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Microgrids (MGs) are new emerging concept in electrical engineering. Apart from their many benefits, there are
many problems and challenges in the integration of this concept in power systems such as their control and
stability, which can be solved by Energy Storage Systems (ESSs). In this paper, an introduction to MG archi-
tecture and their challenges is initially presented. Then, important types of ESSs and a brief description of their
characteristics are reviewed. Different ESSs operation configurations and their control methods are discussed as
well. Different advantages and disadvantages of configurations and control methods have been discussed in the

paper. A discussion about the control methods of ESSs and future trends are also presented. Investigation of
different researches, shows that the control of ESSs has an effective role in different aspects of MGs such as

stability, economic, etc.

1. Introduction

Nowadays, socio-economic conditions such as COs-emission free
power generation and finite resources of fossil fuels result in the de-
velopment of renewable energy resources such as wind and solar energy
systems. On the other hand, these resources are more economic than
fossil fuel based energy resources in some countries which encourages
their integration in transmission and distribution systems [1-4]. How-
ever solar and wind energy resources have a probabilistic nature, and
so, some Energy Storage Systems (ESSs) or reliable Distributed Gen-
eration (DG) units such as Fuel Cells (FCs) or Micro-Turbine (MT)
should be utilized along with them to increase the energy supply re-
liability [5-7]. The Microgrid (MG) is a framework to realize their in-
tegration. It is a low or medium voltage-power system including con-
trollable DGs, ESSs and loads [8,9]. Furthermore, in some MGs, the
generated heat by DGs such as MT is used, which increases the system
efficiency. These DGs are Combined Heat and Power (CHP) generation
[10,11]. The MG geographical border might be a city, university,
building, sport or traditional complex. Recently, many experimental
pilot MG projects such as CERTS testbed, AUT MG testbed, UTA mi-
crogrid laboratory, British Columbia Institute of Technology microgrid.
etc. have been constructed to investigate their technical aspects
[12-16]. In addition some actual MGs such as Illinois Institute Tech-
nology MG [17], Bronzeville Community MG [18], are pilot large scale
project in the world. A comprehensive review on the experimental and
MG research set-ups has been done in [19,20]. For example in Santa
Rita Jail MG, distributed energy resources management has applied
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[21]. Based on these review paper, it can be said that these researches
and applications have mainly been focused on control of DGs in is-
landed and grid-connected modes [20].

MGs usually provide different advantages for consumers and power
system operators such as transmission losses reduction, power quality
enhancement, and system efficiency increment [22,23]. In many
countries, small generators can participate in the energy market, and
consumers can profit from reliable energy. On the other hand, invest-
ments for the construction of new transmission lines, substations, and
bulk power generation can be postponed. The outland areas can use
local power generations and independently be controlled as MG
[24-29]. Fig. 1 shows the typical structure of a MG. The MG has been
connected via PCC (Point of Common Coupling) to the main grid. Two
ESSs and three DGs exist in this MG. One of the DGs can simultaneously
produce electricity and heat. A transfer switch is placed at the PCC for
mode changing. The MG could operate in two modes; connected to or
islanded from the main grid. In the connected mode, the main grid can
exchange power by the MG and support the MG stability. In the is-
landed mode, the DGs and ESSs of the MG must stabilize the MG.

The ESSs are important elements in the power system and MGs.
Recently, different types of ESSs have been introduced and used. In
2017, 1.4 GW ESSs capacity has been installed in the world [31]. Bat-
tery Energy Storage Systems (BESSs), as an old, mature and still de-
veloping technology, have been used for different applications [32]
such as application along with renewable energy resources [33,34],
load leveling [35], electrical vehicles [36], ancillary services [37], etc.
Flywheel Energy Storage System (FESS), Super Capacitor (SC) or
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Fig. 1. A typical structure of MG [30].

Fig. 2. Some applications of ESSs [45-49].

ultracapacitor, Super Magnetic Energy Storage (SMES), and Com-
pressed Air Energy Storage (CAES) are some other important ESSs,
which have special applications and structures [30,38-44]. Some ap-
plications of ESSs in MGs and power systems have been shown in Fig. 2.

Usually, the ESSs generate DC voltage, and so, power electronics
interfaces are needed to connect them to the AC power system and AC
MG [50-53]. In addition, some energy consumers may use DC electrical
power. Power electronics interfaces, made of semiconductor switches,
provide more controllability for ESSs [54,55]. For example, a DC/DC
convertor should usually be used for altering the DC voltage level of a
BESS, a DC/AC convertor which is called inverter, is used to connect a
SC to the MG, a AC/DC converter which is called rectifier, is used for DC
loads and AC/DC/AC (or back-to-back) converters are used for the FESS
[56-61].

In order to have a stable MG, these converters should properly be
controlled. It means that, in an AC MG, the voltage and frequency
should be maintained in a specified range [62,63] and in a DC MG, the
voltages should be adjusted using the current feedbacks [64,65].
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Therefore, in AC MG, at least a voltage source-type DG should be used,
and the convertors of this type of DGs are controlled as Voltage Source
Convertor (VSC). In this situation, other DGs can operate in the current
source mode and other convertors are called Current Source Convertors
(CSCs) [66-68].

This paper reviews different control strategies applied to several
types of ESSs. Firstly, different ESS types are reviewed and categorized
in the next section. Different control strategies applied on DGs of MGs
are described in Section 3 and some specialized techniques for ESSs are
explained in Section 4. A discussion about ESSs and their control stra-
tegies and future viewpoints are presented in Section 5. Finally, a
conclusion of the paper is made in the last section.

2. Description of different ESSs

In spite of advances in technology, electrical energy cannot be
stored in electrical form in large-scale capacities. To store electrical
energy, it should be stored as gravitational, adiabatic, mechanical,
chemical, thermal, magnetic or other forms [40,69-79]. The energy
storage system can be classified considering their power and energy
density, life cycle, ramp rate, etc. Until now, none of the ESSs can
suitably satisfy the power system requirement.

Fig. 3 classifies different ESSs based on their primary source of
energy. Table 1 lists their important characteristics and describes some
advantages and disadvantages. As it can be seen in Fig. 3, the ESSs are
divided into 5 groups of electrical, mechanical, thermal, electro-
chemical and magnetic.

Today, the most famous ESS in the worldwide is the BESS [81,82]. It
is an electrochemical ESS which produces or absorbs electrical power
via a chemical reaction. Each battery is made of several stacks. To
achieve high power and energy density, several BESSs should be con-
nected in parallel and series [83]. There are several types of BESS such
as lead-acid, nickel, sodium-sulfur, lithium ion, metal-air batteries, etc.
[84-86]. In addition to the BESS, some of hydrogen-based generation
units such as some types of Fuel Cell (FC) can be classified as the
chemical ESSs. In this case, the existence of the hydrogen reservoir
provides the possibility of the electricity generation when it is required
[79,871.

The pumped-hydro storage power plants can be considered as ESS
with large energy density used in the power system for decades [40,88].
This system stores water in two reservoirs; high and low height re-
servoirs. When electrical energy is required, the water flows to a lower
height reservoir and the potential energy is converted to kinetic and
then to electrical energy.
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Fig. 3. Different energy storage system categories [80].

The stored water is transferred between the two reservoirs and the
height difference between them determines the amount of stored en-
ergy. In the peak load period, the water flows down and the generators
produce electrical power while in low demand periods, the water is
pumped to the upper reservoir [95-97]. This action in 24 h, helps to flat
the load curve in the power system.

The FESS is an electromechanical ESS, which stores the electrical
power in mechanical form. A low friction round moving disk stores
electrical energy in kinetic form. There are two types of FESS; low-
speed and high-speed [38,39,98,99] with high and low inertia disk,
respectively. The disk is connected to an electrical machine, which can
operate in generator or motor mode. In the charge mode, the electrical
energy flows, from network to the FESS and the disk speed increases
(motor mode), while in discharge mode, the disk speed decreases and
the motor operates in the generator mode. The applied machines in the
FESS structure are usually induction machine, doubly fed induction
machine or permanent magnet synchronous machine [100,101].

Compressed Air ESS (CAESS) is an ESS with large capacity, used in
the power system [102,103]. This ESS stores air in low power demand
hours in large tanks. In this situation, it absorbs electrical energy from
the grid and compresses the air in large ground tanks. There are two
types of CAESS with underground and aboveground tank. In the peak
load hours, the compressed air energy is used in the combustion process
or expansion work and using turbine and synchronous generator the
electrical power is generated [104].

The ESS that stores heat in an insulated tank is called the Thermal
Energy Storage System (TESS) [89,105,106]. The stored heat can be
used in the power generation process. There are two types of TESS; low
temperature and high temperature. The low temperature TESS uses
water as energy carrier to store heat and is usually applied for heat peak
demand while the high temperature one uses some materials such as
ceramics as energy carrier. In general the efficiency is about 30-60%
[89].

Another solution for electrical energy storage is its storage in the
magnetic field. The Superconducting Magnetic Energy Storage (SMES)
stores electric energy in the magnetic field generated by the DC current.
The DC current flows in a coil which is maintained in low temperature
(under critical temperature of superconductivity phenomenon).
Generally, SMES are categorized in two main types; low temperature
(about 5 Kelvin degree) and high temperature (about 70 Kelvin degree)
[107-109].

3. MG control strategies
3.1. General methods

A MG should be controlled to ensure the stable operation of all its
components. Voltage in DC MG and the frequency and voltage of AC

MG should be controlled. In addition, some operational goals such as
economic considerations should be followed via the control system. For
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example, in a MG, with heating loads, the optimization of heating
management should be performed [110]. If sensitive loads exist in a
MG, the uninterruptible operation should be guaranteed for them
[111]. In this situation, ESSs as fast and reliable power supplies play an
effective and important role. Therefore, in many researches, the control
of MG power quality means the ESSs control [112-116].

In a MG, some controllers are near loads, and some others are near
DGs location or microsources, which are called the Load Controller (LC)
and Microsource Controller (MC) respectively. A controller that is
usually located at PCC and sends the control signals throughout MG is
called the MG Central Controller (MGCC). Fig. 4 shows the MG struc-
ture and controllers locations.

Two main general control strategies can be applied to ESSs; cen-
tralized and decentralized [117,118].

In the centralized control strategy, the MGCC has a unique role. It
sends and receives all the control signals of the MG. These signals are
transferred to LCs and MCs to control the voltage in DC MG (or voltage
and frequency in AC MG) and optimize power flow in feeders, etc. The
centralized controller is relied on communication architectures. This
reduces the system reliability [119]. In this control method, usually all
the DGs have one owner which wants to optimize operational and
economic criteria for all of them [120]. In contrast to the centralized
strategy, the decentralized one does not rely on MGCC and commu-
nication architecture. In this method, LCs and MCs play an important
role in MG stable operation. Another control method is the distributed
control strategy. In distributed control strategy, there are controllers
that are geographically distributed and functionally integrated. Indeed,
in this strategy, some controllers are the interface between MGCCs and
the local controllers [121,122]. Distributed control strategy has a
concept between two-mentioned strategies. In this strategy, MG com-
ponents exchange control signals. Fig. 5 shows the control strategies
graphically.

A compromise between centralized and distributed control con-
cepts. Results in another control method in MGs, named the hier-
archical control strategy, which is very close to the distributed control
strategy [123]. The hierarchical control strategy has three control le-
vels, which are in different time domains known as: 1-primary, 2-sec-
ondary and 3-tertiary control. The first control level is activated im-
mediately after a change in MG parameters such as frequency, voltage
or load changes and tries to keep the frequency and voltage in stable
ranges. The operation time of this level is about several seconds. The
primary control is the fastest level in the hierarchical control system
[124]. After performance of this level, a steady-state error may exist for
voltage and frequency. Moreover, other parameters such as active and
reactive power may be influenced by this error. To overcome the
mentioned problems, the secondary control is activated. It tries to re-
duce errors between desired and real parameters. Finally, the tertiary
control, which is the slowest control level is activated. Usually, the
main goal of this level is the economical or market issues [125-127].
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3.2. Droop control method

The conventional droop control method is a method that can be
applied to ESSs of a MG using centralized and decentralized control
strategies. This method is a mimic of synchronous generators, when
frequency and voltage drop proportionally with generated active and
reactive power, respectively [128,129]. To determine the reference
frequency and voltage, local voltages and currents are measured and
processed and as a result, it does not require communication infra-
structure, so it has also been called the wireless method. Fig. 6 shows
the one-line diagram of an ESS (or DG) connected to an infinite bus. E
and ¢ are the voltage amplitude and angle of the ESS. Z and 6 are the
amplitude and angle of the line impedance. The active and reactive
power (P + j Q) can be calculated as follows [130-132]:

;- E4p-v2o

T zu6 @
S=VXI*=P+jQ 2)
P= v [(Ecosg — V) cos6 + Esingsin 6]

Sz ? 7 ®)
Q= v [(Ecosgp — V) sin6 — Esin¢gcosf]

z 7 v @

Assuming that the output impedance of an inverter is inductive and
the phase difference between E and V is very small, (3) and (4) can be
written as follows [119]:

14
P=x ®)
|4

Based on the mentioned terms, droop equations can be expressed as
follows:

(7)
(€))

This equations is based on inductive lines impedance, but in many
cases the line is resistive or resistive-inductive, that are discussed in
[133-136]. Similar to inductive case, for an MG with resistive line, the
droop equations can be achieved as follows [134]:

w = w* — mP

E=E* - nQ

)
(10

w ="+ mQ
E =E*—nP

In case of having resistive and resistive-inductive lines, the appli-
cation of the virtual impedance for droop behavior enhancement has
been proposed [137,138]. For a DC MG, the new droop equation is
defined as follows [139,140]:

V=V*—RI an

The droop method is suitable for microsources control and it sta-
bilizes the MG under load changes. It can be used in centralized and
decentralized control strategies. Since, it relies on the local measure-
ment in each DGs, it can be applied for several independent ESSs in the
MG. Many researches have reviewed droop application in MG
[114,117,141-144]. The authors in [141], have reviewed different
power sharing methods in the islanded MG. In [114], the decentralized
strategy and hierarchical control have been reviewed and the primary,
secondary and tertiary control levels have been described based on the
droop control method,.

4. Control methods of ESSs
In islanded mode of MG, the ESSs are planned to be charged to a

distinct level of SoC determined by local or central controllers. In ad-
dition, due to economic considerations, the ESSs might inject power to
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the main grid. In this situation, an active and reactive power set point
have been defined and using two Proportional-Integral (PI) controllers,
the ESSs inject or absorb power. This control strategy is called the PQ
control strategy. Usually, some DGs with a slow response such as FC,
might be controlled by this control strategy. Fig. 7 shows this control
strategy for inverter-based ESS, which is controlled in the d-q frame
[145]. The detailed structure has been described in [53,146]. The au-
thors in [147,148], have substituted the PI controller in Fig. 7 by fuzzy
controllers. The fuzzy controller is suitable for nonlinear systems and is
independent of system type. The reference currents determination
structure for PQ control strategy is shown in Fig. 8. As can be seen,
using ig, ig, V4 and vy, active and reactive powers are calculated. Then
their difference from ordered value passes though PI controller and the
current reference values are calculated. More details can be found in
[149,150].

In islanded mode, some of the ESSs must participate in voltage and
frequency control of MG. These ESSs usually act as controllable voltage
sources [149]. This control strategy is called the V/f control strategy.
The reference set points of the voltage and frequency are received from
higher control levels. The ESSs, after islanding or load switching, im-
mediately compensate the lack or excess power in primary control and
PQ controlled DGs might corporate in secondary control. In
[30,98,151] three mentioned strategies (droop, PQ and V/f) have been
applied on the aggregated BESS and FESS and the stability of MG has
been studied. A summary of the control strategies applied to ESSs in the
MG has been shown in Fig. 9.

The ESSs in a MG can be used in three main general configurations;
1-distributed, 2-aggregated and 3-hybrid. In distributed form, ESSs are
located in several locations in MG, while in aggregated configuration,
all of them are installed in one bus. Fig. 10 shows the schematic dia-
gram of the MG with aggregated and distributed ESSs.

4.1. Aggregated ESS

In many research works, all the ESSs are supposed to be in one lo-
cation to facilitate ESSs modeling. In [152], a BESS management based
on State of Charge (SoC) of aggregated batteries, has been proposed,
which enables the MG to operate in islanded and connected modes. An
intelligent battery management based on artificial intelligent and fuzzy
logic rules, has been presented in [153]. This management method
minimizes the environmental (emission) and operational cost under
uncertainty conditions of solar generations. In addition, the application
of the fuzzy controller has increased the total lifetime of the BESS. The
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aggregated model of the BESS has been presented and used for stability
analysis of off-grid MG in [154]. In this work, the BESS has been in-
troduced as a widespread solution for the MG stability problems spe-
cially for short term frequency stability. A similar work has been carried
out in [155]. The authors in [156], have used the aggregated SC to
compensate frequency fluctuations in MG including wind generations.
The aggregation of SCs is necessary to provide a high power density
ESS. Moreover, this application improves the MG voltage profile.

In previous studies on economic problems of MGs, the aggregated
model has been used [157-160]. This consideration can be used, since
the converter cost can be neglected in the time range of the study. In
[161], the authors have considered ESS as an aggregated unit which has
rating in the range of MW nominal power range. The main goal of the
paper was the energy cost minimization.

In [162], the application of BESS, SMES and SC has been compared
with FESS for wind farm application. Two mentioned applications have
been assessed for distributed and aggregated configuration. The fluc-
tuation of the harmonic content in output power is the main criterion
for this comparison. It has been shown that two configurations have the
same results while the aggregated configuration needs larger convertor
capacity. In a similar research, the same authors have compared dis-
tributed and aggregated ESSs for different wind turbine peach angles
[163]. The application of the BESS for power smoothing of the wind
farm has been presented in [164] and three configurations have been
simulated; these three were aggregated, distributed and a new method
called semi-distributed. The main goal of the paper was minimization of
BESS capacity, which results in cost reduction. The application of the
aggregated FESS using fuzzy controller has fixed the DC link voltage of
WTs in the desired range [165].

4.2. Distributed configuration of ESS

In distributed configuration, several ESSs are dispersed in MG. The
application of distributed ESSs with the distributed photovoltaic system
has been studied in [166]. The photovoltaic panels provide electrical
energy for local consumption and ESSs increase system reliability
[166]. Using distributed NaS batteries alongside PVs has increased the
flexibility and improved peak shaving [167,168]. In [169], using co-
ordinated control of distributed ESS, the voltage rise problem has been
solved under high PV penetration. The presented solution has reduced
depth of discharge of ESSs and has improved the peak shaving. The
optimal place and size of distributed ESSs have been studied for voltage
profile improvement in [170].
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In [171], dispersed ESS has been used as ancillary service for an
active distribution network. An optimization has been run out to
achieve the best economic solution under technical considerations. A
convex optimization has been presented for ac power flow to improve
voltage profile and losses. The hierarchical control of distributed ESSs
has been defined for several BESSs consisting of primary and secondary
controls [172]. The proposed control strategy has been based on the
droop equation with some additional conditional terms. Moreover re-
active power dispatching has been offered in secondary control.

4.3. Hybrid ESS

As before mentioned, none of ESS can provide all the characteristics
needed for a power system or MG. The BESSs have high energy density
but have low power density and a short lifetime. In contrast, some ESSs
such SCs and FESS have high power density, a long lifetime and low
energy density. Due to mentioned reasons, combined application of
ESSs with different types is a common solution called Hybrid ESS
(HESS). In many researches, HESS has been used for MG control and
operation [89,173-179].

In [173], SC and BESS have been used to improve power sharing in
DC MG. The load changes in DC MG result in voltage changes. During
transients, the BESS compensates low frequency changes and the SC
compensates high frequency variations of the load power. In [180], a
new power convertor has been proposed to use SC and BESS as hybrid
ESS. The proposed method is decentralized. Like to SC, the SMES can
compensate short-term fluctuations. Fig. 11 shows a typical 24-hour
load profile [181]. As can be seen, it consists of two terms; low and high
frequency terms. The BESS can provide power for MG loads during the
peak period or supply the low frequency term. The SMES, SC, or FESS
can respond to high frequency terms as mentioned above. By proposing
a new droop for enhancing power sharing, this capability has been used
in [174,175], and a HESS which consists of SMES and BESS, has been
designed and tested. A SC along with BESS has been used for safe op-
eration of MG and reduction of main grid dependency [179]. Applica-
tion of the HESS of SMES and BESS for photovoltaic-based MG has been
investigated in [176] and PQ and V/f control strategies have been ap-
plied on this system. The results of the paper verify that the MG con-
sisting of with HESS has better transient response compared to the one
with BESS. Moreover, in fault conditions, the power losses have been
reduced in the MG.

Since, many some ESSs have a DC voltage terminal, they can be
coupled to a DC link. Fig. 12 shows the connection with more details. In
[183], a HESS including FESS and BESS has been used for frequency
regulation in autonomous MG. As shown in this figure, there are three
power electronic converters. “Conv.1” is a DC/AC converter, which can
operate in inverter or rectifier operation mode. In rectifier mode, en-
ergy flows from MG to HESS and the ESSs are charged while in inverter
mode, the HESS is discharged and energy is absorbed by MG. The BESS
supports the DC link voltage of the FESS. In [184], the FESS and BESS
do not have any connection to the DC link. Two ESSs are in DC MG and
the FESS works as the main ESS while the BESS supplies the rest of the
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demanded power. As shown in [185], the combined application of the
FESS and vanadium redox BESS using configuration of Fig. 12, causes
improvement of frequency stability in the AC MG.

4.4. Control technique based on ESSs SoC

One of the most important aspects in controlling ESSs, especially in
distributed and hybrid configurations, is SoC control. When two or
more ESSs operate in a power system or MG, they should be simulta-
neously charged and discharged. This causes an increase in the average
lifetime of ESSs and improving the response of voltage control.
Therefore, many researches have tried to equalize the SoC of ESSs. On
the other hand, as mentioned, the most important issue in the MG
control is its stability. Therefore, in the system operation optimization
process, the MG stability should be considered as an essential condition.
In the next sections, some works that have been done in this realm are
reviewed.

ESS Control

Strategies

The research works in ESS SoC control can be classified in re-
searches in DC and AC MGs. In DC MG, the voltage and power control
are very important. However, in AC MG, the stability is more complex
where the voltage, frequency, active and reactive powers should
properly be controlled.

Although the droop method is a useful method in MG control, some
papers have proposed methods that are not based on droop [186-188].
The SoC balancing control has been presented in [186], which is based
on cascade converters and the centralized control strategy. In
[187,189], a virtual resistance has been added to the control structure
of ESSs. Since, the virtual resistance value has been computed based on
the value of all ESSs SoC, these methods can be classified in the cen-
tralized control methods category.

Many researches have used the droop equations to balance the SoC
of ESSs. In [190], a multi-agent-based control procedure has been
presented for distributed ESSs, which balances ESSs SoC. In [191], new
droop equations based on SoC have been proposed. In this method, the
ESS with more SoC injects more active power compared to others and in
the charging mode, the ESS with less SoC absorbs more power. In [192],
Eq. (10) has been presented. For charging and discharging modes,
different functions have been defined. The results of the proposed
method clearly improve the SoC balancing.
f=f —MpP=f, — 0P, P>0
f:.fé - MP'P :ﬁ) - Mo'SOC"'P, P<O (12)

A new droop equation for f-P has been proposed in [193] as follows:
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Fig. 9. (a) ESS control strategies and (b) primary and secondary frequency control.
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In addition, a root-locus analysis has been presented in [192,193]
and it has been shown that the method has an effective role in SoCs
balancing while frequency has been controlled very well.

In [194], a centralized method has been proposed which is based on
SoCs averaging and transient virtual resistance for distributed BESS.
The multi-agent based control of two ESSs in the AC MG has been de-
scribed in [190] and hardware in the loop results have been presented
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as well. In [195], an adaptive droop based on SoC has been proposed to
improve SoC balancing; however the proposed method in [195] has
lead to frequency deviation.

A decentralized method has been presented for voltage and fre-
quency control of the MG based on ESS SoC as follows [196]:

w = wy — kp. P — kg (1 — SoC;) (14)

E:E*_kqjo"’QdePV/:’Pdt (15)
In DC MG, the resistance droop has been used. The authors in [197]
have promoted this droop for secondary control and equalizing the ESSs
SoC. In [173], for HESS including SC and BESS, a high-passed filter
droop has been proposed for SC. Using this method, the communication
infrastructure requirement has been removed and the MG has been
controlled decentralized. The P-E droop coefficient has been set to be
proportional to the n-th order of SoC in [198], as follows:

V =V* = mySoCl'I (16)

The authors in [199], have proposed a new decentralized droop-
based equation for DC MG with distributed ESS. In this method, the no-
load voltage has been changed as a function of ESS SoCs.

5. Discussion and future works

The energy systems are developing all over the world. Therefore, a
new concept has been appeared called microgrid. Microgrids are the
low or medium voltage distribution systems, which have many smart
meters, conventional and renewable energy resources, smart appli-
ances, etc.. All or most of the generators and loads can be monitored
and controlled. The MGs can help the power system to be smarter. A
MG should be able to operate in both connected and islanded mode.
The MG operation in off-grid mode is challenging. In this situation,
reliable energy producers such as ESSs play an important role.

The ESSs have been used for different applications in power systems
and MGs. Todays, there are several types of them that have diverse
applications. Some ESSs such as CAESS and PHESS are large ESSs that
are usually used for power systems [200]. The BESSs, as a mature
technology, are used in different applications. However, in the MGs, it
is better to use BESSs for power supply applications due to their high
energy density. Some ESSs such as the SC, SMES, and FESS that have a
high lifetime and high power density are usually used for power quality
applications. It should be noted that the ESS application to maintain
stability in the MGs is inevitable. Considering the required power, en-
ergy density and economic issues, the MG operators should select the
best choice from different ESSs.

In the islanded mode, three main configurations of ESSs are used;
aggregated, distributed and hybrid. In aggregated configuration, all the
ESS units have been installed in one location or only a large ESS has
been used in the MG, while in the distributed one, they have been
dispersed in the MG area. The ESSs can be controlled locally or de-
centralized or they can be controlled by the MGCC (centralized). Two
mentioned strategies might be executed in the hierarchical structure.
This means that similar to power system operation, the primary, sec-
ondary and tertiary control levels should be applied to the ESSs. The
droop control method has been applied to the ESSs that provide good
response in stability aspects of the MG. It is concluded from research
works that the distributed and hybrid applications are more preferable
compared to the aggregated one. Moreover the hybrid application of
the ESS is useful for the MG with high and low frequency changing the
load power profile.

One of the important issues in ESSs control, operation and main-
tenance, is SoC balancing among different ESS units. The lifetime of the
ESS is influenced by charge/discharge times. Since the stability of the
MG is the most important issue, after that, the maintenance issues are
important.
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Fig. 11. Typical 24-hour load profile of MG [158,181,182].

In the future, by developing of electrical vehicles such as plug-in
hybrid electric vehicles (PHEVs) in the microgrids, they can participate
in voltage and frequency of MG. on the other side by reducing renew-
able energy costs in the future they can compete by common energy
producers but they need ESSs to provide acceptable reliability. Some
ESSs such as Lithium batteries are developing to charge and discharge
thousands times which, this faciliate its application in the future [201].

6. Conclusion

In this study, a review on previous works on ESSs in the MG has
been carried out and different studies have been presented. Firstly, a
brief introduction about different ESSs types and their comparison have
been explained. It is described that different ESSs with different char-
acteristics can be used in various applications.

Two main configurations for ESSs locations in the MG have been
used in MGs. In the aggregated ESS, all the ESS units are located in one
location and in the distributed configuration, several units are placed in
different locations.

There are three main control strategies for ESSs control. In the grid-
connected MG, the ESSs are usually controlled by the PQ control
strategy, which causes a distinct level of SoCs to adjust for ESSs. In the
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islanded MG with aggregated ESS, the V/f control strategy might be
applied. The droop control strategy has been used for cooperation of
different ESSs.

Some ESSs, such as BESS have high energy density and other ones
such as FESS and SMES have high power density. In the practice, these
characteristics are important. The SoC of ESSs should be controlled to
ensure the suitable operation of the MG. Finally a discussion on the
control strategies and future trends in this subject has been presented.

In the future, by developing ESSs technology such as FESS, SC,
SMES, hydrogen ESS, etc., their widespread application is expectable.
Moreover, the BESSs technology has dramatically progressed recently.
Todays, BESSs with high density of power and energy are available,
which can be used for different applications in MGs. Many experimental
and test MGs including ESSs, have been and are being developed in the
world. Effective and efficient control of these MGs is one of the most
important aspects of their operation. This can be obtained by proper
combination and allocation of EESs in MG, and also selection of effec-
tive control strategies for ESSs and DGs. Considering the current ESSs
technology progresses, it is expected that more efficient control stra-
tegies will be designed for ESSs and the islanded operation of the MG
will be facilitated.

FESS

Fig. 12. HESS structure including FESS and BESS [183].
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