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Abstract—This paper presents a formulation to determine the
appropriate power dispatch of an energy storage system, whose
available energy is dependent on the charging/discharging pattern
from previous time periods. The implementation structure is
consistent with current dispatch algorithms used in microgrids,
and the algorithm can be used in either grid-connected or
islanded modes of operation. The proposed approach employs
a backcasting algorithm to estimate the net stored energy value,
against which the current cost of energy is compared to determine
how the storage system should be used to perform arbitrage.
The contribution of this work is a means to include the time-
dependent resource in traditional economic dispatch algorithms
to reduce the cost of energy in a microgrid while enabling the
arbitrage algorithm to continuously adapt to changing market
conditions. Results show that the backcasting algorithm is able
to reduce the average cost of energy by 8.14% and can reduce
the average cost of energy by up to 72.3% of the ideal reduction,
as determined by a perfect forecasting dispatch.

NOMENCLATURE

The following variables and parameters are used throughout
the paper. Boldface denotes vectors of variables, while capitals
denote system parameters.

αch Derived quadratic coefficient for the ESS’
charging cost curve [$/kW2]

αdis Derived quadratic coefficient for the ESS’
discharging cost curve [$/kW2]

βch Derived linear coefficient for the ESS’ charg-
ing cost curve [$/kW]

βdis Derived linear coefficient for the ESS’ dis-
charging cost curve [$/kW]

EESS Energy Rating of ESS [kWh]
eESS Energy stored in ESS [kWh]
∆eint Change of internal energy stored in ESS

[kWh]
ηch charging efficiency of ESS [%]
ηdis discharging efficiency of ESS [%]
f(·) Probability density function
F (·) Cumulative distribution function
IESS ESS charging/discharging current [A]
Jn,m n×m matrix of ones
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PEPS Power limit of the transformer at the point of
common coupling [kW]

PESS Power Rating of ESS [kW]
pESS Power output of ESS [kW]
pESS,ch|P ESS charging power magnitude based on cost

function [kW]
pESS,dis|P ESS discharging power magnitude based on

cost function [kW]
pESS,max Maximum power of ESS [kW]
pESS,min Minimum power of ESS [kW]
pload Power consumption of load [kW]
ploss Power losses in ESS [kW]
pmax,ch|C Maximum charging power of ESS based on

available capacity [kW]
pmax,ch|η Maximum ESS charging power magnitude

based on efficiency [kW]
pmax,dis|C Maximum discharging power of ESS based

on available energy [kW]
pmax,dis|η Maximum ESS discharging power magnitude

based on efficiency [kW]
pmin,ch|E Minimum ESS charging power magnitude

based on ESS capacity [kW]
pmin,dis|E Minimum ESS discharging power magnitude

based on ESS capacity [kW]
π Price of energy [$/kWh]
πch Price of energy when it was charged [$/kWh]
πdis Price of energy when it was discharged

[$/kWh]
πmean Moving average of the price of energy from

the past T hours [$/kWh]
πT Vector of costs from the previous T hours

[$/kWh]
∆π Difference between marginal cost and mean

cost [$/kWh]
∆πch Difference between mean cost and marginal

cost for charging function [$/kWh]
∆πdis Difference between marginal cost and mean

cost for discharging function [$/kWh]
∆πT ,ch Vector of cost differences for the charging

function [$/kWh]
∆πT ,dis Vector of cost differences for the discharging

function [$/kWh]
RESS Effective ESS resistance [Ω]
T Time duration used for cost analysis [h]
t0 Present time period [h]
∆t Dispatch time interval [h]
Vdc Internal ESS voltage [V]
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I. INTRODUCTION

T IME-Dependent Resources (TDR), such as Energy Stor-
age Systems (ESS), have been proposed as key technolo-

gies to be included in microgrids in order to attain certain
benefits such as improving power quality, smoothing power
fluctuations from renewables, improving reliability, and reduc-
ing the average price of energy [1]. An established method for
solving the economic dispatch in a microgrid is by solving
the Lagrangian function of the generators based on their price
versus power output curves [2]. This formulation, however,
is time independent and therefore does not accommodate
TDRs. In order for the TDR to be included in the Economic
Dispatch (ED), the resource must either be formulated as a
time independent resource, or the ED formulation must be
modified. In both cases, however, the Net Stored Energy Value
(NSEV) in the TDR must be determined and quantified, and
is based on its value as compared to the value of energy at
different time periods.

This is done either through arbitrage when the microgrid
can either buy or sell energy on the energy market [3, 4] or
net metering with Time-of-Use (TOU) pricing [5], or when in
islanded mode to operate the Distributed Energy Resources
(DER) near their optimized power set-point [6]. However,
since an ESS is neither a net producer nor consumer of energy,
its available energy is dependent on how it was used in the
past, and it must account for provisions into how it will be
used in future time periods.

Although no energy is produced by such resources, TOU
and market pricing structures for electric energy provides a
means for a TDR to gain a net economic profit through
arbitrage [7]. Since ESSs are neither net generators nor loads,
they gain their economic value by applying the principle of
“buy low, sell high” [8]. However, in order to utilize a TDR in
an economic dispatch and maximize its NSEV, knowledge of
the pricing structure and provisions for future states is required
to appropriately determine an optimized dispatch schedule
over multiple time steps [9].

Most studies in the literature employ a forecasting algorithm
to predict future energy pricing, load profile, and genera-
tion availability from stochastic resources. A vast majority
of Energy Management Systems’ (EMS) dispatch algorithms
depend upon forecasting that are assumed to be 100% accurate
over the future dispatching interval [3, 5, 10, 11, 12]. Although
significant work has gone into forecasting algorithms [9], this
deterministic approach to future dispatching does not consider
the effects of forecasting errors, which can lead to sub-optimal
dispatch solutions [8]. In terms of forecasting errors, it has
been stated that even some of the best commercially available
wind forecasting algorithms are prone to standard deviation
accuracies as much as 15-20% [13, 14], with prediction errors
up to 204% on an abnormal day [9].

Authors of [15] attempt to mitigate the errors by imple-
menting a second dispatching algorithm to the ideal forecasted
scheduler to adjust the real-time dispatch in order to account
for the forecasting errors. In [16], authors take a conservative
approach and determine a worst-case transaction cost based
on the unknown stochastic variables in the optimization, used

as a bound for the solution when optimizing the utility func-
tion of the dispatchable DER. Microgrid operating costs are
minimized in [17] through a niching evolutionary algorithm to
use the ESS to operate the other DER close to their optimal
operating point; however, no provisions for future energy use
from the ESS are taken into consideration.

Stochastic ED techniques have been suggested by
many authors to address the uncertainties in microgrids—
predominantly to address volatile renewable generation, but
also for fluctuating energy markets. To feed the stochastic
ED, authors of [18] propose a Markov-chain forecasting
approach based on historical data, while authors of [19] aim
to reduce the errors by proposing a means to better quantify
the uncertainty. Many of the proposed approaches break down
the problem into different timescales [20]. Several authors
propose a two-stage stochastic optimization, whereby the first
stage of the ED performs the stochastic optimization based
on the expected forecast, and the second stage attempts to
mitigate any discrepancies by reacting to the deviations as they
occur [21, 22, 23]. Although many of the stochastic methods
demonstrate favourable results compared to deterministic ap-
proaches, often their solutions either require a high level of
complexity in the formulation, are not adaptable to changes in
the stochastic distribution of the fluctuating variables, and/or
attempt to mitigate the errors a posteriori.

An interesting approach, suggested in [10], is to presume
that the near future price structure is similar to the recent past
prices (instead of implementing a forecasting algorithm). This
“backcasting” approach estimates future price trends based on
the previous two weeks of data, although insufficient detail
is provided regarding the employed algorithm. Furthermore,
this approach considers the ESS’ charging and discharging
efficiencies as constant values, and it does not consider the
effects of varying the ESS’ size.

This paper enhances the approach mentioned in [10] to
detail a methodology that can determine an appropriate NSEV
for the TDR such that it can be directly applied within the
framework of the classical ED problem. This is relevant as
the microgrid controller must determine the dispatch of all
DER in the microgrid in both grid-connected and islanded
modes of operation, and this approach eliminates the need for
a forecasting algorithm or an alternate method to incorporate
a TDR in the economic dispatch. The limits of the TDR must
be considered in the formulation of the relative NSEV as this
will limit how the energy can be used presently or in a later
time frame.

Although many papers include a variety of features to model
storage systems, specifically for battery ESSs, the three main
characteristics that are used for its modelization include: power
rating, energy capacity, and charging/discharging efficiencies
[10]. Another variable operating characteristic is the State-of-
Charge (SOC) of the ESS, as this determines the extent to
which the ESS can be used at a later time period. Although
some papers implement SOC limits to ensure sufficient re-
serves [25, 26], other approaches use an ideal SOC as a metric
in the optimization [27]. This paper addresses each of these
operating limitations in the formulation in order to best utilize
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the available TDR1.
This paper is structured as follows: Section II describes

the formulation of the ESS’ dispatch strategy for arbitrage
(Section II-A), which is limited by the ESS’ efficiency (Section
II-B) and stored energy (Section II-C). The final summarized
dispatch is presented succinctly in Section II-D. The system
description is presented in Section III, and case study results
and analyses are detailed in Sections IV-V, respectively.

II. DISPATCH STRATEGY FORMULATION

The value of energy from a TDR for arbitrage purposes
must not only consider current energy prices, but provisions
for future energy prices as well as its current state of charge.
The dispatch of the ESS is dependent on three technical limits:
its charging/discharging efficiency, its capacity, and its power
rating; however, the acquisition and resale prices of the energy
stored will be a primary factor in how the ESS is to be utilized
to maximize profit.

A. Dispatch based on Price Function

Since the economic gain from an ESS is based on past,
present, and future prices of energy, the dispatch of the ESS
is determined from a comparison of the current price, π(t0),
and the prices in the past T hours. The presumption here is that
the trend of the energy price of the past T hours is consistent
with the next time step interval for the dispatch. Therefore, it is
solely based on known previous time steps, and no forecasting
algorithm is required.

The strategy is to charge the ESS when the price is low,
and to discharge when the price is high; however, these are
both relative and qualitative terms. The mean price (πmean) is
thus calculated from the past prices in T to have a reference
for the present time frame; against which the prices can be
compared and determined to be expensive or inexpensive, as
shown in Fig. 1.

Then, in order to determine how much the ESS should
charge/discharge, one must determine how often the price of
energy will be less or more expensive than the current price.
Consider the following example with two scenarios: if at time
t0, the price of energy is 0.03 $/kWh above πmean,

1) and the price from the past T hours indicates that it typ-
ically reaches a maximum of 0.03 $/kWh above πmean,
then the ESS should be discharged at its maximum
power rating.

2) but the price from the past T hours indicates that it can
reach up to 0.06 $/kWh above πmean, then it would not

1The lifetime has been considered as a characteristic of certain battery
storage technologies in some studies [5, 7]. However, as [24] indicates, this
is an auxiliary objective to the direct price minimization objective. Therefore,
this is neglected in this study to focus on the most pertinent features of the
storage system that have a direct effect on the usable energy that is being
charged and discharged from/to the microgrid. Furthermore, the depth of
discharge limitation is considered as a hard constraint with EESS representing
the net effective capacity of the ESS after incorporating this constraint. In
fact, one could also reassess this value on a daily basis given how the asset
was used in the previous 24 hours. Moreover, if it is perceived that the ESS
lifetime is going to be shortened in light of the ESS use, the operator has
the flexibility of further limiting the depth of discharge by increasing the
minimum energy level in follow-up planning cycles.
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Fig. 1: Example of market price of electricity over T = 24 h (April
21, 2014). Green areas marked “A” indicate that the price is below
the mean price (inexpensive), while red areas marked “B” indicate
that the price is above the mean price (expensive).

be best to discharge at maximum power rating until the
price is greater than the current price.

Therefore, to determine how often the difference the price of
energy, ∆π, is less than/greater than πmean, two cumulative
distribution functions (CDFs) are established for the price
being below or above the mean price of energy, respectively.
Further details and the formulation are provided in subsequent
paragraphs, and Fig. 2 demonstrates an example of converting
the 24-hour price profile from Fig. 1 into respective CDFs.

Given the vector of the past marginal prices of energy:

πT (t0) = [π(t0 −∆t) π(t0 − 2∆t) . . . π(t0 − T )]′, (1)

let the vector of differences between the current price of energy
and the mean price of energy from the past T hours be:

∆πT ,ch = {JT,1 · πmean − πT | πT < πmean} (2)
∆πT ,dis = {πT − JT,1 · πmean| πT > πmean}. (3)

These empirical histograms are shown graphically in the
example shown in Fig. 2a and Fig. 2b.

The Probability Density Function (PDF) is employed to
identify the relative probability that the price will take a certain
value. The PDFs of the relative inexpensive and expensive
price differences are defined as:

fch(∆πT ,ch) = {f(∆πT ) | πT < πmean} (4)
fdis(∆πT ,dis) = {f(∆πT ) | πT > πmean}, (5)

respectively. The two functions are separated to ensure that
f > 0. The charging and discharging PDFs of the example
from Fig. 1 are shown in Fig. 2c and Fig. 2d. The real market
data used in the example have an accuracy of 10−4 $/kWh;
thus, each price has the same probability in the PDFs since
they are all unique.

The CDF of the charging function is formulated as:

Fch(∆πch) = Pr[∆πT ,ch ≤ ∆πch] =

∫ ∆πch

0

fch(C) dC (6)

In other words, (6) provides the probability that the present
price difference ∆πch = πmean− π(t0) takes on a value in the
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ferences from Fig. 2c.
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(f) CDF of discharging price
differences from Fig. 2d.
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Fig. 2: Example results of calculating the PDF, CDF, and marginal
price curves for a T = 24 h time frame.

range ∆πT ,ch ∈ [0,∆πch], based on an analysis of the prices
of energy from the past T hours. Similarly, the CDF of the
discharging function is formulated as:

Fdis(∆πdis) = Pr[∆πT ,dis ≤ ∆πdis] =

∫ ∆πdis

0

fdis(C) dC (7)

where (7) provides the probability that the price difference
∆πdis = π(t0)− πmean from the past T hours (when the price
is greater than the mean price) is within the range ∆πT ,dis ∈
[0,∆πdis]. The CDFs of the charging and discharging functions
are shown in Fig. 2e and Fig. 2f, respectively. In summary, the
CDFs provide an indication of the likelihood that the price of
energy will become less/more expensive in a later time period
(in which case, the ESS should save energy to charge/discharge
at that time), or whether it is relatively inexpensive/expensive,

in which case it should charge/discharge to its maximum
capabilities.

Therefore, by multiplying the CDF by the power rating of
the ESS, one can determine the power that the ESS should
charge/discharge based on the vector of past marginal prices:

pCDF,ch(∆πch, t0) = PESS · Fch(∆πT ,ch(t0)) (8)
pCDF,dis(∆πdis, t0) = PESS · Fdis(∆πT ,dis(t0)) (9)

This is sufficient to determine the appropriate amount of
power to dispatch to the ESS; however, a further step is
taken in order to make the NSEV compatible with standard
economic dispatch algorithms (in either grid-connected or
islanded modes of operation for a microgrid). This is done
by formulating the power curve as a thermal resource with a
quadratic cost curve and a linear marginal cost curve.

Since (8) and (9) are one-to-one functions, the CDF func-
tions can be inverted to get the marginal price as a function of
the power. Then, a curve fitting approach is used to determine
the linear marginal price of energy versus power curve, as
shown in Fig. 2g and Fig. 2h. This results in marginal price
curves of the form:

∆πT ,ch(pESS,ch, t0) = 2αchpESS,ch + βch (10)
∆πT ,dis(pESS,dis, t0) = 2αdispESS,dis + βdis (11)

Note that these can easily be arranged back as:

pESS,ch|P(∆πT ,ch, t0) =
∆πch(t0)− βch

2αch
(12)

pESS,dis|P(∆πT ,dis, t0) =
∆πdis(t0)− βdis

2αdis
(13)

Although it is not directly addressed in this paper, the added
benefit of this last step is that it facilitates the integration of
the TDR into the classical ED problem as its price curve is in
the same quadratic form as traditional thermal generators. This
formulation not only permits the TDR to know its appropriate
power output as a function of the price of energy at a given
time period, but it can also be used in the economic dispatch
for the microgrid’s islanded mode of operation when the load
is not curtailed.

B. Dispatch limit based on efficiency

Many papers treat the efficiencies as constant values in
their studies [28]. However, many authors identify that this
approach is inaccurate and can introduce errors in the opti-
mization [12, 29, 30]; here, it calculated as a function of the
I2R losses as the charging or discharging rate varies.

The energy flow in an ESS is shown through the circuit
diagram in Fig. 3. Referring to this figure, the energy stored
when charging the ESS is:

∆eint = ηch · pESS,ch ·∆t, (14)

where η is the efficiency of the ESS and ∆t is the time period.
The energy extracted from the ESS when discharging is:

∆eint =
pESS,dis

ηdis
∆t. (15)
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Fig. 3: Energy flow through the ESS, where Vdc is the internal
dc voltage and RESS is the effective resistance between the internal
voltage source and the point of connection with the distribution lines
on the Vdc base.

In order to obtain a profit and perform arbitrage for a given
time step, the value of the energy when discharging must be
greater than the value of the energy when it was charged:

pESS,dis ·∆t · πdis > pESS,ch ·∆t · πch (16)

Note that (16) is not a hard constraint, but it is a desired
condition of the operation that would result in a net economic
gain if satisfied.

For a round-trip charging of internal energy ∆eint, rearrang-
ing (14) and (15) and substituting into (16) yields:

∆eint · ηdis · πdis >
∆eint

ηch
· πch (17)

πdis

πch
>

1

ηchηdis
(18)

This means that the ratio of the price of energy when
discharging relative to the price of energy when it was charged
must be greater than the inverse of the round-trip efficiency
in order to make a financial gain from arbitrage.

In order to isolate the charging and discharging require-
ments, (18) is modified to include a mean price term:

πdis

πmean
· πmean

πch
>

1

ηch
· 1

ηdis
(19)

such that

πch ≤ πmean ≤ πdis. (20)

Note that if πch, πdis, πmean, ηch, and ηdis are all positive,
and if both (21) and (22) are true, then it can be shown that
(19) is satisfied, and thus (18) is also satisfied.

πmean

πch
>

1

ηch
(21)

πdis

πmean
>

1

ηdis
(22)

This allows for the independent calculations of the ESS’
charging and discharging power limits based on the efficien-
cies. Although πmean can be chosen arbitrarily, here it will be
chosen as the mean price from the past 24-hour period, as this

time duration is most likely to capture any diurnal patterns in
the pricing profile.

If one were to take the efficiency as a constant, (21) and
(22) would suffice to determine when to charge and discharge
the ESS based on the round-trip efficiency and pricing signal.
However, with a battery ESS, the efficiency is a function of the
power being charged or discharged (i.e., η = η(pESS)) since it
is a factor of the effective I2R losses.

The charging efficiency is given by:

ηch (pESS,ch) =
pout

pin
=
pin − ploss

pin
=
pESS,ch − ploss,ch

pESS,ch
(23)

where the discharging losses are:

ploss,ch = I2
ESSRESS · 10−3 =

(
pESS,ch

Vdc

)2

RESS · 103. (24)

The factor of 103 is included to ensure that all power values
are given in kilowatts. Substituting (24) into (23) yields:

ηch (pESS,ch) = 1− pESS,ch

(
RESS · 103

V 2
dc

)
. (25)

Similarly, the discharging efficiency is given by:

ηdis (pESS,dis) =
pout

pin
=

pout

pout + ploss
=

pESS,dis

pESS,dis + ploss,dis
(26)

where the discharging losses are:

ploss,dis = I2
ESSRESS · 10−3 =

(
pESS,dis

Vdc

)2

RESS · 103. (27)

Substituting (27) into (26) yields:

ηdis (pESS,dis) =
1

1 + pESS,dis

(
RESS·103

V 2
dc

) . (28)

Now, based on the efficiency losses, the charging power
limits on the ESS can be derived by substituting (25) into
(21):

πmean

πch
>

1

1− pESS,ch

(
RESS·103

V 2
dc

) (29)

=⇒ pmax,ch|η =

(
1− πch

πmean

)(
V 2

dc

RESS

)
· 10−3 (30)

The inequality was changed to an equality sign in (30) since
this is treated as the upper charging limit.

Similarly, the discharging power limits on the ESS can be
derived by substituting (28) into (22):

πdis

πmean
> 1 + pESS,dis

(
RESS · 103

V 2
dc

)
(31)

=⇒ pmax,dis|η =

(
πdis

πmean
− 1

)(
V 2

dc

RESS

)
· 10−3 (32)

Equations (30) and (32) show limits of the ESS’ charging
and discharging power in order to gain a benefit from arbitrage.
In other words, too much energy would be lost due to
inefficiencies that the arbitrage benefit would be lost at a power
greater than imposed by these limits.
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C. Dispatch limit based on capacity

The storage capacity and remaining stored energy also
introduce a limit on the ESS’ power dispatch. With the given
charging/discharging strategy, a limited capacity imposes a
restriction on the ESS’ ability to fully charge/discharge when
the price is below/above the mean price. Looking at the price
of energy in Fig. 2a and Fig. 2b, the ESS’ available energy or
capacity should be saved and utilized when the price difference
is largest in order to maximize the benefit from arbitrage.

To obtain a maximal gain from arbitrage, the ESS
should attempt to fully charge/discharge for every price area
above/below a certain value; for demonstration purposes, the
three areas marked “A” and “B” in Fig. 1 are examples of
price areas that are above/below the mean value. This poses
a problem since the actual size, number, and shapes of the
future price areas are unknown without forecasting; however,
the volatility of the price structure is presumed based on the
price profile in the previous time periods.

The purpose of this limit is to ensure that there is sufficient
capacity to charge/discharge the ESS when the price differ-
ences from the mean are largest. The strategy to determine the
minimum power is described through the following steps2:

1) For every price area that is above πmean,
a) Sort the prices in decreasing ∆πdis price order.
b) Determine the amount of energy that the ESS

discharges for each price based on the discharging
strategy from Sections II-A and II-B.

c) Going from highest price differential to lowest,
sum the energies until it equals the energy capacity
of the ESS. The lowest price after which the ESS
is depleted is the minimum price for that area. If
the capacity is never reached, the minimum price
difference is 0 $/kWh.

d) Based on this price difference, determine the power
of the ESS pmin,dis|E,i based on (13).

2) Determine pmin,dis|E = mini pmin,dis|E,i from all the price
areas within the past T .

pmin,dis|E is the minimum discharging power based on the
ESS’ capacity. Similarly, pmin,ch|E is the minimum charging
power, and is found through a similar algorithm.

D. Final Dispatch

Formally, the dispatch of the ESS is given below based on
three different cases (charging, discharging, and idle). It is
important to note that the application of these functions are
mutually exclusive, which is evident as the ESS cannot both
charge and discharge at the same time.

1) If π(t0) < πmean: then ∆πch(t0) = πmean − π(t0) and
the ESS should charge. The power is based on (12):

pESS(t0) = −pESS,ch|P(∆πT ,ch, t0). (33)

2Note: this example demonstrates the case when the ESS should be
discharged; however, a similar algorithm can be applied to the case when
it should be charging.

Note that the convention that the ESS is a generator is used,
thus a negative power means that it is charging. The minimum
power limit of the ESS in this case is:

pESS,min(t0) = −max
{

0, pmin,ch|E
}
, (34)

where pmin,ch|E is evaluated from the algorithm derived in
Section II-C. The maximum power limit of the ESS in this
case is:

pESS,max(t0) = −min
{
PESS, pmax,ch|η, pmax,ch|C

}
, (35)

where pmax,ch|η is calculated from (21), and pmax,ch|C is the
charging limit based on remaining available capacity:

pmax,ch|C(t0) =
EESS − eESS(t0)

∆t
− ploss,ch (36)

Substituting (24) into (36) and solving for pmax,ch|C yields:

pmax,ch|C(t0) =

−∆t+

√
∆t2 − 4RESS

V 2
dc ·10−3

(
eESS(t0)−EESS

∆t

)
2RESS

V 2
dc×10−3

. (37)

2) If π(t0) > πmean: then ∆πch(t0) = π(t0) − πmean and
the ESS should discharge. The dispatched power is based on
(13):

pESS(t0) = pESS,dis|P(∆πT ,dis, t0). (38)

The minimum power limit of the ESS in this case is:

pESS,min(t0) = max
{

0, pmin,dis|E
}
, (39)

where pmin,dis|E is evaluated from the algorithm derived in
Section II-C. The maximum power limit of the ESS in this
case is:

pESS,max(t0) = min
{
PESS, pmax,dis|η, pmax,dis|C

}
, (40)

where pmax,dis|η is calculated from (22), and pmax,dis|C is the
charging limit based on remaining available capacity:

pmax,dis|C(t0) =
eESS(t0)

∆t
− ploss,dis (41)

Substituting (27) into (41) and solving for pmax,dis|C yields:

pmax,dis|C(t0) =

−∆t+

√
∆t2 − 4RESS

V 2
dc ·10−3

(
−eESS(t0)

∆t

)
2RESS

V 2
dc×10−3

. (42)

3) If π(t0) = πmean: then pESS(t0) = 0 kW.

Finally, the power limit of the transformer at the point of
common coupling introduces a power limit on the ESS such
that:

|pESS(t)− pload(t)| ≤ |PEPS|. (43)
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Fig. 4: Example daily dispatch profiles of the ESS with the backcasting NSEV algorithm (blue) as compared to the ideal forecasting dispatch
(cyan). Below each dispatch figure shows the market price of energy (green) with the calculated mean price of energy from the past 24
hours (red).

III. SYSTEM DESCRIPTION

The backcasting NSEV algorithm is employed in the system
depicted in Fig. 5. The peak load in the system is 1 MW,
and is based on the load profile in 2014 taken from the
Independent Electricity System Operator (IESO) in Ontario
[31]. The market price of electricity is also taken from the
IESO in 2014 [31], upon which the ESS will participate to
perform its arbitrage. In this study, the microgrid’s operation
has negligible market influence due to its small size relative
to the Electric Power System (EPS).

���

�������	
���	


���������

������

������

���� ������
�

���� ������
��

�����������

��� �� ����

��������!

Fig. 5: Single Line Diagram of test system.

Two base cases are used in the paper to act as benchmarks
against which the proposed NSEV algorithm is compared:

1) one without any storage or ED algorithm, which repre-
sents the worst case scenario for reducing the price of
energy, and

2) one with a deterministic optimization implemented in
GAMS with ideal 3-day forecast values, which repre-

sents the best case scenario for reducing the price of
energy.

It is assumed that the price of energy from the EPS is
unaffected by the amount of power import or export from the
microgrid; that is, the microgrid is sufficiently small to not
play a large role on the market prices [32]. Only results from
the grid-connected mode of operation are shown.

IV. RESULTS

Fig. 4 shows four examples of the dispatch profile for
separate days, and how the dispatch reacts to the changing
market prices of energy as compared to the case with ideal
forecasting. There is a strong correlation between the ideal
and proposed dispatches, where the ESS typically charges and
discharges. Over the year, the price of energy is reduced by
8.14% as compared to the base case without storage.

A parametric analysis of the ESS’ power rating (Fig. 6),
capacity (Fig. 7), and internal resistance (Fig. 8) shows how
the algorithm adapts to the different ESS parameters. The
simulations are run over an entire year and the overall average
price of energy of the microgrid is calculated and plotted
versus the respective parameters. This demonstrates the annual
net profit obtained through the NSEV algorithm distributed
over the total energy cost in the microgrid. Overall, the
proposed backtracking algorithm is able to take advantage of
the extra power, energy, and efficiency. The NSEV algorithm
achieves a respective mean reduction in the average cost of
energy to the microgrid by 28.1% (Fig. 6), 30.2% (Fig. 7), and
27.7% (Fig. 8) as compared to the base case, and a reduction
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Fig. 6: Average annual price versus the ESS’ power rating.
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Fig. 7: Average annual price versus the ESS’ energy rating.
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Fig. 8: Average annual price versus the ESS’ internal resistance.

of the average cost of energy by up to 72.3% of the ideal case
that was determined through a perfect forecasting dispatch.

V. DISCUSSION

The proposed backcasting algorithm has been shown to
reduce the average price of energy to the microgrid consumers
simply through arbitrage. This algorithm is best implemented
when forecasting algorithms are either erroneous or difficult
to implement. The main drawback of the algorithm is that it
is impossible to foresee any minor fluctuation on the price of
energy of which it can take advantage (such as t = [6, 12] h
from Fig 4b), which a dispatch algorithm with full foresight
is able to modify its charging/discharging pattern. In reality,
however, classic forecasting algorithms are also prone to errors
and may not capture this opportunity because the given price
pattern exhibited is essentially a statistical outlier.

The backcasting algorithm continuously adapts to the sys-
tem to which it is connected by recalculating the NSEV
at each time step. The NSEV algorithm can be used to
determine the precise charging/discharging power of the TDR
based on the marginal price of energy when the microgrid
is grid-connected for arbitrage purposes, or it can seamlessly
be integrated in the economic dispatch algorithm when the
microgrid is operating in islanded mode. When islanded, the
amount of power charging/discharging the ESS will affect
power operation points of other DERs, and thus will affect the
marginal price of energy. By introducing the linear marginal
price curve, the ESS’ valuation function can be considered
similar to a thermal resource in a classical economic dispatch.

VI. CONCLUSION

The focus and scope of this paper is to determine the
net stored energy value in a time-dependent resource as a
function of the energy price as compared to past time frames.
The proposed backcasting algorithm considers operating limits
such as variable efficiency, power rating, stored energy, and
energy rating, which none of the other algorithms in the
literature address simultaneously. When using real market
prices and load profiles, the results show that the average price
of energy in the microgrid is reduced by 8.14%.

The applicability of this work is to microgrid systems that
employ a form of time-dependent resource, such as energy
storage. This formulation presents the time-dependent resource
as if it were time-independent to the energy management
system. Since the final marginal price curve is linear (as is the
case with thermal-based generators), the proposed approach
supplements the classical economic dispatch by facilitating
the integration of energy storage systems into its optimization
algorithm. The backcasting approach is best utilized when
detailed or accurate forecasting algorithms are unavailable, or
if the stochastic distribution of the uncertain variable is subject
to change since the NSEV algorithm is adaptable to current
operating characteristics. Future work involves incorporating
this formulation into a microgrid controller so that it can
be used in an economic dispatch in both grid-connected and
islanded modes of operation with multiple distributed energy
resources, including various generators and load types.
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