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a b s t r a c t

The concept of a microgrid system, when put in simple words, is a small scale generation and deployment
of power to a small geographical area in order to avoid transmission losses and maintain an uninter-
rupted power supply. It has been a mandatory protocol to implement the available renewable energy
sources (RES) in order to minimize the emission of harmful pollutants to the atmosphere from the com-
bustion of the fossil fuels. Economic load dispatch (ELD) deals with the optimal sizing of the distributed
energy resources (DERs) by minimizing the fuel costs. Emission dispatch does the optimal sizing of the
DERs sources by minimizing the amount of pollutants released in the atmosphere. A multi-objective
Combined Economic-Emission Dispatch (CEED) does the optimal DER sizing providing a compromised
solution of minimizing both the fuel costs and pollutants emission. This paper performs all ELD, emission
dispatch and CEED on an islanded and renewable-integrated microgrid separately using a recently devel-
oped novel Whale optimization Algorithm (WOA). Four various scenarios of load sharing among the DERs
are studied. The results are then compared with other recently developed bio inspired algorithms to cor-
roborate the effectiveness of the proposed technique. Further statistical analysis such as ANOVA test and
Wilcoxon signed rank test are performed to prove the superiority of the proposed approach over the var-
ious other optimization techniques used.
� 2018 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Microgrid can be defined as a recent small-scale form of the cen-
tralized power system. It typically consists of distributed generation
(DG) units, energy storage resources and loads that are designed and
sited close to the customers in small communities [1]. The DG units
used in the microgrid can either be conventional generators (i.e.
thermal and diesel generators) or renewable energy sources (i.e.
wind power and solar power). However, recently renewable energy
sources have been used widely in microgrids due to their cost and
environmental benefits in comparisonwith the conventional gener-
ators [2]. Whereas, the energy storage resources used in the micro-
grid include batteries, flywheels and pumped storage. In addition,
themicrogrid connected different types of loads such as agriculture,
industrial, commercial and residential.

Usually, the microgrids can either be operated in two different
modes. The first one is the grid connected mode in which the

microgrid is connected to the main grid. While the second mode
is the islanded mode in which the microgrid is isolated from the
main grid in the event of emergency and continue to deliver power
to the local loads (Fig. 1) [1]. The microgrids’ advantages contain
the improvement of power quality and reliability and also the
reduction of generation cost and carbon emission by using the
renewable energy sources.

Economic load dispatch (ELD) is the key problem related to the
operation of grid connected or islanded microgrids. The goal of the
economic load dispatch problem is to share the output power of
the running generation sources so as to provide the load demand
satisfying the generator constraints at a minimized fuel cost [3].
Accordingly numerous optimization techniques are implemented
to solve complex and convex ELD problems. Some of them include
the participation factor methods, the gradient methods, the linear
methods and Newtonian methods etc. [3–4]. These methods may
be simple but they converge towards the solution very slowly.

The harm caused to the environment by the release of the toxic
gases in the atmosphere has gained much attention in the last few
decades by the utility companies. They are bound to maintain cer-
tain levels regarding the release of harmful gases like carbon-di-
oxide (CO2), carbon-monoxide (CO), Sulphur-di-oxide (SO2) etc.
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[5]. The emission of these harmful gases can be reduced by instal-
ling more efficient and clean generator that consumes less fuel,
updating the control equipment and emission dispatch [6–8].
Emission dispatch was first performed [9] to minimize the emis-
sion of nitrous-oxide (NOx) gases but the corresponding ELD
proved to be costlier. The economic emission dispatch (EED) idea
was brought to find a compromised solution between the cost
and emission levels. A fuzzy interval optimization approach to
solve the EED problem with uncertain parameters in the con-
straints and the objective functions is studied in [10]. Not only var-
ious algorithms were applied to solve emission problems subject to
various constraints in [11–12], literature review also shows that
the economic load dispatch was conducted by considering the
emission dispatch as the constraint itself [13–14].

The ever increasing load demand along with the minimization
of environmental pollution can be solved considering renewable
energy sources (RES) as significant alternative DER. Microgrid com-
prises of a low voltage system along with DERs, storage devices and
flexible loads. The DERs such as micro-turbines, fuel cells, wind
turbines and photo voltaic (PV) system along with storage devices
such as flywheel, battery, energy capacitor etc. all are used in a
microgrid. A microgrid has two modes of operation viz. islanded
and grid connected mode and hence it is of benefit to both the grid
and customer. The primary microgrid control, also known as the
coordinated control, is used to optimize the allocation of power
among DER, cost of producing the energy and emission. The
authors minimized the microgrid cost comprising of a micro-
turbine fuel cell, PV, wind turbine and battery storage in [15] using
particle swarm optimization. Authors used differential evolution
technique to solve an economic and emission dispatch problem
of a microgrid using combined heat and power in [16]. The fore-
casted value of PV and wind turbine and also the real time market
prices were considered while minimizing the microgrid cost in [17]
and both emission and microgrid cost in [18] implementing differ-
ent variants of particle swarm optimization (PSO). Harmony search
algorithm (HSA) was used to minimize the microgrid cost involv-
ing penetrable PV, micro-turbine and fuel cell in [19]. Ant lion opti-

mizer was used in [20] for optimum allocation of RES in 33 and 69
bus radial distribution system to reduce the total power losses and
hence maximizing the net saving. Multi-objective optimization
techniques have also been developed to involve emission as a sep-
arate goal by choosing definite number of generating units and
minimize the cost and emission level in [21–25]. Weighting factors
was used to combine the fuel cost objective and emission objective
into a single one in [26–28] and more recent techniques were also
used in solving environmentally constrained ELD problems in [29–
30]. A flower pollination algorithm (FPA) was used as the optimiza-
tion tool by authors in [31] to perform ELD and CEED in various
small and large test systems considering valve-point effect. FPA
yielded better quality results is less computational time when
compared to many optimization techniques from the literature.
Authors in [32] used mine-blast algorithm (MBA) to perform ELD
and CEED for 6-unit, 10-unit and 13-unit test systems considering
valve-point effect and transmission loss. A normal boundary inter-
section method was used by authors in [33] to perform a multi-
objective dynamic economic dispatch and minimize the generation
costs, emissions and power loss in the system. Fuzzy decision mak-
ing method was implemented to find the best compromised solu-
tion for the three different objectives. Individual residential loads
were considered to perform dynamic ELD with demand side man-
agement on a fifteen generator test system in [34] which proved
that shifting of flexible loads can decrease the generation loads.
[35] used fuzzy based hybrid PSO-DE to perform multi-objective
economic emission dispatch on 10, 40 and 160 unit systems con-
sider power loss, ramp rate, prohibited operating zones and valve
point effects. Authors in [36] implemented a number of PSO vari-
ants to perform Dynamic Economic Emission dispatch on different
load models. Authors in [37] proposed a hybrid evolutionary algo-
rithm based on shuffled frog leap algorithm and PSO (MSFLA-PSO)
to perform multiple area ELD for 10-unit and 40-unit systems con-
nected to multiple areas by tie-line. Authors in [38] implemented
MSFLA-PSO to solve the multi-objective version of DFR problem
on two different distribution systems considering power losses,
Voltage Stability Index (VSI), and number of switching as fitness

Fig. 1. Architecture of an islanded microgrid.
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functions. An improved variant of both PSO and grey wolf opti-
mizer was hybridized (IPSO-IGW) and implemented by authors
in [39] to perform multi-objective dynamic distribution feeder
reconfiguration on a 95-nodes test system to minimize the operat-
ing cost, power loss and energy not supplied. A multi-objective PSO
(MOPSO) was proposed to perform multi-objective dynamic eco-
nomic and emission dispatch with demand side management in
[40].

Evolvement of soft computing tools, which are not restricted by
complexity of system models, inspired the research workers to
apply them in the field of power system optimization. The versatile
properties and attractive performance of Genetic Algorithm (GA),
Particle Swarm Optimization (PSO) and Differential Evolution
(DE) over wide range of benchmark functions have inspired the
many researchers to implement these algorithms for solving
energy management issues of microgrids involving optimal costs
and load scheduling. Nevertheless GA, PSO and DE have their
own list of disadvantages too. The very basic disadvantage of GA is
its unguided mutation. The mutation operator in GA functions like
adding a randomly generated number to a parameter of an individ-
ual of the population. This is the only reason of a very slow conver-
gence of genetic algorithm. DE suffers from unstable convergence
and easily drops down to regional optimum. Likewise PSO also
drops down to regional optimum and has untimely convergence.
In addition to that multiplicity of population is not enough in
PSO. Also some time is consumed in tuning the control parameters
present in all of the aforementioned optimization techniques.

However, there exists a few recently developed meta-heuristic
swarm evolutionary algorithms viz. Symbiotic Organisms Search
(SOS) (2014), Grey wolf optimizer (GWO) (2013) and Whale Opti-
mization Algorithm (WOA) (2016) which are free from the various
demerits of the aforementioned optimization tools. The crucial
merit of SOS, GWO andWOA is that they have no tuning parameters
and thus the tedious and numerous combinations of tuning various
factors doesn’t exist. By increasing or decreasing the population size
better quality results can be obtained in these algorithms.

The fitness function is evaluated four times per iteration
throughout the various stages of SOS and the best of them is stored.
This process is repeated until the termination criteria is attained.
Both GWO and WOA are iteration dependent optimization tech-
niques. This means that the exploration and exploitation in these
two optimization techniques happens throughout the iterations.
The adaptive values of some crucial parameters in GWO and
WOA allow smooth transition between exploration and exploita-
tion. The initial iterations perform the exploration and the rest of
the iteration exploits the solution in the search space to obtain a
superior quality result. Literature shows SOS [41–42], GWO [43–
44] and WOA [45–46] have found to be beneficial in various power
system problems in the recent times. Not much emphasis was
given in solving multi objective CEED problems on microgrids with
these algorithms.

This motivated the author to study all of PSO, DE, SOS and GWO
along with the proposed WOA as the optimization tools to mini-
mize the combined economic and emission dispatch of a renew-
able incorporated microgrid system, abiding the various equality
and inequality constraints. Furthermore a comparative analysis is
performed to prove the efficacy and superiority of WOA among
these five algorithms in providing a better and profound solution.

This paper considers a renewable integrated islanded microgrid
and all of ELD, emission dispatch and CEED are performed by using
five swarm and population based evolutionary techniques.
Section 2 of this paper forms the objective function. The superior
optimization technique, WOA is discussed in detail in Section 3.
Various combinations are studied and the results are discussed in
Section 4. The paper concludes in Section 5.

2. Objective function formulation

Economic Load Dispatch: The Economic Load Dispatch (ELD)
problem speculates the objective of sharing the load of a power
system among the various generation units in such a way as to
minimize the fuel costs of the conventional generators satisfying
the various constraints and fulfilling the load demand of the sys-
tem. The fuel costs of the conventional generators which is a con-
vex polynomial can be mathematically expressed as [47]:

FðPÞ ¼
X24
t¼1

Xg

i¼1

fuiP
2
i ðtÞ þ v iPiðtÞ þwig ð1Þ

where ‘g’ is the number of conventional generators in the system, Pi
is the output power of the generation unit i and ui,vi and wi are the
cost coefficients of the ith generator. F(P) is in $/hr.

Emission Dispatch: The combustion of fossil fuels by the conven-
tional generators releases some harmful toxic gases such as CO2,
SOx etc. in the atmosphere which should also be taken care of.
The emission dispatch minimizes the release of these harmful
gases in the atmosphere. The emission dispatch function is also a
convex polynomial like the ELD and can be written as

EðPÞ ¼
X24
t¼1

Xg

i¼1

fxiP2
i ðtÞ þ yiPiðtÞ þ zig ð2Þ

where xi, yi and zi are the emission coefficients of the ith generation
unit. The unit of E(P) is kg/hr.

Combined Economic-Emission Dispatch: As discussed above it can
be seen that the economic load dispatch and emission dispatch are
complete two different objectives. The former deals with the min-
imization of the fuel costs of the conventional generators and the
latter minimizes the emission of harmful and toxic pollutants in
the atmosphere. Hence it is necessary to arrive at a compromised
solution which can attain both minimized fuel cost emitting least
amount of pollutants in the atmosphere. This is done by creating
a multi-objective problem combining (1) and (2) with the help of
a parameter called ‘‘Penalty factor”. The penalty factor acts as an
intermediate to reform the emission criteria into an equivalent fuel
cost for the emission. Mathematically, the price penalty factor or
simply penalty factor is a multiplication factor associated with
each of the emission coefficients which transforms two differently
aimed single objective function to a CEED problem. Needless to say,
lower the value of the penalty factor, lesser the value of the CEED
problem. The various types of penalty factors are formulated and
calculated in later section of this paper.

The multi-objective economic-emission dispatch problem can
thus be mathematically stated as:

CðPÞ¼
X24
t¼1

Xg

i¼1

fuiP
2
i ðtÞþv iPiðtÞþwigþhi�fxiP2

i ðtÞþyiPiðtÞþzig
h i

ð3Þ
where hi is the penalty factor of the ith generating unit. The units of
C(P) is $/hr and hi is $/kg.

Renewable Energy Integration: Furthermore both the fuel costs
and the pollutants emission can be reduced by the inclusion of
available renewable resources for the generation of power. The
renewable energy resources are clean sources of energy which nei-
ther incurs any fuel cost nor does it emits harmful toxic gases in
the atmosphere. Although these renewable energy sources do
include some installation or maintenance cost whose cost function
can be calculated as below [47]:

F PRESð Þ ¼ PRES AC:IP þ GE
� �

ð4Þ
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where PRES is the output power of the renewable energy resources,
AC is the annuitization coefficient, IP is the ratio of investment cost
to established power in $/kW and GE is the operational and mainte-
nance cost in $/kW. Annuitization coefficient can be calculated with
the formula

AC ¼ r

1� 1þ rð Þ�N ð5Þ

where r is the interest scale and N is the investment duration in
years.

This work on an islanded microgrid uses wind farms and photo
voltaic (PV) system as the available RES for the minimization of
fuel and emission costs and also to increase the efficiency and
maintain an uninterrupted power supply. The operational and
maintenance cost for the wind farm and PV system is 0.016$/kW
invested at 9% interest scale for 20 years. The ratio of investment
cost to establish power is 5000$/kW for PV system and 1400$/
kW for wind farm. So the cost function of PV becomes
FPV = 547.7483 * PPV and the cost function of wind is
FWIND = 153.3810 * PWIND. [47]

Hence with the inclusion of RES the economic load dispatch
function becomes [47]:

ELD Pð Þ¼
Xg

i¼1

aiP
2
i þbiPiþci

� �
þ547:7483�PPV þ153:3810�PWIND

ð6Þ
And the inclusion of RES in the combined economic emission

dispatch function, turns it into

EED Pð Þ ¼
Xg

i¼1

aiP
2
i þ biPi þ ci

� �
þ hi liP

2
i þmiPi þ ni

� �h i
þ 547:7483 � PPV þ 153:3810 � PWIND ð7Þ

The above objective functions (6) and (7) are subject to con-
straints such as:

i Generation constraints: The power generated by the conven-
tional generators as well as the RES must lie between a maximum
and minimum limit. Mathematically,

Pi;min 6 Pi 6 Pi;max

PRES;min 6 PRES 6 PRES;max
ð8Þ

ii. Power supply-demand balance constraint: the power generated
at any instant of time by all the conventional generators and the
RES should satisfy the total desired load of the system. This can
be mathematically stated as:

PLOAD ¼ Pi þ PRES; i ¼ 1;2;3; . . . g ð9Þ
This work focuses on minimizing (6) and (7) separately using

various optimization techniques and a comparative study among
the techniques as well as the minimized costs of ELD and EED.

3. The whale optimization algorithm

This algorithm is motivated by Humpback whale for capturing
prey and bubble-net hunting strategy and was first proposed by
Mirjalili and Lewis [48] in 2016. The key features and methodology
of WOA are described in the following subsection.

(a) Features

Whales are the biggest mammals in the world and are consid-
ered as highly intelligent animal with emotion. The most interest-
ing fact of this mammal is that they never sleep because they have

to breathe from surface of the oceans. They have twice the number
of spindle cells than an adult human and that is the main reason of
their smartness. It has been proved that whales can think, learn,
judge, communicate and exhibit emotion. One of the biggest
baleen whale is Humpback whale (Megaptera movaeangliae) and
they have a unique hunting method known as bubble-net feeding
method.

(b) Methodology

The whales have a specific encircling prey pattern. They
use bubble-net strategy while searching and attacking their prey.
The mathematical models of these behaviours are discussed
below:

(i) Search for the prey (Exploration phase)

In the exploration phase, the position of a search agent is
updated according to a randomly chosen search agent instead of
best search agent obtained. This behaviour can be represented as
follows:

D
!¼ C

!
:X
!

rand � X
!��� ��� ð10Þ

X
!ðiter þ 1Þ ¼ X

!
rand � A

!
:D
! ð11Þ

where, X
!

rand=Random position vector of whale chosen from current
population.

(ii) Encircling prey

The whales have the ability to recognize the location of prey
and encircle them. This encircling behaviour is represented by
the following equations:

D
!¼ C

!� X
!

PðiterÞ � X
!ðiterÞ

��� ��� ð12Þ

X
!

iter þ 1ð Þ ¼ X
!

PðiterÞ � A
!� D

! ð13Þ
where iter indicates current iteration, A and C are coefficient
vectors.

XP specifies position vector of the prey and X specifies position
vector of Whale.

The vector A and C are calculated as follows:

A
!¼ 2: a!: r!1 � a!

C
! ¼ 2: r!2

ð14Þ

where component of a!are linearly decreased from 2 to 0 over the
course of iteration (in both exploration and exploitation phases)
and r1 and r2 are random vectors in range [0,1].

(iii) Bubble-net attacking method (Exploitation phase)

There are two approaches for bubble-net behaviour of the
whales which are described below:

� Shrinking encircling mechanism

This ability is achieved by decreasing the value of ‘a’ in the

equation (28). Hence fluctuation range of A
!

is also decreased

by a!.A
!

is the random value in the interval [�a,a] where a is
decreased from 2 to 0 over the course of iterations.
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� Spiral updating positions

This behaviour is achieved by calculating the distance between
the whale and the location of its prey. A spiral equation has been
created to mimic the helix-shaped movement of humpback whales
which is as follows:

X
!ðiter þ 1Þ ¼ D

!
:ebl:Cosð2plÞ þ X

!ðiterÞ ð15Þ

where, D
!¼ X

!
pðiterÞ � X

!ðiterÞ
��� ��� signifies the distance between ith

whale to its prey (best solution).where, b = Constant for defining
the shape of logarithmic spiral.

l = Random number in [�1, 1].
= Element-by-element multiplication.

In fact, the whales swim around its prey within a shrinking cir-
cular as well as a spiral-shaped path simultaneously. Due to this
behaviour, we assume that there is a probability of 50% in choosing
either the shrinking encircling mechanism or the spiral model to
update the position of whales during optimization. Mathematical
model for this behaviour is as follows:

X
!ðiter þ 1Þ ¼ X

!
PðiterÞ � A

!
:D
!

if p < 0:5

D
!
:ebl:Cosð2plÞ þ X

!
PðiterÞ if p P 0:5

(
ð16Þ

where, p = Random number in [0,1].
At the starting of WOA, initial search space is created randomly

where each search agent represents position of a whale. After every
iteration, search agents update their positions with respect to
either a randomly selected search agent or the best solution
obtained till then. The parameter ‘a’ is decreased in order to pro-
vide exploration and exploitation. This is exactly what happens
in GWO, as the iteration proceeds to attain the stopping criteria.
Apart from this, there exists these ‘shrinking encircling mecha-
nism’ and ‘spiral updating position’ methods of attacking prey in
WOA, that provides a rigorous exploitation mechanism between
the whale and its prey, thus allowing the optimization tool to
attain a solution of superior quality than many other optimization
techniques including GWO.

Nevertheless this rigorous and multiple method of exploration
and exploitation capability of WOA may consume more amount
of time during every iteration if complex and non-linear equality
and inequality constraints are involved. This shall give rise in over-
all computational time of WOA which may be considered as a dis-
advantage of the algorithm.

Finally WOA comes to end by satisfying all the termination con-
ditions which was given initially. Algorithmic procedure for the
complete execution of the proposed work usingWOA is given below:

Set the number of search agents and the maximum number of
iterations.
Define the boundary limits of control variables i.e. the 3 con-
ventional generators say G1, G2 and G3 and the load demands
of 24 h for all the four cases
Initialize the population matrix for ‘n’ number of search agents
(population size) abiding by the various equality and inequality
constraints mentioned in (8) and (9)

G1;1;1;G1;1;2;G1;1;3:::G1;1;24;G1;2;1;G1;2;2;G1;2;3:::G1;2;24;G1;3;1;G1;3;2;G1;3;3:::G1;3;24

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Gn;1;1;Gn;1;2;Gn;1;3:::Gn;1;24;Gn;2;1;Gn;2;2;Gn;2;3:::Gn;2;24;Gn;3;1;Gn;3;2;Gn;3;3:::Gn;3;24

2
64

3
75

The suffixes of G are in the order search agent number, genera-
tor number and hour. For instance Gn,3,24 means the 24th hour out-
put of the 3rd generator from the nth search agent.

Initialize a, A and C using (14).
Evaluate and compare the fitness solution value with all the
search agent solution. Store the minimum value of fitness func-
tion and the corresponding position of search agent.
Set the iteration number equal to 1.
The new prey is searched (exploration phase) by using (10).
After new prey is searched then encircling of prey is done using
(12).
Update the position of search agents for attacking the prey with
bubble-net strategy using (14).
Update the value of a, A and C using (14) with new position of
search agent.
Check all the equality and the inequality constraints mentioned
in (8) and (9) with the new position of each search agent.
Repeat Step 5.
Increase the iteration number by 1, i.e., iter = iter + 1.
If the maximum number of iteration has reached then termi-
nate the iterative process and store the fitness value as the best
solution of optimization problem otherwise repeat the steps-(7)
to steps-(13).

The stepwise performance of the WOA algorithm is shown in a
flowchart in Fig. 2.

4. Results and discussions

4.1. Description of the system

The test system is an islanded microgrid consisting of 3 conven-
tional generators, one 30 MW wind farm and one 40 MW PV sys-
tem. The operating ranges, cost and emission coefficients of the
conventional generators are listed in Table 1. Four different combi-
nations of distributed generation sources have been studied in this
work viz. all sources included, without PV, without wind and with-
out both PV and wind. The 24 h output of wind and PV are calcu-
lated for various wind speed and solar radiation at a location
east coast of USA [47] and are listed in Table 2 along with the
hourly load demand of the microgrid. Five meta-heuristic swarm
evolutionary based soft computing techniques viz. particle swarm
optimization (PSO), differential evolution (DE), Symbiotic Organ-
ism Search (SOS), Grey Wolf Optimization (GWO) and Whale Opti-
mization Algorithm (WOA) were applied to solve ELD, emission
dispatch and CEED for all the four combinations in MATLAB
R2010a platform installed in a personal computer with 2.53 GHz
core i3 processor and 2 GB RAM. The program is run with 30 pop-
ulation and 1000 iterations for 20 repeated trials and this was
same for all the optimization techniques used. While performing
PSO, the acceleration factors c1 and c2 were set at 2 and the inertia
weights wmax and wmin were 0.9 and 0.4 respectively. The scaling
factor F and the cross over ratio CR were maintained at 0.7 and
0.2 respectively when DE was performed. The Benefit Factors for
SOS were set at 2.

4.2. Comparative Analysis

Table 3 enlists the various costs when ELD was performed on
the microgrid test system for various cases using PSO, DE, SOS,
GWO and WOA. It can be seen that for all the four different cases
of varying loads, WOA incurred superior and better results than
all of PSO, DE, SOS and GWO. The various costs attained by WOA
were $299895.7531, $203987.5104, $272031.0549 and
$176166.5662 for the cases ‘all sources’, ‘without PV’, ‘without
wind’ and ‘without RES’ respectively. These values are the mini-
mum among the costs obtained using rest of the optimization tech-
niques for the aforementioned cases.
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Emission dispatch was performed in the microgrid test system
using PSO, DE, SOS, GWO and WOA and the pollutants emitted
(in kg) are shown in Table 4. The pollutants emitted using WOA
when all sources were used was 2183.9629 kg, without using PV
was 2264.9788 kg, without using wind was 2254.2557 kg. and
without using both the RES was 2379.4554 kg. It can be realized
from the table that these values are pretty less when compared
to the rest of the optimization techniques used. It is also to be
noted that the maximum pollutants are emitted when no RES were
used. This is obviously because the entire load demand was to be
fulfilled by the conventional generators, thus consuming more fuel
and releasing harmful pollutants.

Authors in [49] and [50] discussed about the various types of
penalty factors for amalgamating an economic dispatch problem
and an emission dispatch problem formulating a multi-objective
CEED problem. All those various types of penalty factor were for-
mulated, calculated and listed in Table 5. It can be realized that
Min-Max penalty factor is the least and the best type. Therefore
this penalty factor was chosen to formulate the CEED problem.

Multi-objective CEED was performed using various optimiza-
tion techniques mentioned earlier and the results were highlighted
in Table 6. Similar to the other two cases and by virtue of its swift
and broad exploration and exploitation capability, WOA outper-
formed all the rest of the optimization techniques in giving a better

Fig. 2. Flow chart of Whale Optimization Algorithm.

Table 1
Generator power limits, fuel cost coefficients and emission coefficients [47].

DG sources Min Power (MW) Max Power (MW) u ($/MW2h) v ($/MWh) w ($/h) x (kg/MW2h) y (kg/MWh) z (kg/h)

G1 37 150 0.0024 21 1530 0.0105 -1.355 60
G2 40 160 0.0029 20.16 992 0.008 -0.6 45
G3 50 190 0.021 20.4 600 0.012 -0.555 90
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and profound result. The microgrid cost was found to be
$325364.621 when all the sources were used to share the load,
$230019.0483 when PV system was not considered,
$297907.5634 when wind turbine was unused and $202881.7751

without considering RES. It can be realized from Table 6 that these
results are better and less than those obtained by the rest of the
optimization techniques.

Tables 7–10 lists the hourly output of the conventional genera-
tors for various cases when CEED was evaluated usingWOA. All the
values can be seen to be satisfying their equality and inequality
constraints. This constraint handling capability of any algorithm
is also an appreciable feature. During the first and last few hours
when load demand is less, the generators out flow the minimum
power required to satisfy their demand. But during the peak hours
when the demand is high, the generators can be seen to deliver
maximum power than rest of the time intervals. These values are
much higher when RES are not considered and the generators sat-
isfy the load demands among themselves.

Figs. 3(a) to 3(d) shows the convergence curve characteristics
when ELD was performed using PSO, DE, SOS, GWO and WOA for
the four different cases respectively. Figs. 4(a) to 4(d) portrays
the convergence curve characteristics when CEED was evaluated
using all the five algorithms for the four cases respectively. It can
be realized for maximum of the cases WOA converges in earlier
iterations than the other optimization algorithms. Fig. 5 shows
the hourly distribution of costs when CEED was evaluated using
WOA. It can be seen that the rise in the cost curve is during the
peak demand of load i.e. from 8th to 18th hour. Also due to the
high cost coefficient of PV system, the cost curve maintains a low
profile throughout the day in the two cases when PV was not con-
sidered i.e. ‘without PV and ‘without RES’. Fig. 6 is a bar diagram
representing the total time taken by the algorithms to evaluate
CEED for the various cases. It can be seen for all the cases WOA
consumed the minimum amount of time (20 to 25 s) to deliver

Table 5
Calculation of various price penalty factor for G1, G2 and G3.

Penalty Factor types Penalty Factor Formula h1 ($/kg) h2 ($/kg) h3 ($/kg)

Max-Min hi;max�min
� �

uiP
2
i;max þ v iPi;max þwi

xiP
2
i;min þ yiPi;min þ zi

215.3509 146.7455 162.2976

Max-Max hi;max�max
� �

uiP
2
i;max þ v iPi;max þwi

xiP
2
i;max þ yiPi;max þ zi

56.1290 32.2496 14.6306

Min-Min hi;min�min
� �

uiP
2
i;min þ v iPi;min þwi

xiP
2
i;min þ yiPi;min þ zi

96.530 54.5798 5.5334

Min-Max hi;min�max
� �

uiP
2
i;min þ v iPi;min þwi

xiP
2
i;max þ yiPi;max þ zi

25.1597 11.9948 4.6750

Average hi;avg
� �

hi;max�min þ hi;max�max þ hi;min�min þ hi;min�max

4
98.2924 61.3924 46.7841

Common hi;com
� �

hi;avg

number of generators
32.76 20.46 15.59

Table 2
Day ahead forecasted hourly output of PV and wind and hourly load demand.

Time (hours) Load (MW) PV (MW) WT (MW)

1 140 0 1.7
2 150 0 8.5
3 155 0 9.27
4 160 0 16.66
5 165 0 7.22
6 170 0.03 4.91
7 175 6.27 14.66
8 180 16.18 25.56
9 210 24.05 20.58
10 230 39.37 17.85
11 240 7.41 12.80
12 250 3.65 18.65
13 240 31.94 14.35
14 220 26.81 10.35
15 200 10.08 8.26
16 180 5.30 13.71
17 170 9.57 3.44
18 185 2.31 1.87
19 200 0 0.75
20 240 0 0.17
21 225 0 0.15
22 190 0 0.31
23 160 0 1.07
24 145 0 0.58

Table 3
Microgrid cost (in $) for ELD using optimization techniques.

All Sources Without Solar Without Wind Without RES

PSO 299919.4357 204025.1856 272045.2086 176177.9174
DE 299916.0487 204006.9307 272036.3530 176169.0719
SOS 299906.3846 204001.6485 272034.5209 176168.04244
GWO 299896.6562 203988.3084 272033.5531 176167.8827
WOA 299895.7531 203987.5104 272031.0549 176166.5662

Table 4
Microgrid emission dispatch (in kg) using optimization techniques.

All Sources Without Solar Without Wind Without RES

PSO 2189.6784 2269.4351 2260.4334 2385.7962
DE 2187.4739 2266.6284 2259.5973 2383.2908
SOS 2185.2421 2266.3662 2257.9951 2381.9505
GWO 2184.7448 2265.6551 2256.9551 2380.519
WOA 2183.9629 2264.9788 2254.2557 2379.4554
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Table 6
Microgrid cost (in $) for CEED using optimization techniques.

All Sources Without Solar Without Wind Without RES

PSO 325377.3173 230029.0775 297912.8001 202886.6496
DE 325371.3072 230024.3813 297911.5005 202884.8852
SOS 325369.7976 230023.7559 297910.2332 202882.0837
GWO 325368.4448 230020.3064 297908.2971 202882.6042
WOA 325364.4919 230019.0483 297907.5634 202881.7751

Table 7
Hourly outputs (in MW) of conventional generators for CEED using WOA (All sources).

Time (hours) G1 (MW) G2 (MW) G3 (MW)

1 48.2994 40.0006 50.0000
2 51.4987 40.0004 50.0009
3 55.7286 40.0003 50.0011
4 53.3387 40.0006 50.0007
5 64.0879 43.6867 50.0054
6 66.3493 48.6901 50.0206
7 62.9977 41.0701 50.0021
8 47.2587 40.0005 50.0008
9 66.3881 48.9600 50.0219
10 67.7507 52.108 52.9212
11 74.4747 67.4736 77.8417
12 75.5121 70.0425 82.1454
13 71.5053 60.6438 66.691
14 68.4943 53.5823 55.6334
15 69.0334 55.0468 57.5798
16 65.1250 45.8616 50.0034
17 63.9238 43.0645 50.0016
18 68.9211 54.5960 57.3029
19 71.4439 60.7420 67.0641
20 77.3194 74.1609 88.3497
21 75.0815 69.1129 80.6556
22 70.1958 57.5931 61.9011
23 64.5596 44.3606 50.0098
24 54.4178 40.0013 50.0009

Table 8
Hourly outputs (in MW) of conventional generators for CEED using WOA (without
PV).

Time (hours) G1 (MW) G2 (MW) G3 (MW)

1 48.2866 40.0006 50.0128
2 51.4538 40.0258 50.0204
3 55.7008 40.0120 50.0171
4 53.3381 40.0006 50.0014
5 63.2853 44.1454 50.3493
6 65.9342 48.8788 50.2770
7 65.8464 44.3622 50.1314
8 61.9369 41.4910 50.0121
9 69.8893 58.2664 61.2643
10 73.7800 65.4173 72.9528
11 75.0000 69.6254 82.5746
12 75.0000 71.6199 84.7301
13 75.0000 69.6379 81.0121
14 72.8146 65.0150 71.8204
15 70.1807 58.2778 63.2815
16 65.7650 50.3204 50.2046
17 66.4587 49.6219 50.4793
18 69.1471 56.0426 57.9404
19 72.8175 60.8880 65.5444
20 75.0000 74.6353 90.1947
21 75.0000 69.2765 80.5735
22 70.4006 57.0814 62.2080
23 63.9844 44.8716 50.0740
24 54.3541 40.0480 50.0179

Table 9
Hourly outputs (in MW) of conventional generators for CEED using WOA (without
wind).

Time (hours) G1 (MW) G2 (MW) G3 (MW)

1 49.9639 40.0000 50.0361
2 59.9731 40.0000 50.0269
3 64.2244 40.6730 50.1027
4 64.0309 45.9308 50.0383
5 65.8119 48.5359 50.6522
6 67.4012 51.1905 51.3783
7 67.4248 50.2121 51.0931
8 67.4268 46.2874 50.1058
9 69.6540 57.3296 58.9664
10 70.4058 58.3716 61.8526
11 74.9236 72.7051 84.9613
12 75.0000 77.5698 93.7802
13 73.1866 64.9654 75.0380
14 70.0538 57.0356 60.9706
15 70.1991 57.2878 62.4331
16 68.0370 51.9447 54.7183
17 65.4648 44.9197 50.0455
18 69.1727 55.8040 57.7132
19 71.6440 60.0821 68.2739
20 74.9468 75.4474 89.6058
21 75.0000 69.1320 80.8680
22 70.5373 57.4949 61.9678
23 64.1677 45.7400 50.0924
24 54.9815 40.0000 50.0185

Table 10
Hourly outputs (in MW) of conventional generators for CEED using WOA (without
RES).

Time (hours) G1 (MW) G2 (MW) G3 (MW)

1 49.9999 40.0001 50.0000
2 59.9907 40.0092 50.0000
3 63.1746 41.8252 50.0002
4 65.3077 44.6904 50.0019
5 66.3383 48.6612 50.0005
6 67.4001 51.1628 51.4371
7 68.1186 52.7819 54.0994
8 68.7783 54.4583 56.7635
9 72.9873 64.2170 72.7957
10 74.9999 71.1608 83.8393
11 74.9997 74.9274 90.0729
12 75.0000 78.7473 96.2527
13 74.9997 74.9316 90.0687
14 74.4516 67.5371 78.0113
15 71.6682 61.0287 67.3031
16 68.7930 54.3192 56.8879
17 67.4580 51.1158 51.4262
18 69.4959 56.0071 59.4970
19 71.6479 60.9877 67.3643
20 74.9999 74.9222 90.0780
21 74.9996 69.2318 80.7687
22 70.2168 57.6447 62.1385
23 64.7099 45.2893 50.0009
24 54.9994 40.0003 50.0002
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Fig. 3a. Economic Load Dispatch when all sources are included.

Fig. 3b. Economic Load Dispatch when wind farms are excluded.

Fig. 3d. Economic Load Dispatch when both PV system and wind farms are
excluded.

Fig. 3c. Economic Load Dispatch when PV system is excluded.

Fig. 4a. Combined Economic Emission Dispatch when all sources are included.

Fig. 4b. Combined Economic Emission Dispatch when wind farms are excluded.
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the minimum cost. SOS due to its property of multiple evaluation
of fitness function consumed as high as 30 s in almost all the cases.

4.3. Statistical analysis of the proposed approach

Two statistical evaluations were considered to test the feasibil-
ity and the robustness of the proposed algorithm compared to the
other optimization techniques used to minimize the CEED prob-
lem. The statistical tests are reported with their results obtained
as under:

a. Analysis of Variance (ANOVA) test: ANOVA test result is taken
considering all the optimization methods. This test is con-
ducted to get idea of variance of the mean of the system
operating cost with different optimization methods. Various
statistical entities like mean, standard deviation, variance
etc. are involved in performing the ANOVA test [51]. The
ANOVA test result is shown in the Table 11. Here ANOVA test
is performed by the coding method. In the proposed work,
ANOVA test is performed between five optimization tech-
niques namely PSO, DE, SOS, GWO and WOA (i.e., k = 5)
and each optimization algorithm was executed for 20 times
(i.e., t = 20). The Table 11 also shows that the calculated
value of F for both the systems are less than the tabulated
value of F at 5% level of significance with degrees of freedom
being 4 and 15 found in [52]. These analysis contradicts the
null hypothesis advocating no differences in minimize cost
by the techniques. We may therefore conclude that the dif-
ference in the minimized cost by the techniques is signifi-
cant and is not just a matter of chance. Hence the ANOVA
test by the virtue of its nature supports the fact that one
among the five techniques used gives better result.

b. Wilcoxon signed rank test: Wilcoxon signed rank test was
used to test one sample data set, obtained from the results
of the proposed algorithm. It is a pairwise test done to find
substantial variances in the behavior of two diverse algo-
rithms. J. Derrac et al., elaborated the use of this test using
examples in [53]. Any given algorithm maybe considered
robust if is able to prove its statistical worth. For this pur-
pose, it has to provide sufficient evidence against the null
hypothesis. A p-value (probability value) below 0.05
achieved using this test is measured as ample evidence

Fig. 4c. Combined Economic Emission Dispatch when PV system is excluded.

Fig. 4d. Combined Economic Emission Dispatch when both PV system and wind
farms are excluded.

Fig. 5. Hourly sharing of costs (in $/hr.) for all the cases for CEED using WOA.

Fig. 6. Time (seconds per 1000 iterations) for various cases of CEED evaluation
using PSO, DE, SOS, GWO and WOA.

10 B. Dey et al. / Engineering Science and Technology, an International Journal xxx (2018) xxx–xxx

Please cite this article in press as: B. Dey et al., Solving multi-objective economic emission dispatch of a renewable integrated microgrid using latest bio-
inspired algorithms, Eng. Sci. Tech., Int. J. (2018), https://doi.org/10.1016/j.jestch.2018.10.001

https://doi.org/10.1016/j.jestch.2018.10.001


against the null hypothesis. The p-values obtained using this
test for all cases with their minimum, maximum, average
values and standard deviation are listed in Table 12. From
the Table 12, it was observed that the p-value in every case
was much lower than the desired value of 0.05 thereby
establishing statistical significance of results.

c. Robustness: Initialization of evolutionary algorithms is
always done randomly which is why multiple trial runs
are needed to arrive at a decision regarding robustness of
the same. WOA was evaluated for 20 trial runs for all cases.
The number of times it hit the minimum solution is shown
in Table 12. It can be seen that the lowest number of times
it hit the minimum solution was 18 whereas the highest
number was 19. The average success rate came out to be
92% which is highly appreciable.

5. Conclusion

A renewable integrated islanded microgrid with conventional
generators is considered in this paper for solving both single objec-
tive and multi-objective optimization problems. Major findings of
this paper are listed below:

i. Two single objective formulated problems viz. economic dis-
patch and emission dispatch is combined to form a com-
bined economic emission dispatch (CEED) problem and is
minimized using five evolutionary algorithms.

ii. Various types of price penalty factor were calculated and the
least and best price penalty factor was used to convert two
single objective problems to a multi objective one.

iii. Four different cases were studied for the CEED problem.
iv. Proposed WOA gave better quality results for all the cases

when compared to other optimization techniques used to
minimize the CEED problem.

v. Two different types of statistical analysis viz. ANOVA test
and Wilcoxon signed rank test were performed to prove
the superiority of the proposed algorithm over the others.

Solving CEED for a grid-connected microgrid can be considered
as a scope of future work. Also to make the problem more viable,

some practically occurring issues such as prohibited operating
zone, valve-point effect and ramp rates of the conventional gener-
ators may be considered to increase the complexity of the test sys-
tem and hence testing the robustness and capability of the
proposed algorithm to handle complex constraints. Also weighted
sum approach with pareto fronts may be proposed in future work
to solve multi-objective problems with dedicated multi-objective
optimization techniques.
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