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Abstract—A wireless sensor network (WSN) typically involves
deploying multiple nodes in an area to measure environmental
parameters. WSNs are getting enveloped within the realm of
IoT which significantly increases their scale of deployment. The
end-objective of deploying a sensor network is to get valuable
data about a region irrespective of the physical configuration
used for measurement. We propose an Adaptive Data-centric
Clustering algorithm for Sensor networks (ADCS), a hierarchical
algorithm where user-specific data requirements are factored
into the clustering decisions. Specifically, similarity in parameter
variations are used as a criteria for optimization. We have
deployed an eKo-based sensor network in north-eastern India
to measure environmental parameters as part of a precision
agriculture application. Data from this network is used to develop
models to rigorously compare the performance of three variants
of ADCS: ADCS-DB, ADCS-KM and ADCS-AG and arrive at
useful recommendations for deployment planning.
Keywords–sensor networks, internet of things, data-centric

clustering, unsupervised learning, adaptive algorithms

I. INTRODUCTION

A Wireless Sensor Network (WSN) consists of one or more
nodes with onboard sensors for bespoke real-time precision
control and monitoring applications. WSN derives its strength
from redundancy in terms of number of nodes. A typical
deployment often has multiple nodes placed close to each
other which end-up measuring the same parameter given that
monitoring happens at regular intervals. While the advantage
is robustness against loss of data in the event of node deaths,
most practical applications would prefer to use the optimal
number of nodes and the appropriate sensing strategy for these
nodes keeping the energy and cost factors in view. The sensing
strategy could depend on a higher semantic-level objective
defined by the end-user such as measuring the variations in
one or more environmental parameters for a given area where
the physical network organises itself appropriately to meet this
objective.
We propose a data-centric clustering algorithm ADCS to

perform clustering with sensor networks in order to maximise
their lifetime while meeting certain service level agreements.
The significance of this is further amplified with sensor
networks gradually merging with the larger fabric of modern
IoT systems covering multiple sensor networks. An important
IoT application area is precision agriculture which involves
outdoor deployment of solar-powered sensor networks for

monitoring ambient parameters. Effective energy utilisation
is needed in such a scenario, for example, to maximise the
network lifetime where nodes are unable to charge during
night or due to cloudy conditions. We use the characteristics
of sensor data obtained from our field deployment of eKo
sensor nodes [1] in a tea estate to discuss how sensors could
be smartly tasked with ADCS, and compare the performance
results for different configurations.

II. LITERATURE SURVEY

Clustering in sensor networks has traditionally been used
to increase the network lifetime by minimising communica-
tion energy in the transfer of messages. LEACH [2] uses
probabilistic clustering at the node level followed by one-
hop transmission of the message to the clusterhead. In PE-
GASIS [3], the messages move through chains with fusion
of information at the intermediate levels. TEEN [4] has a
hierarchical clustering structure which involves thresholding
at the first and all subsequent levels. Similarly, there are other
algorithms that focus on other aspects of clustering such as
location [5], [6], QoS [5], [6] and mobility [7]. Most of
these algorithms however work with the physical rather than
semantic characteristics of the data.
In data-centric routing algorithms, routing tables with ad-

dresses are not maintained on each node. Some early work
where data is considered as part of the routing decisions in-
cludes directed diffusion [8], rumor routing (gossiping) [9] and
SPIN [10]. Directed diffusion involves flooding the network
which is costly [11]. Rumor routing [9] reduces the message
overload in the network by achieving a compromise between
queries and sensor data. The data-driven protocols presented
so far are not resource-aware. This is addressed by SPIN [10]
protocol which tries to optimise on two fronts: information
with each node and its residual energy. Each node running
SPIN assigns a high-level meta-data label which is used to
perform negotiations before any data is transmitted.
More recently, mining big data to derive intelligence has

gained sufficient interest with sensor networks and IoT. The
characteristics of sensor data and its appropriateness as a
source of big data is presented in [12]. The typical characteris-
tics of WSN data is discussed in more detail in [13]. The 6V’s
of Big Data are highlighted and sensor networks are presented
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as a data source with non-ending streams which is not the
typical substrate for standard data mining techniques. Special
data mining and fusion techniques such as complementary,
redundant and cooperative fusion are discussed.

III. MOTIVATION

Precision monitoring of ambient parameters such as temper-
ature, humidity, soil moisture and leaf wetness, to name a few,
are useful for a number of applications in agriculture such as
development of accurate pest and disease forecasting models,
irrigation models, and finding exceptional events on the farm.
With closed loop control ability, higher temporal and spatial
resolution, and improved accuracy, WSNs offer numerous
advantages over conventional monitoring sources. As part
of the digital farming initiatives of TCS, we have deployed
sensor networks for disease forecasting with potato [14] and
subsequently for tea gardens in West Bengal. Spatially co-
located nodes have nearly similar measurement patterns, and
the typical end-objective of the deployments are more about
knowing the parameter variations for a region rather than the
details of the physical setup used to measure them. Such
requirements can be used to task the nodes to cooperatively
monitor parameters in an optimal manner such that the net-
work lifetime is maximised. The broad interest is to develop
adaptive algorithms that enable optimal cooperative sensing
based on features of interest.
With ADCS, we propose a smart auto-adaptive clustering

strategy to measure parameter variations in a region by ab-
stracting the tasks for the individual sensor nodes. Tolerance
levels to parameter variations are used as inputs for unsu-
pervised clustering to identify regions of interest. The focus
with ADCS is on data-centric clustering with redundant fusion
where the aim is to minimise the overall energy of the network.
As an example, we use temperature as one of the sensed
parameters to discuss the multi-level unsupervised clustering
with ADCS which allows it to adapt to different scenarios.

IV. ADCS: ADAPTIVE DATA-CENTRIC CLUSTERING FOR

SENSOR NETWORKS

We present the generic ADCS algorithm and then discuss
how it is (a) adapted to a given sensing scenario based on
observed data characteristics, and (b) customised with various
unsupervised clustering models. The variants of ADCS thus
obtained are then compared to evaluate the most effective
algorithm for the energy optimisation objective.

A. The ADCS Algorithm

Let us assume a region R covered by a set of S sensor
nodes where each node si ∈ S measures a parameter regularly
at a given interval. Let Vi denote a set of n measurements
{v1, ..., vn}i from sensor node si. For any two si, sj ∈ S
where the data points of Vi have the same trend as Vj , the
location and field characteristics of the two nodes determine
whether they could be considered as measuring the same or
different trends for a given parameter. For example, if si, sj are
geographically separated by a large distance, the similarity in

Fig. 1: A configured wireless sensor network with cluster
nodes, cluster members and sink

observed values could be a temporal coincidence. On the other
hand, if the nodes are placed near each other, a difference in
elevation or overhead vegetation (such as a camouflage) would
govern whether the observed trends remain the same or change
over time. There could be several such constraints which help
determine the extent of similarity and hence the corresponding
clustering decision. Further, the conditions around the nodes
may change over time so the clustering decision would need to
change at regular intervals. For clarity, we discuss ADCS with
clustering at two levels, L0 and L1, where L0 is at the data
level and L1 is at the location level. The principle is generic
enough to extend to any number of levels according to the
number of criteria being considered.
Let us assume an n-node WSN deployment terminating at a

sink which is the gateway for the WSN with the external world
and executes the ADCS algorithm. Clustering with ADCS
starts with a request to all nodes to send their data. The
network nodes send their data to sink by transmitting directly
or routing it through other nodes in the network. The data is
processed by ADCS to arrive at a clustering decision which
is then conveyed back to the network nodes to arrange them
in clusters (Fig. 1). Each cluster in the network consists of a
clusterhead (nodes 1 and 5) and one or more cluster-members
(nodes 2-4 and 6-8). A clusterhead is a local aggregation point
for data from cluster members and transmits directly to the
sink.
During L0 clustering, ADCS identifies nodes at similar

data-levels. This involves computational overhead in terms
of calculation of features from the reported measurements as
discussed later in Sec. V-B. The feature-set for L0 clustering
is denoted by f . The order complexity of the construction
of f is dependent on how the component features of this
feature-set are calculated. We note that while having similar
data characteristics, clusters identified in this manner may be
geographically scattered. ADCS then performs the L1 cluster-
ing which groups nodes within certain physical separation of
each other. We use maximum allowable distance between any
two nodes in a cluster as the basis for L1 clustering. The end-
result is a set of clusters where nodes in each cluster are at
a similar data level and are also geographically close to each
other.
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Effectively, we create with ADCS an adaptive clustering
framework which combines unsupervised learning with a
two-level hierarchical data fusion and transfer mechanism to
achieve energy efficiency. The framework is generic enough
to allow a variety of models to be used. We present the back-
ground on unsupervised learning models chosen for ADCS
which helped us derive the three variants: ADCS-DB, ADCS-
KM, and ADCS-AG. Further, as noted earlier, redundant
fusion is performed at the level of each cluster wherein we
assume that only one cluster member senses the concerned
parameter and transmits to its clusterhead at any given point
of time, and this role is rotated between cluster members
to evenly distribute energy consumption across all nodes.
Numerous such optimisations could be performed within the
framework.

B. Unsupervised Clustering Models for ADCS

We choose three unsupervised clustering algorithms DB-
SCAN [15], K-Means [16], and Agglomerative [17] (Ward
Hierarchical) as candidates for both L0 and L1 clustering
with ADCS. The input requirements and clustering scale for
these algorithms seem particularly suited to WSN scenarios.
Assuming the number of sensor nodes to be n, the prediction
in DBSCAN [15] is for very large n and medium number
of clusters m. DBSCAN is a good candidate for uneven
cluster-size requirements and uneven geometry. It takes a
neighbourhood parameter (ε) as a clustering input which is the
maximum acceptable distance between any two neighbours.
K-Means is good for very large n and medium number of
clusters. It is useful for even cluster size requirements for a
flat geometry. Agglomerative Clustering [17] is again meant
for large n and number of clusters. The ability of these
algorithms to handle large number of samples makes them
effective candidates for ADCS. Three variants of ADCS, one
with each algorithm, are thus obtained: ADCS-DB, ADCS-
KM and ADCS-AG.

V. EVALUATION OF SENSOR DATA FOR CLUSTERING

DECISIONS

We have installed a set of eKo nodes labelled 2, 3 and
4 in Bagdogra, West Bengal for monitoring temperature and
humidity conditions which are useful for pest and disease
forecasting in crops [14]. The nodes are placed within a
distance of 50 meters with respect to each other and measure
temperature, humidity and dew-point at regular intervals. We
have 10815 samples for temperature, humidity and dew point
for node 2 from Nov, 2011 to April, 2015. For node 3, we
have 10086 samples from Nov, 2011 to July, 2015. For node
4, it is 7010 samples from Nov 2011 to Jan 2015.

A. Data Characteristics for Clustering Assumptions

During the 3.5 years of continuous run, the nodes expe-
rienced downtime periods due to lack of power, bad weather
and other factors. Further, insufficient battery levels also drove
down the quality of sensed data on some occasions to negative
levels. For the purpose of analysis, we consider data for a

period where uninterrupted measurements were received from
all nodes. Figs. 2(a)–2(c) give the distributions of temperature,
humidity and dew-point for nodes 2, 3, and 4 for a continuous
period of 15 days from 1st Sep 2014 - 15th Sep 2014. We
note that dew-point is a derived value. The sinusoidal pattern
is indicative of the diurnal variation on each measurement.
We examine the frequency distribution of nodes 2, 3 and

4 for a sequence of 400 samples (Fig. 3). We note that
the frequency characteristics of all three signals are similar
with the maximum frequency at 10 Hz and a peak amplitude
between 3.0 and 4.0. This is due to the geographical proximity
of the nodes. Each node samples the ambient parameters every
15 min to ensure sufficient granularity in measuring minor
variations during the course of a day. For effective information-
level clustering we need to establish the degree of similarity
between the measured signal sequences from the sensor nodes.

B. Feature-set Construction for Clustering with ADCS

From Sec IV-A, a typical measurement signal sequence
{v1, ..., vn}i for a parameter of a node si can be considered
as a vector [v1, ..., vn]i ∈ R

n that needs to be compared
with other signals for similarity. In order to meaningfully
achieve this with an unsupervised clustering model, it is often
essential to reduce the dimensionality of this input vector to
make it suitable for classification. Some of the best and pop-
ular unsupervised learning models use the Euclidean distance
between points in upto R

3 as a measure for classification
as classification results in higher dimensions do not remain
meaningful.
We reduce the signal sequence expressed in R

n by trans-
forming it into a value in R

2 that represents the sequence.
From Sec. V-A, we use the highest frequency component
of the signal and the amplitude for this frequency as the
transformed feature-set f = [argmax fft(Vi),max fft(Vi)]
representing each n-point vector Vi. The order complexity for
construction of f for k nodes is O(k) where k is the number
of nodes. Ideally, feature-set used for classification need not
be restricted to signal sequence from a single node. We note
that joint characteristics involving more that one node, for
example, RMSE and correlation coefficient of signals for node
pairs may also be considered. This however requires pairwise
examination of k signals which increases the complexity of f
for the k nodes to k(k + 1)/2 or O(k2). Such conditions are
kept outside the current scope of work.

VI. PERFORMANCE EVALUATION OF ADCS

Simulation with Python is used to evaluate the performance
of all variants of ADCS. A deployment area of size 50 m x
50 m is assumed where one of the diagonal coordinates is
{(0, 0), (50, 50)} and the sink is at a distant (100, 100). This
is the typical scenario in which advantages associated with
clustering and two hop communication from the node to the
sink via a clusterhead is best realised [2]. The number of nodes
randomly deployed in the area is 100 and they are uniformly
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(a) Node 2 parameters over 15 days
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(b) Node 3 parameters over 15 days
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(c) Node 4 parameters over 15 days

Fig. 2: Node parameters over 15 days

distributed. We use our experimental results for information-
level distribution of nodes for L0 clustering. The objective of
the evaluation is to compare and contrast the performance of
ADCS-DB, ADCS-KM and ADCS-AG for a common realistic
observation set from sensors.
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Fig. 3: Frequency distribution of temperature

Physical Parameters Value

Number of nodes 100
Rounds of clustering 20
Node distribution area 50 m x 50 m with diagonal

points (0,0) and (50,50)
Position of sink (100,100)

Energy Parameters Value

Eelec 50 nJ/bit
Eo 100 pJ/bit/m2

k 2000 bits

TABLE I: Simulation Parameters

A. Clustering Parameters

To keep our evaluation close to the nature of data generated
from a testbed (Sec. V), the measurement sequence for each
node is assumed to be obtained from a sinusoidal sequence
parametrised by the elements in the feature vector f of the
form (x, y) (Sec. V-B). With this assumption for information-
level (L0) clusters, we assume from Sec. V-B that the set
of feature vectors F = {f1, ..., f100}, one for each of the
100 nodes, are obtained from a set of Gaussian isotropic
clusters centred at a set of points P = {(x1, y1)...(xm, ym)}

Algorithm Clustering Mod. Parameter

ADCS-DB DBSCAN (L0) epsilon ε (0.6)
DBSCAN (L1) min no. of cluster

members (2)
[both L0 and L1]

ADCS-KM K-Means (L0) no. of clusters (5)
K-Means (L1) no. of clusters (5)

ADCS-AG Aggl. (L0) no. of clusters (5)
Aggl. (L1) no. of clusters (5)

TABLE II: ADCS and its variants with unsupervised clustering
methods
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Fig. 4: Distribution of measurement feature-set associated with
each node for a given round of clustering
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Fig. 5: Position of nodes for a given round of clustering with
colour indicating their feature-set cluster

with a standard deviation s. The value of s is dependent on
the tolerance level for the span that we wish to have for
clustering at the data level (L0). For a randomly deployed
100-node sensor network with a communication energy model
assumption similar to ours (Sec VI-B), it has been shown that
the optimal number of clusters is 3–5 where the lowest energy
consumption typically happens with 5 clusters [18]. So assum-
ing m = 5 to facilitate comparison between ADCS variants, a
typical set of values for P and s for a given round of clustering
are P = {(17.1, 6), (21.1, 27), (33.0, 50), (43.1, 24), (65, 34)}
and s = 2 so that there is no overlap between clusters. Fig. 4
shows this distribution of P with each cluster in a different
colour. Fig. 5 shows the (randomly distributed) location of
each of the nodes.
Kmeans and Ward clustering require a default number of

clusters to be specified. So, we set this to 5 for ADCS-KM
and ADCS-AG at L0 and L1. DBSCAN on the other hand

depends on the value of ε which is indicative of separation
between neighbours within a cluster. We use the following
assumptions to set the value of ε. If we divide 50 m x 50 m
area (A) into 5 segments (each being one cluster), and assume
each of these segments to be a square, the side of the square
area would be 22 m (

√
(A/5)). Assuming the 100 nodes are

equally distributed in these 5 clusters, there would be 20 nodes
in each cluster. If these nodes were in a straight line (worst
case), the linear separation between the nodes (neighbours)
would be ≈1 m. So, we make a conservative assumption of
0.6 as the value of ε for clustering at both L0 and L1 levels.
We also note that a value of 0.6 or lower for ε helps DBSCAN
in accurately identifying the clusters created for dataset P . The
parameter assumptions for each algorithm is given in Table II.

ETx(k, d) = Eeleck + E0kd
2 (1)

ERx(k) = Eeleck (2)

B. Energy Parameters

Eqn. 1 and Eqn. 2 are the free-space path-loss equations
used to calculate the energy consumed in transmission and
reception of messages between (a) cluster-members and clus-
terheads and (b) clusterheads and the sink for a distance d [3].
Here, Eelec is the energy dissipated in the transmit and receive
circuitry, Eo is the energy required to transmit a message, and
k is the length of the message in bits.

C. Simulation

Twenty rounds of clustering each with a different set of
values for P are used to evaluate the performance of ADCS-
KM, ADCS-AG and ADCS-DB. With each clustering round,
the nodes in the network are organised into multiple clusters
where nodes in each cluster have similar parameter values. We
configure the simulation to have each cluster send its parameter
value to the sink 5 times before the next round of clustering.
To achieve this, nodes in each cluster take turns to send their
measurements to the clusterhead, and the clusterhead sends
it to the sink. Various results obtained from simulation are
used to justify the use of the appropriate algorithm for a given
scenario.

VII. RESULTS AND DISCUSSION

We present the performance of clustering with ADCS-
KM, ADCS-AG and ADCS-DB to highlight their suitability
under different situations. We know from Table II that the
parameters required by each algorithm to perform clustering
could be potentially different. Therefore, we present as part of
our performance results certain metrics which show that the
parameter assumptions can be considered equivalent. The net-
work configuration for a typical round of clustering for ADCS-
DB, ADCS-KM and ADCS-AG are shown in Figs. 6(a)–6(c).
ADCS-DB uses an augmented form of DBSCAN where

DBSCAN is followed by additional support logic to help
overcome some constraints. When only DBSCAN is used, we
note that 100% nodes are clustered at L0 and ≈70% nodes at
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(a) ADCS-DB clusters after L0 and L1 clustering for a given round
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(b) ADCS-KM clusters after L0 and L1 clustering for a given round
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(c) ADCS-AG clusters after L0 and L1 clustering for a given round

Fig. 6: ADCS clusters after L0 and L1 clustering

L1 levels as DBSCAN is designed to leave out nodes that are
unable to meet the ε criteria. So, we follow it up with support
logic where each of the remaining 30% nodes (R) associate
with one of the final post-L1 set of clusters (C) provided (a)
a node r ∈ R was in the same L0 cluster as the nodes in a
cluster c ∈ C, and (b) the Euclidean distance between r and
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Fig. 7: Mean number of clusters after each round for 20 rounds
(0-19) of clustering
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Fig. 8: Standard deviation of number of clusters after each
round for 20 rounds (0-19) of clustering

the farthest node in c is less than a threshold T . We assume
T = 25 m as this is the order of distance between clusterhead
and cluster-members observed with ADCS-KM and ADC-AG.
Fig. 7 and Fig. 8 show the mean and standard deviation

of the number of clusters over all clustering rounds for all
three algorithms. We note that the mean number of nodes per
cluster hovers at 4 for both ADCS-KM and ADCS-AG while
it oscillates between 3 and 5 for ADCS-DB. The standard
deviation for ADCS-KM and ADCS-AG hovers at 1.5 while it
increases to 2 for ADCS-DB. So, KMeans and Agglomerative
clustering produce more balanced clusters. The net residual
energy for each node after 20 rounds of clustering with ADCS-
DB, ADCS-KM and ADCS-AG is given in Figs. 9(a)–9(c).
The corresponding mean residual energy of the network in
the form μ ± σ is given as 46.05 ± 1.89, 46.37 ± 1.72 and
46.41±1.70. ADCS-AG has the highest residual energy while
ADCS-DB has the lowest. The gradient of residual energy over
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(a) Residual energy with ADCS-DB after 20 rounds of clustering
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(b) Residual energy with ADCS-KM after 20 rounds of clustering
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(c) Residual energy with ADCS-AG after 20 rounds of clustering

Fig. 9: Residual energy after 20 rounds of clustering

all clustering iterations is shown in Fig. 10. The mean distance
between a cluster member and its clusterhead is 26.38, 23.52
and 24.55 for ADCS-DB, ADCS-KM and ADCS-AG.
Our analysis shows that ADCS-AG is most effective in

maximising the network lifetime followed closely by ADCS-
KM and then ADCS-DB. We note that while the residual
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Fig. 10: Residual energy after each round for 20 rounds (0-19)
of clustering

energy with ADCS-DB is comparatively lower, it offers a
higher level of flexibility in specifying end-user requirements
for clustering in terms of allowable distance between members
of a cluster rather than the number of clusters. Therefore, the
three algorithms together can help address different require-
ments for different scenarios within a common framework.
Since ADCS does not extend any of the algorithms dis-

cussed in Sec. II, a direct comparison with them would not be
meaningful. For example, LEACH makes a heuristic assump-
tion on the number of clusters regardless of the data associated
with each cluster and has a cluster-level data aggregation
strategy which is different from ADCS. TEEN uses predefined
thresholds to decide message transmission policies through the
clusters whereas ADCS tries to find similar nodes based on
their measurement patterns which acts as a basis for cluster
formation. SPIN focuses more on optimising the message-
routing aspects and related overheads which is not the focus
for ADCS. In future, we will develop suitable extensions and
make appropriate assumptions for such algorithms so that we
can compare them with ADCS. We hope to develop new
features for ADCS in the process to address a wider range
of application scenarios.

VIII. USING ADCS IN IOT APPLICATIONS

ADCS has been developed keeping the end-user IoT appli-
cation scenarios in view. While ADCS itself is configurable
with different clustering algorithms that it can support, its
operational orchestration for different components is clearly
defined to facilitate easy integration and deployment planning.
We have developed an Agro-IoT digital farming platform
called InteGra [19] which has sophisticated data acquisition,
analysis and dissemination capabilities. One of the acquisition
components of InteGra for sensor data is KwikSense which is
able to acquire and store data in the OGC Sensor Observation
Service-defined format. This interacts with gateways deployed
in farms, each talking directly to a set of sensor nodes over a

404404404



low-power network protocol such as ZigBee. As clustering
related messages with ADCS are essentially for network
management, ADCS at the gateway-node would, for example,
help filter out such messages so that only the valuable data
reaches the InteGra server. In a more complex scenario with
a large number of sensor nodes associated with the gateway,
the sensor nodes may organise themselves in clusters with the
gateway as the sink.

IX. CONCLUSIONS

We have proposed an algorithm, ADCS, to carry out adap-
tive clustering with sensor networks which performs clustering
both at data and location levels. We compare the performance
of different variants of ADCS with various unsupervised
clustering algorithms and compare the performance which
helps arrive at recommendations to maximise the lifetime
of the underlying sensor network and tradeoffs in terms of
flexibility in specifying user requirements and performance.
Finally, the placement of various components of ADCS is
discussed in the context of an IoT platform to illustrate its
impact and future scope.
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