqÞI
0
J

264
375Xf ðq; _qÞ C2ðqÞ D21ðqÞ 0

� �
þ

CT
2ðqÞ

DT
21ðqÞ
0

264
375XT

f ðq; _qÞ ITPðqÞ 0 JT
� �

< 0; ð11Þ

where

A0ðqÞ ¼
AðqÞ 0
0 0

� �
; B0ðqÞ ¼

B1ðqÞ
0

� �
; C0ðqÞ ¼ C1ðqÞ 0½ �;

C2ðqÞ ¼
0 I

C2ðqÞ 0

� �
; D21ðqÞ ¼

0
D21ðqÞ

� �
; J ¼ 0 �I½ �;

I ¼
0 0
I 0

� �
; Xf ðq; _qÞ ¼

Af ðq; _qÞ Bf ðqÞ
Cf ðqÞ Df ðqÞ

� �
:

By Lemma 2, (11) is equivalently transformed into

NT
HWNH < 0; ð12Þ

NT
GWNG < 0; ð13Þ

where

W ¼
AT
0ðqÞPðqÞ þ PðqÞA0ðqÞ þ

Ps
k¼1

oPðqÞ
oqk

_qk � �

BT
0ðqÞPðqÞ �cI �
C0ðqÞ D11ðqÞ �cI

26664
37775;

H ¼ C2ðqÞ D21ðqÞ 0
� �

; G ¼ ITPðqÞ 0 JT
� �

: ð14Þ
Define

PðqÞ ¼
SðqÞ NðqÞ
NTðqÞ bSðqÞ

" #
; P�1ðqÞ ¼

RðqÞ MðqÞ
MTðqÞ bRðqÞ

" #
;

G ¼ IT 0 JT
� �

; P ¼
PðqÞ 0 0
0 I 0
0 0 I

264
375; ð15Þ

then it is easy to show that (12) is equivalent to (8). Therefore, we have G ¼ GP;KerðGÞ ¼ P;KerðGÞ ¼ P�1NG and
NT

GWNG ¼ NT
GP

�1WP�1NG ¼ NT
GUNG, where

U ¼
P�1ðqÞAT

0ðqÞ þ A0ðqÞP�1ðqÞ �
Ps
k¼1

oP�1ðqÞ
oqk

_qk � �

BT
0ðqÞ �cI �

C0ðqÞP�1ðqÞ D11ðqÞ �cI

26664
37775:

From the definition of P�1(q) and KerðGÞ ¼ I 0 0 0
0 0 I 0

� �
, (13) is equivalent to (9). According to Lemma 3, (10) guarantees

the R(q) and S(q) can construct P(q) as in the form of (15). The LMIs in Theorem 1 implies the condition of Lemma 1 is sat-
isfied. h

For Subproblem 2, we propose the following algorithm to construct the filter space matrices Af(q), Bf(q), Cf(q) and Df(q).

Algorithm 1. Given the solutions R(q), S(q) and c to LMIs (8)–(10), the filter can be constructed by the following steps:

(1) Compute solution Df(q) such that

D ¼ cI �bDTðqÞ
� cI

" #
> 0:
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(2) Compute solutions eBf ðqÞ and eCf ðqÞ to the linear matrix equations as follows:

0 D21ðqÞ 0

� �cI bDTðqÞ
� � �cI

264
375 eBT

f ðqÞ
dB

" #
¼ �

C2ðqÞ
BT
1ðqÞSðqÞ
CðqÞ

264
375; ð16Þ

0 0 I

� �cI bDTðqÞ
� � �cI

264
375 �eCf ðqÞ

dC

" #
¼ �

0
BT
1ðqÞ

C1ðqÞRðqÞ

264
375; ð17Þ

where CðqÞ ¼ C1ðqÞ � Df ðqÞC2ðqÞ. If there is singularity in (16) and (17), eBf ðqÞ and eCf ðqÞ can be achieved by solving the fol-
lowing inequalities:

H22 þ L2D
�1LT2 < 0; ð18Þ

H11 þ L1D
�1LT1 < 0; ð19Þ

where

H11 ¼ AðqÞRðqÞ þ RðqÞATðqÞ � _RðqÞ;
H22 ¼ ATðqÞSðqÞ þ SðqÞAðqÞ þ _SðqÞ þ eBf ðqÞC2ðqÞ þ CT

2ðqÞeBT
f ðqÞ;

L1 ¼ ½B1ðqÞ RðqÞCT
1ðqÞ � eCT

f ðqÞ�;

L2 ¼ ½SðqÞB1ðqÞ þ eBf ðqÞD21ðqÞ CT
1ðqÞ � CT

2ðqÞD
T
f ðqÞ�:

(3) The matrix eAf ðq; _qÞ is

eAf ðq; _qÞ ¼ �ATðqÞ þ ðSðqÞ _RðqÞ þ NðqÞ _MTðqÞÞ � SðqÞB1ðqÞ þ eBf ðqÞD21ðqÞ CTðqÞ
h i

D�1 B1ðqÞ RðqÞCT
1ðqÞ � eCT

f ðqÞ
h iT

:

Solve for N(q), M(q) from the equation

I � RðqÞSðqÞ ¼ NðqÞMTðqÞ: ð20Þ

Then the matrices Af(q), Bf(q), Cf(q) in filter (2) are

Cf ðqÞ ¼ eCf ðqÞ � Df ðqÞC2ðqÞRðqÞ
� 	

M�TðqÞ;

Bf ðqÞ ¼ N�1ðqÞeBf ðqÞ;

Af ðq; _qÞ ¼ N�1ðqÞ eAf ðq; _qÞ � eBf ðqÞC2ðqÞRðqÞ � SðqÞAðqÞRðqÞ þ ðSðqÞ _RðqÞ þ NðqÞ _MTðqÞÞ
h i

M�TðqÞ;

where _RðqÞ and _MTðqÞ denote
Ps

k¼1
oRðqÞ
oqk

_qk and
Ps

k¼1
oMT ðqÞ
oqk

_qk, respectively.

The following theorem is presented to state that the filter achieved from Algorithm 1 solves Problem 1, i.e., the inequality
(5) can be guaranteed.

Theorem 2. Given the solutions R(q), S(q) and c to LMIs (8)–(10). The filter achieved from Algorithm 1 guarantees the system (3)
satisfy the inequality (5).

Proof. Define X1(q) and X2(q) as

X1ðqÞ ¼
RðqÞ I

MðqÞ 0

� �
; X2ðqÞ ¼

I SðqÞ
0 NTðqÞ

� �
:

According to (20), we have X1(q)P(q) = X2 (q). For LMI (5), by premultiplying its first row and postmultiplying its first column
by XT

1ðqÞ and X1(q) respectively, it becomes

P11ðqÞ P12ðqÞ
PT

12ðqÞ �D

� �
þ

XT
2ðqÞI
0
J

264
375eXf ðq; _qÞ C2ðqÞX1ðqÞ D21ðqÞ 0

h i
þ

XT
1ðqÞCT

2ðqÞ
DT

21ðqÞ
0

264
375eXT

f ðq; _qÞ ITX2ðqÞ 0 JT
� �

< 0; ð21Þ

where

P11ðqÞ ¼
AðqÞRðqÞ þ RðqÞTAðqÞ � _RðqÞ AðqÞ þ RðqÞATðqÞSðqÞ � _RðqÞSðqÞ þ _MðqÞNTðqÞ

� 	
ATðqÞ þ SðqÞAðqÞRðqÞ � _RðqÞSðqÞ þ _MðqÞNTðqÞ

� 	T
ATðqÞSðqÞ þ SðqÞAðqÞ þ _SðqÞ

264
375;
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P12ðqÞ ¼
B1ðqÞ RðqÞCT

1ðqÞ
SðqÞB1ðqÞ CT

1ðqÞ

" #
;

eXf ðqÞ ¼
eAf ðq; _qÞ eBf ðqÞeCf ðqÞ Df ðqÞ

" #
;

eAf ðq; _qÞ ¼ NðqÞAf q; _qð ÞMTðqÞ þ NðqÞBf ðqÞC2ðqÞRðqÞ þ SðqÞAðqÞRðqÞ � ðSðqÞ _RðqÞ þ NðqÞ _MTðqÞÞ;eBf ðqÞ ¼ NðqÞBf ðqÞ;eCf ðqÞ ¼ Cf ðqÞMTðqÞ þ Df ðqÞC2ðqÞRðqÞ:

By the Schur Complement Lemma, (21) is then equivalent to

D :¼ cI �bDðqÞ
� cI

" #
> 0; ð22Þ

H11 þ L1D
�1LT1 H21 þ L2D

�1LT1
� 	T

� H22 þ L2D
�1LT2

24 35 < 0; ð23Þ

where H21 ¼ ATðqÞ þ eAf ðq; _qÞ � ðSðqÞ _RðqÞ þ NðqÞ _MTðqÞÞ. In Algorithm 1, we solve the LMI (22) to determine feasible Df(q).
The Eqs.(16) and (17), in which eBf ðqÞ and eCf ðqÞ can be solved, guarantee the diagonal blocks in (23) are negative def-
inite [24].If there is singular condition in (16) and (17), we can achieve eBf and eCf by solving inequalities (18) and (19)
directly. Set the off-diagonal block H21 þ L2D

�1LT1 to zeros to compute the matrix eAf ðqÞ. According to the definition of
matrices eAf ðqÞ; eBf ðqÞ; eCf ðqÞ, we have the gain matrices of LPV filter Af(q), Bf(q), Cf(q) and Df(q).The transformation from
(5)–(21) is equivalent, then the solved Af(q), Bf(q), Cf(q) and Df(q) guarantee the inequality (5) satisfied. The proof is
complete. h

Remark 1. If the condition of Theorem 1 is satisfied, then the filter can always be achieved by Algorithm 1 without any extra
conditions. In fact, if the inequalities (8)–(10) are satisfied, then the system (3) satisfies the Bounded Real Lemma condition
(5), i.e., a filter Xf(q) exists. From the above proof, the inequalities (22) and (23) are also satisfied so that we can always
obtain the matrices Df(q), Cf(q), Bf(q), Af(q) by Algorithm 1 based on the R(q), S(q) and c. Therefore, the conservativeness
(if any) comes from the condition of Theorem 1.

According to Lemma 2, the condition of Theorem 1 is equivalent to the condition of the Bounded Real Lemma which has
been widely used in the existing literature. Thus, Algorithm 1 has less conservativeness.

4. Example

In this section, as an application of the proposed method in Section 3, we design a filter for a missile pitch-axis autopilot.
The model taken from [1,2] is described by

_aðtÞ ¼ KaMðtÞCnðaðtÞ; dðtÞ;MðtÞÞ cosðaðtÞÞ þ qðtÞ;
_qðtÞ ¼ KqM

2ðtÞCmðaðtÞ; dðtÞ;MðtÞÞ;
ð24Þ

where the aerodynamic coefficients are

Cnða; d;MÞ ¼ sgnðaÞ anjaj3 þ bnjaj2 þ cn 2�M
3

� �
jaj

� �
þ dnd;

Cmða; d;MÞ ¼ sgnðaÞ amjaj3 þ bmjaj2 þ cm �7� 8M
3

� �
jaj

� �
þ dmd;

and the output is normal acceleration

gðtÞ ¼ KzM
2ðtÞCnða; d;MÞ: ð25Þ

Actuator dynamic describing the tail deflection is

d
dt

dðtÞ
_dðtÞ

� �
¼

0 1
�x2

a �2fxa

� �
dðtÞ
_dðtÞ

� �
þ

0
x2

a

� �
dcðtÞ: ð26Þ
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The various variables in plant model are:

a(t) angle of attack (deg)
q(t) pitch rate (deg/s)
M(t) Mach number
dc(t) commanded tail deflection angle (deg)
d(t) actual tail deflection angle (deg)
gc(t) commanded normal acceleration in g0 s
g(t) actual normal acceleration in g0 s

Further description of various constants is provided in Table 1 and the variables g(t) and q(t) are measurable outputs.
The LPV control method in [21] is applied for the missile model above, and an ad hoc estimator for state a(t) is designed in

[2]. The estimator is also used for switched LPV system in [3]. Substituting the ad hoc estimator in [2,3], we will apply the
proposed LPV filter method in Section 3 to estimate the state a (t). The LPV form of missile model (24) and (25) is derived
from [2] as follows:

_aðtÞ
_qðtÞ

� �
¼

Kaq2ðtÞ anq2
1ðtÞ þ bnjq1ðtÞj þ cn 2� q2ðtÞ

3

� 	h i
cosðq1ðtÞÞ 1

Kqq2
2ðtÞ amq2

1ðtÞ þ bmjq1ðtÞj
2 þ cm �7� 8q2ðtÞ

3

� 	h i
0

264
375 aðtÞ

qðtÞ

� �
þ

Kaq2ðtÞdn cosðq1ðtÞÞ
Kqq2

2ðtÞdm

� �
dðtÞ; ð27Þ

gðtÞ
qðtÞ

� �
¼ Kqq2

2ðtÞ anq2
1ðtÞ þ bnjq1ðtÞj þ cn 2� q2ðtÞ

3

� 	h i
0

0 1

" #
aðtÞ
qðtÞ

� �
þ Kzq2

2ðtÞdn

0

" #
dðtÞ; ð28Þ

where q1 = a and q2 =M, we consider the parameter set P ¼ ½�20;20� � ½2:4;3:2�. The missile system with controller and fil-
ter connection is as Fig. 2 in which the controller is as the same as in [21], and we focus on the LPV filter design.

Table 1
Coefficients in the missile system.

Ka = (0.7) P0S/mvs
Kq = (0.7) P0Sd/Iy
Kz = (0.7) P0S/m
P0 = 973.3 lbs/ft2 Static pressure at 20,000 ft
S = 0.44 ft2 Surface area
m = 13.98 slugs Mass
vs = 1036.4 ft/s Speed of sound at 20,000 ft
d = 0.75 ft Diameter
Iy = 182.5 slug � ft2 Pitch moment of inertia
Ca = �0.3 Drag coefficient
f = 0.7 Actuator damping ratio
xa = 150 rad/s Actuator undamped natural frequency
an = 0.000103 deg�3

bn = �0.00945 deg�2

cn = �0.1696 deg�1

dn = �0.034 deg�1

am = 0.000215 deg�3

bm = �0.0195 deg�2

cm = 0.051 deg�1

dm = �0.206 deg�1

Fig. 2. Missile system with LPV controller and filter.
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Choose the parameter-dependent Lyapunov function as

PðqÞ ¼ P0 þ q2Pq; ð29Þ

where P0 and Pq are matrices to be solved from LMI conditions in Theorem 1. Set the bound of the parameter derivative as
[�100,100], and the H1 performance optimization result over the whole parameter region is c = 1.5962993e � 003. Applying
Algorithm 1 to the system we can achieve the LPV filter.
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Fig. 3. The output of LPV filter and the state which is estimated.
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Fig. 4. The Mach number of the missile model.
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Remark 2. In the design of the filter, the Gridding method [21] is used and the c is the max value of the H1 performance
value in the whole parameter region. According to [1–3], the derivative boundary [�100,100] is enough for the parameter.

Simulation is performed to verify the performance of the designed filter. Since we focus on the design of the filter, the
controller is designed using the method [21]. Compared with [2] we design an LPV filter while in [2] a non-LPV filter is
designed. The control target of the closed-loop system is that the output g can track the command input gc. The performance
of the simulation is shown in Figs. 3–5. The filter output and the real state which is estimated are depicted in Fig. 3. The
varying of parameter in the system is shown in Fig. 4. Fig. 5 shows the tracking performance of the closed-loop missile
system.

5. Conclusion

This paper have presented a method to design an H1 filter for LPV systems with measurable parameters. For the given
LPV systems, LMI conditions have been proposed for the existence of the parameter-dependent Lyapunov function and an
algorithm has been proposed following the solutions to the LMI conditions. The proposed method has been demonstrated
effectively through the application to the missile system.
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